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Abstract Incremental tests are widely used in cardiopulmonary exercise testing both in the clinical domain
and in sport sciences. The highest workload (denoted Wpeak) reached in the test is a key information to assess
the individual body response to the test and to analyze possible cardiac failures, plan rehabilitation and training
sessions. Being physically very demanding, incremental tests can significantly increase the body stress on the
monitored individuals, and may cause cardiopulmonary overload. This paper presents a new approach to cardi-
opulmonary testing that addresses these drawbacks. During the test, our approach analyzes the individual body
response to the exercise and predicts the Wpeak value that will be reached in the test and an evaluation of its
accuracy. When the accuracy of the prediction becomes satisfactory, the test can be prematurely stopped, thus
avoiding its entire execution. To predict Wpeak we introduced a new index, the CardioPulmonary Efficiency
Index (CPE), summarizing the cardiopulmonary response of the individual to the test. Our approach analyzes
the CPE trend during the test, together with the characteristics of the individual, and predicts Wpeak. A k-
Nearest Neighbor based classifier and an ANN based classier are exploited for the prediction. The experimental
evaluation showed that the Wpeak value can be predicted with a limited error since the first steps of the test.
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1 Introduction

Cardiopulmonary exercise testing is a non-invasive and objective method of evaluating both the cardiac and
pulmonary functions. Incremental tests are commonly used to progressively increase the mechanical demand
that the individual cardiopulmonary system has to match until she/he can no longer maintain the current
workload. The cardiopulmonary response to exercise, when skeletal muscles transform chemical energy into
mechanical output, has been shown to depend on workload, and the individual performance to be largely
dependent on her/his aerobic power (i.e., the ability in supplying oxygen to, and in removing carbon dioxide
from, working muscles).

To analyze the individual body response to increasing strain, various physiological signals, mainly describing
the respiratory function of the individual, are monitored during the incremental test. The highest workload
(denoted as Wpeak) achieved in the last stage of the test corresponds to the “best” cardiopulmonary adaptation
for the monitored individual in terms of heart rate and ventilation, and it is an important indicator of her/his
aerobic power.

Incremental tests are commonly used in the clinical domain Sill et al (2009); Spruit and Wouters (2007)
and in sport sciences Pollock et al (1998), and both treadmills and cycloergometers are usually exploited for
testing. In the clinical domain, incremental tests support assessing heart functions in patients with chronic
heart failure Sill et al (2009), or evaluating pulmonary function in patients with chronic obstructive pulmonary
disease Spruit and Wouters (2007). In sport sciences, exercise physiologists use incremental tests for endurance
sports testing Pollock et al (1998). Both in the clinical domain and in sport sciences, the Wpeak reached by
the individual in the incremental test is crucial to manage rehabilitation and training sessions, by planning and
adjusting the assigned workload Mezzani (2009). For example, in sport sciences, according to the American
College Sport Medicine, trainers should set training intensities as fractions of the Wpeak values reached by the
athlete in previous tests Pollock et al (1998). In the clinical domain, exercise capacity has been shown to be the
best predictor of survival among healthy men Myers et al (2002). Unfortunately, incremental cardiopulmonary
tests, the gold standard to assess exercise capacity, are physically very demanding. Long test durations can
significantly increase body stress and may cause cardiopulmonary overload on the monitored individuals. Hence,
early prediction of the expected Wpeak value during the test execution would allow to prematurely interrupt the
test, thus lowering body stress. In addition, cardiopulmonary testing is time consuming and reducing the time
needed to perfom one test could allow cardiopulmonary testing to become a routine procedure as suggested by
experts Franklin and McCullough (2009). This issue is further discussed in Section 7.

Nomograms and other approaches predicting maximal exercise capacity based on factual data have been
proposed since the origins of exercise physiology Astrand and Ryhming (1954) to overcome a series of limitations
including the cost of equipment for direct measurement of power output and energy consumption. However,
these approaches suffer from several limitations, e.g., they do not allow measuring a subject’s improvement in
performance because they cannot detect changes in individual performance in a time as short as a training
programme (usually weeks).

This paper presents an innovative approach to predict the Wpeak value that can be reached during an
incremental test. By coupling factual data with the physiological signals monitored during test execution, our
approach predicts Wpeak according to the actual response of the individual during the test. Hence, it allows
detecting changes in individual performance and adaptations to training. Both in the clinical and sport domains
this information allows effectively monitoring individual progression during a rehabilitation/training programme.
Wpeak is dinamically predicted during test execution, whenever the assigned workload is increased, together
with an estimate of its accuracy. When the estimated accuracy of the prediction becomes satisfactory, the test
may be stopped, thus avoiding its entire execution. Hence, the proposed approach does not replace testing, but
instead (i) it provides an additional tool, while testing, to reduce physical effort and (ii) it allows saving test
time, thus potentially making cardiopulmonary testing more affordable without missing crucial information. To
our knowledge, this work is the first study addressing dynamic early prediction of Wpeak.

To characterize the performance of the tested individual and predict Wpeak, we introduce a new measure,
named CardioPulmonary Efficiency Index (CPE), which summarizes both the cardiac and pulmonary responses
of the individual to the incremental test. The information provided by the CPE index during the test is coupled
with some anthropomorphic data of the individual and exploited to train a classifier for the prediction of
Wpeak. We considered two different classification techniques: An instance-based learning approach based on
the k-Nearest Neighbors (k-NN) algorithm Tan et al (2005), and Artificial Neural Networks (ANN) Tan et al
(2005). The proposed approach has been evaluated on two sets of incremental tests collected at CSA, Sport
Training Center (Italy) Sport Training Center (2011), for diverse athletes. These tests use two protocols com-
moly adopted in endurance sport testing. Experimental results showed that Wpeak is predicted with a limited
error since the first instants of the test.

The paper is organized as follows. Section 2 describes the test protocol and the physiological signals mon-
itored during the test, while Section 3 introduces by means of an applicative example the motivations driving
our approach. Section 4 presents the CPE index and Section 5 describes the k-NN and ANN classifiers to predict
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Table 1: Monitored physiological signals
Signal name Abbreviation Measurement

unit

Carbon dioxide production V CO2 ml/min
Fraction of expired air
that is carbon dioxide FetCO2 %
Fraction of expired air
that is oxygen FetO2 %
Heart rate HR bpm
Pulmonary ventilation V E l/min
Tidal volume V t l
Oxygen consumption V O2 ml/min
Ventilatory equivalent
ratio for carbon dioxide V E/V CO2 –
Ventilatory equivalent
ratio for oxygen V E/V O2 –

Wpeak. Section 6 reports the experiments that evaluate the prediction accuracy, whose results are discussed in
Section 7. Related works are described in Section 8 and Section 9 presents future developments of the approach.

2 Test protocol and data collection

This section describes the test protocol and the physiological signals collected during the test to characterize
the test execution.

Test protocol. In incremental tests, the workload is a step signal defined by two parameters: The increment
of workload at each step (Wstep) and the duration of each step (tstep) in which the workload is kept constant.
These two parameters define the test protocol, denoted Wstep × tstep, meaning that every tstep minutes the
workload is increased by Wstep Watt.

The protocol is set before the test starts and is kept constant during the test. The test ends when the
individual cannot sustain the current workload. The workload at the test end is the highest workload achieved
by the individual in the test, i.e., Wpeak.

Data collection. Each test is characterized by two kinds of information, factual and dynamic data. Factual data
describe the individual performing the test. We considered individual age, Body Mass Index (BMI), and Body
Surface Area (BSA).1 These attributes are normalized by means of the z-score method, which is less sensitive
to the skewed data distribution Tan et al (2005) characterizing factual data.

Dynamic data include the various physiological signals sampled during the test to analyze the individual
body response under increasing strain. The individual is monitored by means of a set of sensors and a spirometer.
Besides the cardiovascular parameters (e.g., the heart rate), the majority of signals describes the ventilatory
function of the individual. Table 1 reports the subset of signals used in our framework. Since they differ both
in scale and measurement unit, a min-max normalization has been performed. This normalization technique is
typically exploited in time series Kasetty et al (2008), because it preserves the original data distribution.

3 Motivating example

We show by means of a real application example how the proposed Wpeak prediction approach may support
incremental test monitoring and early interruption. We selected two different individuals (test ids 130 and
2792) performing the incremental test with protocol 50 W × 2 min. The factual data of both subjects, reported
in Table 2, are characterized by identical BMI and BSA, and rather different age. Hence, traditional Wpeak

prediction approaches based on factual data (e.g., nomograms) would typically predict a higher Wpeak for test
id 130, characterized by lower age.

In Figure 1 the solid line plots the Wpeak prediction performed by our approach at each workload increment
during the test until its end, while the two dashed lines show the estimation of the average prediction error
(Mean Absolute Error, MAE). After the initial steps, our approach correctly predicts the Wpeak value for both
individuals. In addition to factual data, our prediction is based on the analysis of the actual individual response

1The individual gender is omitted in this work, because all tests used to evaluate the approach were performed by male
individuals.

2More information on the experimental datasets is provided in Section 6.1
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Table 2: Individual characteristics
Test ID Age BMI BSA Wpeak

130 18 21.45 1.72 300
279 27 21.45 1.72 400

(a) Test ID 130 (b) Test ID 279

Figure 1: Wpeak prediction

elicited during the test (i.e., the dynamic data). Hence, it may unveil more subtle differences between individual
responses to exercise, that can only be discovered by actually performing the test. Since the prediction error
monotonically decreases and the prediction becomes rather stable after the initial steps of the test, it is not
necessary to reach the natural end of the test (requiring at least 10 min). The tests can be prematurely stopped
at 200 W (after 6 min), when the estimated MAE decreases below 30 W.

4 CardioPulmonary Efficiency Index (CPE)

The CardioPulmonary Efficiency Index (CPE) is a new measure that dynamically summarizes the overall
cardiopulmonary response elicited by a given workload during an incremental test. Hence, it can be computed
at time t during the test to evaluate the overall response up to time t. It is computed by taking into account the
following two components: (i) The exercising individual power output (denoted εL), which is computed from
the nominal workload kept constant by the cycloergometer, and (ii) the overall cardiopulmonary response to
exercise for the individual (denoted εT ), which is evaluated based on the various physiological signals monitored
during the test.

The CPE value is computed from terms (i) and (ii) as

CPE =
εL
εT

(1)

where both terms εT and εL are positive real values.
When cycling, human skeletal muscles always need an amount of metabolic energy higher than the produced

mechanical output. Hence, the cardiopulmonary response of the individual (εT ) is larger than the forced power
output (εL), and the CPE index varies in the range [0, 1).

The samples of every signal contributing to εL and εT are collected synchronously at each sampling time
ti. Since ventilatory signals are collected “breath by breath”, the sampling rate is dependent on the respiratory
rate. Hence, every cumulative measure computed by using the collected samples is normalized by dividing its
value by the number of individual breaths since the beginning of the test.

4.1 Exercising individual power output (εL)

The nominal workload is represented as a discrete signal Load[t], where Load[ti] is the workload assigned during
the test at the sampling time ti. The power output the individual is asked to produce is computed as the energy
of signal Load[t], by definition of energy of a discrete signal Moon and Stirling (2000), as

εL =

m∑

i=1

Load[ti]
2 (2)

where m is the number of samples collected for signal Load[t] during the test.
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4.2 Cardiopulmonary response to exercise (εT)

The cardiopulmonary response to exercise εT is computed as the overall energy of all monitored physiological
signals. This value is computed by means of the Singular Value Decomposition (SVD) method Moon and Stirling
(2000), which supports signal filtering to reduce the impact of signal noise and allows considering the existing
correlations among signals. SVD has been effectively used in physiological signal analysis Hassanpour et al
(2004); Aysin et al (2005), as well as in other domains (e.g., image Bao and Ma (2005) and microarray data
analysis Wall et al (2001)). It is suited to signals characterized by sudden changes Aysin et al (2005), typically
occurring after a workload increase.

Each physiological signal is represented as a discrete signal v[t], being v[ti] the sample at time ti. Signal
samples are stored in a matrix T ∈ Rm,n, where each column contains the samples of a different signal. n is
the number of signals represented in T and m is the number of samples for each signal.3 Matrix T is factorized
by means of SVD as

T = UHV T (3)

where UTU = Im and V TV = In. Matrices U ∈ Rm,m and V ∈ Rn,n represent the orthonormal basis
for the column and row spaces of T , respectively. Im and In are identity matrices of orders m and n.
H=diag[s1, s2, ..., sn] includes the n singular values of T , with s1 ≥ s2 ≥ · · · ≥ sn > 0 Moon and Stirling
(2000).

The overall energy of the signals in matrix T can be computed from the singular values of T as Moon and Stirling
(2000)

εT =

n∑

i=1

s2i . (4)

To reduce the effect of signal noise on εT , we computed a low rank approximation of matrix T by means of
a truncated SVD Moon and Stirling (2000). The smaller singular values of T are disregarded. Hence, signals
in T are filtered by projecting them on the most relevant components of matrix T , i.e., a subset of the columns
in matrix U . In particular, we considered only the first two largest singular values in T , i.e., εT = s21 + s22. The
experimental evaluation reported in 6.2 showed that the resulting εT represents accurately the cardiopulmonary
response to the exercise and supports the prediction of Wpeak with a limited error.

4.3 Evaluation of the CPE value during the test

During the test, new samples of the monitored signals are periodically added to matrix T and the CPE value
is recomputed on the updated matrix. This sequence of CPE values summarizes in a single time series the
diverse signals monitored in the test. We exploited this sequence, denoted as CPE[t], to characterize the test
execution.

Sequence CPE[t] shows a non-decreasing trend during the test. Both terms εL and εT are by their definition
cumulative measures, being computed by considering the signal contributions collected from the beginning of the
test up to the current time. The individual power output εL is characterized by a sequence of sudden increases
in correspondence to the workload increments. The cardiopulmonary response to exercise εT is characterized
by a steady growth.

To analyze the individual response to the test, we computed the variation of the CPE value between con-
secutive sampling instants, given by

CPE∆[ti] = CPE[ti]− CPE[ti−1] (5)

CPE∆[t] shows a sequence of peaks, taking place when the workload is increased. We have experimentally
observed that this sequence of peaks is representative of the individual response to the test. Hence, this sequence,
denoted as CPEpeaks[t], is used in this work as a fingerprint of the individual performance. As a representative
example, Figure 2 plots the workload and the CPE[t], CPE∆[t], and CPEpeaks[t] sequences for a test with
protocol 50 W × 2 min and Wpeak 450 W.

In the CPEpeaks[t] sequence, peaks are higher in the very first steps of the test. Then, their value rapidly
decreases. The sequence length is equal to the test duration and the sequence converges to a value, which
is (potentially) different among tests. The trend of the CPEpeaks[t] sequence can be explained by means of
the concept of ventilatory reserve, i.e., the difference between the maximal voluntary ventilation and the peak
minute ventilation achieved in the test. The ventilatory reserve is high in the early instants and decreases until
the conclusion of the test. Between two contiguous peaks, the CPE∆[t] sequence is characterized by a steady
decrease. This trend can be interpreted as the progressive body adaptation to the current workload and the
convergence to a steady state.

3Without loss of generality, we suppose that m > n, i.e., the number of samples is larger than the number of monitored signals.
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Figure 2: Workload and CPE[t], CPE∆[t], and CPEpeaks[t] sequences for an example test with protocol
Wstep = 50 W × tstep = 2 min and Wpeak=450 W

5 Prediction of the highest workload in the test

The highest workload (Wpeak) reachable in an ongoing test is periodically predicted during the test, each time
the assigned workload is increased. The prediction of the Wpeak value is based on the following information:
(a) Characteristics of the individual doing the test, corresponding to the factual data for the individual, and
(b) cardiopulmonary response of the individual to the test, given by the sequence of peak values CPEpeaks[t]
until prediction time, which summarizes the dynamic data of the test.

Given the predicted value of Wpeak, a further step, which allows augmenting the available information on the
individual performing the incremental test is the evaluation of her/his cardiopulmonary reserve. In particular,
the information on Wpeak may be completed by computing the potential further workload, which we denote as
Wpotential . At a given time t, Wpotential may be computed from Wpeak as

Wpotential[t] = Wpeak[t]−Wstep[t] (6)

where Wpeak[t] corresponds to the value of Wpeak predicted at time t and Wstep[t] to the workload reached at
time t.

In this paper, we exploited two classification techniques to predict Wpeak: (i) A classifier based on Artificial
Neural Networks (ANN) Tan et al (2005), and (ii) an instance-based learning approach, based on the k-Nearest
Neighbors (k-NN) classification algorithm Tan et al (2005). The prediction of the Wpeak value based on the
two classification techniques is described in the following subsections, while Section 6.4 discusses the advantages
and disadvantages of both approaches.

5.1 Prediction of the Wpeak value by means of an ANN classifier

Artificial neural networks (ANN) simulate biological neural systems. An ANN is composed by a collection of
nodes (artificial neurons) and directed links connecting them. For Wpeak prediction, we build a classifier based
on a multilayer feed-forward neural network trained with backpropagation. The network consists of an input
layer, n hidden layers, and an output layer. Each layer is made up of nodes. Each node in a layer takes as input
a weighted sum of the outputs of all the nodes in the previous layer. It applies a nonlinear activation function
to the weighted input. Currently, the sigmoid function has been used as activation function.

The prediction of Wpeak for a new (ongoing) test Q takes place each time t in which the workload is increased.
It is performed by an ANN classifier trained with a set of previous incremental tests (both factual and dynamic
data), run with the same protocol of test Q, and characterized by Wpeak values at least equal to the workload
of test Q at time t.

The nodes in the input layer correspond to the factual data of the individual and the CPEpeaks[t] sequence
for the test. The nodes in the output layer represent the discrete (i.e., categorical) Wpeak values that can be
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reached in the test. The network is trained with backpropagation and learns by iteratively processing the set of
training tests. For each training test, the network predicts the Wpeak value whenever the workload is increased,
and compares the predicted and the actual Wpeak. Then, weights in the network nodes are modified to minimize
the mean squared prediction error. These modifications are made in the “backwards” direction, that is, from
the output layer, through each hidden layer down to the first hidden layer.

5.2 Prediction of the Wpeak value by means of a k-NN classifier

k-NN classification algorithms predict the expected value for a new data object by using a set of examples for
which the target value is known, without explicitly building a classification model from them Tan et al (2005).
These algorithms exploit the whole training set for prediction, by searching for the k training examples that are
closest to the new data object.

To predict the Wpeak value for a new test Q, each time the workload is increased, the k-NN classifier analyzes
a collection of previous tests and selects the k tests most similar to Q. Similarity evaluation considers (a) similar
individual characteristics and (b) cardiopulmonary responses close to that observed in test Q. The classifier
predicts the Wpeak value for test Q based on the Wpeak values in the k selected tests. More specifically, the
prediction process entails the following steps.

Creation of the reference knowledge base for test Q. The reference knowledge base is a set of previous tests, run
with the same protocol used for test Q and characterized by Wpeak values at least equal to test Q workload at
prediction time. Tests shorter than the current length of test Q are disregarded, because they are useless for
the prediction.

Selection of the k-nearest tests to test Q. The similarity between test Q and each test in the knowledge base
is evaluated and the k tests most similar to Q are selected. Similarity is computed by considering both the
characteristics of the individuals performing tests (i.e., the factual data) and their response to exercise (i.e., the
dynamic data). The approach for similarity evaluation is described in Section 5.2.1.

Prediction of Wpeak for test Q. The Wpeak value for test Q (Ŵpeak,Q) is computed as the average Wpeak on
the selected k-nearest tests as

Ŵpeak,Q =
1

k
·

k∑

i=1

Wpeak,i (7)

Since Equation 7 provides a real value, Ŵpeak,Q is approximated to the closest workload given by the protocol.
This value is the highest workload expected to be achieved by the individual in the test. For example, if the
3-nearest tests are characterized by Wpeak equal to 300 W, 350 W, and 350 W, the average value is 333.3 W. If

the protocol is 50 W×2 min, then Ŵpeak,Q is approximated to 350 W. The real value of Ŵpeak,Q provides an
additional information that may support in estimating the distance of the individual from the closest workload.

5.2.1 Similarity evaluation between two tests

The similarity between a new test Q and a test θ in the knowledge base is measured by considering the similarity
of their factual and dynamic data.

Similarity between factual data. It evaluates the similarity between individuals performing tests Q and θ. It is
computed as the Euclidean distance Tan et al (2005) between the factual data describing them.

dfactual(Q, θ) = [ (AgeQ −Ageθ)
2

+ (BMIQ −BMIθ)
2

+ (BSAQ −BSAθ)
2 ]

1

2 (8)

Similarity between dynamic data. It represents the similarity between the body responses Q and θ to the
test strain. Dynamic data, i.e., the physiological signals, are sampled during the test and summarized in the
CPEpeaks[t] sequence. We evaluated the similarity between the dynamic data of tests Q and θ as the similarity
between their CPEpeaks[t] sequences.

The CPEpeaks[t] sequence may have a different length in the two tests, because tests in the knowledge base
have duration longer than, or equal to, the current duration of test Q. For test θ, the CPEpeaks,θ [t] sequence is
computed with the samples gathered over the entire test. For test Q, still running, the CPEpeaks,Q[t] sequence
is given by the samples collected up to the current prediction time.

The similarity between sequences CPEpeaks,θ [t] and CPEpeaks,Q[t] is evaluated using the Dynamic Time
Warping (DTW) technique Berndt and Clifford (1994), a nonlinear time-alignment method for sequence com-
parison. DTW has been shown to be effective for univariate time series classification in different domains,
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including physiological signal analysis Ratanamahatana and Keogh (2004). DTW supports the comparison of
sequences with different lengths by looking for their best alignment. The warping band is the maximum toler-
ated difference between sequences. Thus, this technique allows us to compare individual body responses that
are similar, but locally out of phase.

The two sequences are compared by means of DTW within a time-window having approximately the duration
of test Q. When test Q currently takes n minutes, the first n ± warping band minutes of sequence CPEpeaks,θ [t]
are considered. We expect that, if the two sequences show a similar trend within the time-window, they might
show an analogous trend also in the next steps. Thus, test Q may have the same duration as test θ, as well as
its same Wpeak. The DTW algorithm finds the set of correspondences with the least total distance between the
matched points between peaks in sequence CPEpeaks,Q[t] and in subsequence CPEpeaks,θ [t] within the time-
window. This distance measures the similarity between the two sequences, denoted as ddynamic(Q, θ). Between
two matched points, as usually done in the DTW technique Berndt and Clifford (1994), the Euclidean distance
is computed.

Similarity between two tests. The similarity between tests Q and θ is computed by considering the similarity
between both their factual (dfactual(Q, θ)) and dynamic (ddynamic(Q, θ)) data as

d(Q, θ) = w ∗ dfactual(Q, θ) + (1− w) ∗ ddynamic(Q, θ) (9)

where d(Q, θ) ∈ [0, 1] since both dfactual and ddynamic have been normalized in [0, 1], and w ∈ [0, 1]. Lower
values of d(Q, θ) denote a higher similarity between the two tests, and higher values of d(Q, θ) a lower similarity.

When increasing w, the k-nearest tests are mainly selected based on the characteristics of the individuals
performing the tests. As a consequence, tests with body responses close to test Q, but done by individuals
dissimilar from the individual of test Q, may be disregarded. On the other hand, when decreasing w, the test
similarity is mainly evaluated by comparing the individual body responses to exercise. Increasing the relevance
of this comparison could be misleading in the first steps of the test, when sequence CPEpeaks,Q[t] still contains
few elements. An experimental evaluation (see Baralis et al (2011b)) showed that the predicted Wpeak value
well approximates the actual one when the two terms in Equation 9 have the same weight (w = 0.5).

6 Experimental evaluation

The experiments performed to evaluate our approach address the following issues: (i) Prediction error, (ii) im-
pact of test duration on the prediction error, and (iii) performance comparison with two naive classifiers. The
experimental results are reported in this section, while a further discussion is reported in Section 7.

To perform the experiments, we collected two sets of incremental tests at CSA Sport Training Center
(Italy) Sport Training Center (2011), by using two common protocols in endurance sport testing. The datasets
are described in Section 6.1 and are available on request to the authors. The experiments have been run on
a 2 GHz Intel Centrino Dual-Core PC, with 1 GB of RAM and running Linux kernel 2.6.27. The proposed
approach has been implemented in C and Python programming languages.

The framework configuration depends on different parameters, set as follows for the reported experiments.
(a) The first two largest singular values in matrix T are considered to compute εT . (b) The ANN classifier
exploits the neural net operator available in the RapidMiner tool RapidMiner (Last access on December 2011).
To configure this operator, we set training cycles 500, learning rate 0.3, momentum 0.2, and hidden layer 1.
(c) For the k-NN classifier, the following parameters have been set. (i) To compare two CPEpeaks[t] sequences
using DTW, the warping band is set to 2 min (i.e., one step for both test protocols). (ii) In evaluating test
similarity, the contributions of factual and dynamic distance have the same weight (w = 0.5). (iii) The 5-nearest
tests are selected for Wpeak prediction (k = 5). The effect of varying the selected parameter values is discussed
in Baralis et al (2011b) and, specifically for the ANN parameters, in Baralis et al (2011a).

6.1 Datasets

To gather representative examples, the tests have been done with two protocols commonly used in endurance
sport testing to elicit the highest workload in both elite and intermediate athletes. The protocols are 50W×2 min
and 25 W × 2 min, and the tests performed with these protocols have been collected in two datasets named
D50×2 and D25×2, respectively. Table 3 reports the main characteristics of both datasets, and Figure 3 shows
the distribution of their Wpeak values.4 The datasets include male athletes, both amateur and elite.

Protocol 50 W × 2 min is more stressful for the athlete body, because of the higher increment of workload
applied at each step. For this reason, athletes in D50×2 are typically younger and more trained than in D25×2,
and they usually reach higher Wpeak values. Protocol D25×2 is applicable to rather diverse athletes, due to the

4The distribution of the Age, BMI, and BSA values is reported in Baralis et al (2011b).
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Table 3: Characteristics of the two datasets. For all parameters, the mean and the standard deviation (SD)
values are reported

Parameters

Dataset No. of No. of Name Mean ± SD Min value Max value

Tests Athletes

D50×2 231 202

Age 32.3 ± 12.2 years 14 61
BMI 22.8 ± 2.3 Kg/cm2 17.65 33.26
BSA 1.8 ± 0.1 m2 1.44 2.13
Wpeak 333 ± 68 W 150 500

D25×2 184 139

Age 38.7 ± 12.5 years 13 66
BMI 23.9 ± 2.6 Kg/cm2 17.48 31.8
BSA 1.8 ± 0.1 m2 1.44 2.38
Wpeak 262 ± 62 W 175 400
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Figure 3: Distribution of the highest workload in the datasets
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lower increment of the applied workload. Athletes in D25×2 are more heterogeneous with respect to age, BMI,
and BSA values (especially when considering the joint distribution of these values).

6.2 Prediction accuracy for the Wpeak value

The prediction error measures the ability to correctly predict the Wpeak value for a new test. The prediction
error is the difference between the predicted and the actual Wpeak value for the test. The absolute prediction
error is the absolute value of this difference. During the test, Wpeak is periodically predicted each time an
increment of workload occurs, and the corresponding error is evaluated.

The leave-one-out cross-validation method Tan et al (2005) is used for error evaluation. At each workload
increment, i.e., at each prediction time tp, the subset of tests still running is selected from the dataset. In turn, a
different test is picked out of this subset, while the remaining tests are used as knowledge base to predict its final
Wpeak. To perform the prediction, the chosen test is described by its CPEpeaks[t] sequence until time tp, and
the other tests by their CPEpeaks[t] sequence up to the test end. The Mean Absolute Error (MAE) Tan et al
(2005) at time tp is the average of the absolute prediction errors computed for all tests in the subset.

In all charts, the origin of the time axis (time = 0 min) corresponds to the first step of the test, in which
workload 50 W is assigned in dataset D50×2 and 25 W in dataset D25×2. In the corresponding datasets, the
average test lengths (average Wpeak values) are 13.32 min (333 W) and 20.96 min (262 W), respectively. The
experimental results for the ANN and k-NN classifiers are denoted as ANN-based and k-NN-based, respectively.

Figures 4(a) and 5(a) report the mean absolute error (MAE) by varying the prediction time. In dataset
D50×2 (Figure 4(a)), the MAE value is below 40 W, except for the first step, in which it is sligthly above 40
W for the k-NN classifier. The ANN classifier always provides lower values of prediction error. In dataset
D25×2 (Figure 5(a)), the MAE value is always below 40 W for the k-NN classifier. For the ANN-classifier, it
is below 50 W at the first step, almost 30 W after 6 min, and then it rapidly decreases after 10 min. These
errors correspond to over(under)estimating the test duration of less than 1 step (2 min) when the protocol is
50 W × 2 min and less than 1.6 steps (3.2 min) when the protocol is 25 W × 2 min. For dataset D50×2, we
observe that the prediction error of both classifiers is always lower than the actual increment of workload at
each step.

In both datasets, the MAE value decreases when postponing the prediction time and progressively tends
to zero. The error is higher in the early steps, when the running test is described by a short CPEpeaks[t]
sequence and the knowledge base used for prediction contains the majority of the dataset. Because of these two
conditions, the prediction of Wpeak is initially affected by a larger error. Later, instead, the prediction becomes
more accurate, because the running test is more precisely represented by a longer CPEpeaks[t] sequence.

The MAE curves are more irregular and not strictly decreasing in dataset D25×2 (Figure 5(a)), especially in
the first steps. This trend is due to the lower increment of workload applied in protocol 25 W × 2 min, which
has less capability to differentiate the athlete body responses to exercise, especially in the first steps of the
test. Consequently, tests reaching different Wpeak values may be initially characterized by similar CPEpeaks[t]
sequences. Furthermore, athletes in D25×2 are more heterogeneous, being the protocol applicable to rather
diverse athletes.

6.3 Impact of the test duration on the prediction error

To analyze the effect of the test length on the prediction error, we considered separately tests reaching the same
Wpeak. Figures 4(b)-4(f) and 5(b)-5(f) plot the corresponding prediction errors for datasets D50×2 and D25×2,
respectively.

In both datasets, and for both classifiers, longer tests are in general affected by a higher error in the very first
instants. The knowledge base used for prediction initially contains the entire dataset, while a limited subset of
tests reaches high Wpeak values. Few long tests are usually available, because they are only sustainable by well
trained athletes. In addition, in the first steps the running test is described by a short CPEpeaks[t] sequence,
while the final sequence is significantly longer. The prediction error is usually reduced after few steps, as soon
as the increments of workload sufficiently characterize the CPEpeaks[t] sequence describing the running test,
thus significantly improving the prediction performance.

For dataset D50×2 (see Figures 4(b)-4(f)), the experiments are only reported for Wpeak values characterizing
at least 10 tests, because for a smaller number of tests the prediction error on a single test may significantly
affect the average error. In general, the ANN classifier achieves a more accurate prediction than the K-NN
classifier. For both classifiers, the MAE value is always lower than 50 W, except for tests with Wpeak 450 W.
For these longer tests, the MAE value at the first step is close to 80 W for the k-NN classifier and to 60 W for
the ANN classifier. The prediction error falls below 50 W at the next steps. The initial error is caused by the
small fraction of tests achieving Wpeak 450 W (only 7.36%, while for the other Wpeak values the test percentage
is between 16.01% and 29.87%).
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(a) MAE for all tests (b) MAE for Wpeak = 250W (37 tests)

(c) MAE for Wpeak = 300W (54 tests) (d) MAE for Wpeak = 350W (69 tests)

(e) MAE for Wpeak = 400W (42 tests) (f) MAE for Wpeak = 450W (17 tests)

Figure 4: MAE for tests in dataset D50×2
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(a) MAE for all tests (b) MAE for Wpeak = 275W (36 tests)

(c) MAE for Wpeak = 300W (27 tests) (d) MAE for Wpeak = 325W (18 tests)

(e) MAE for Wpeak = 350W (12 tests) (f) MAE for Wpeak = 375W (14 tests)

Figure 5: MAE for tests in dataset D25×2
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For dataset D25×2 (see Figures 5(b)-5(f)), to analyze the error on longer tests, only results for tests with
Wpeak ≥ 275 W are reported. Results for Wpeak 400 W are omitted, because only a single test achieves this
value. The MAE curves are more irregular for the ANN classifier, and not strictly decreasing. The ANN classifier
is more accurate on tests with Wpeak 300 W, while the k-NN on tests with Wpeak 375 W. For tests with Wpeak

300 W, 325 W, and 350 W the two classifiers achieve similar performance. As discussed in Section 6.2, protocol
25 W× 2 min has less capability to differentiate the athlete body response to exercise, and athletes in this
dataset are more heterogenous. In addition, a lower number of tests is available for each Wpeak value. Under
these conditions, building an accurate “global” classification model, which summarizes the information available
in the training set and provides the correct classification of new tests, is more difficult. The k-NN classifier,
instead, extracts from the entire training set a “local” subset of instances which are exploited for prediction.
Hence, in these cases, its prediction may be both more accurate and more stable.

6.4 Classifier comparison

As shown in the previous sections, both the ANN and k-NN classifiers provide an effective Wpeak prediction.
Since the two approaches are characterized by different features, each one may be more appropriate in a
different working condition. In the following, we compare the features of the two approaches in the context of
the maximum workload prediction.

Classification accuracy. ANN classification algorithms are very effective in a wide range of applications and
typically show high tolerance to noisy data. When the training set contains a sufficient number of tests, they
provide a very accurate Wpeak predition, in general more accurate than the k-NN approach. When a low number
of training tests is available (e.g., lower than 20 tests), building an accurate “global” classification model is more
difficult. The k-NN classifier, instead, extracts from the training set a small subset of instances close to the
test instance, which are exploited to provide a more accurate and stable “local” prediction. For example, in
Figure 5(f), the ANN classifier shows lower accuracy and a more irregular MAE curve because only 14 tests
were available for training.

Interpretability. Both in the clinical and sport domains, doctors and trainers may be interested in analyzing
the reasons motivating a given prediction. While neural network models are intrinsically characterized by very
poor interpretability, the k-NN classifier may provide some insight by pointing at the subset of k individuals,
whose factual data and cardiopulmonary response to the exercise are more similar to the individual performing
the test.

Model evolution. When new training objects are available, the ANN model cannot be incrementally updated
and should be completely rebuilt. Since the k-NN algorithm analyzes the whole training set to perform each
prediction, incremental update by adding new examples to the training set is straightforward.

Training and classification time. Neural networks require a long training time (i.e., several hours) to build
the classification model. Furthermore, devising the appropriate parameter setting may be complex and time-
consuming Baralis et al (2011a). Once the model is defined, classification is very efficient (i.e., few seconds).
k-NN does not build a classification model at training time. Hence, classification typically requires a longer
time (roughly 15-20 seconds), because the distance between each training instance and the test instance has to
be computed at run time. k-NN classification time grows with the size of the training set.

6.5 Comparison with two naive classifiers

To our knowledge, an approach for the early prediction of the Wpeak value in incremental tests has not been
proposed yet. Thus, we compared our approach against two naive classifiers. Dataset D50×2 is used as a
reference example for comparison, being the dataset including more tests. The leave-one-out cross-validation
method has been exploited for prediction error evaluation.

The naive ANN classifier is a multilayer feed-forward neural network trained with backpropagation, that
receives as input data (i) the factual data describing the athlete and (ii) all the physiological signals sampled
during the test (instead of the CPEpeaks[t] sequence summarizing them). The experimental results in Figure 6(a)
show that the ANN naive classifier is less accurate than the ANN classifier based on the CPEpeaks[t] sequence.
Hence, the CPEpeaks[t] sequence provides an effective summarization of athlete performance, which can be
profitably used to predict the Wpeak value.

The second naive classifier that we exploited works as follows. Consider a new test Q, where the workload
currently assigned in the test is WQ. The naive classifier selects all tests with Wpeak≥ WQ from the dataset
with the same protocol as test Q. Then, it computes the average Wpeak on the selected tests and predicts
this value as the Wpeak for test Q. Experimental results in Figure 6(b) show that the k-NN classifier always
performs better than the naive approach, by providing lower MAE values. Thus, the selection of the k-nearest
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(a) Comparison against a naive ANN classifier (b) Comparison against a naive k-NN classifier

Figure 6: Comparison against two naive classifiers in dataset D50×2

tests, based on the analysis of factual and dynamic data describing the test, properly support the prediction of
the Wpeak value.

7 Discussion

The experimental evaluation has been run on two protocols commonly adopted in endurance sport testing.
For both protocols, tests with different lengths can all be prematurely stopped even in their early steps, with
a limited prediction error on the final Wpeakvalue. For example, a 200 W workload is usually tolerated by
endurance athletes with average performance, while the athlete body stress may significantly increase for higher
workloads. When the workload is 200 W (i.e., after 6 min for protocol 50 W × 2 min and after 14 min for
protocol 25 W × 2 min), the mean absolute error (MAE) on the predicted Wpeak value is at the worst case
below 40 W for both protocols 50 W × 2 min and 25 W × 2 min. In dataset D50×2, this error does not
affect the evaluation of the athlete performance, because it is within the volitional exhaustion range, i.e., the
increment of workload assigned when the athlete decides to interrupt the test, and corresponding to 50 W.
Also the prediction error achieved in dataset D25×2 is acceptable, because of the characteristics of the protocol.
Protocol 25 W × 2 min requires a more gradual adaptation of the athlete body to the physical strain, due
to the lower increment of the applied workload. As a consequence, a prediction error below 40 W does not
significantly affect the evaluation of the overall athlete response to the test. For a discussion about the impact
of the adopted protocol on the subjects evaluation, see Revill et al (2002).

In datasetD50×2, tests representing the average performance (Wpeak 333W) end between 10 min (Wpeak 300W)
and 12 min (Wpeak 350 W). By interrupting these tests when workload is 200 W (i.e., after 6 min), the test
length is shortened by 40%-50% with a significant reduction of the athlete body stress. For longer tests, for
example with Wpeak 450 W, the reduction of the test length is around 62%. In dataset D25×2, the average
Wpeak is 262 W, corresponding to a test duration between 18 min (Wpeak 250 W) and 20 min (Wpeak 275 W).
By ending these tests when the workload is 200 W (i.e., after 10 min), the test is shortened by 22%-30%. The
reduction for longer tests, for example with Wpeak 375 W, is about 50%. In both datasets, the prediction error
progressively decreases for workloads higher than 200 W. Trainers can thus decide when to stop the test, based
on the trade-off between test duration and closer approximation of the final workload.

8 Previous related work

Incremental tests to measure the maximal workload (exercise capacity) provide a fundamental information
to assess an individual’s fitness, predict life expectancy and better prescribe workout intensities to stimulate
beneficial adaptations. Hence, the importance of this procedure has been recognised by the sport and medical
communities and cardiopulmonary tests are the gold standards to test both athletes and patients Pollock et al
(1998). Exercise capacity has been shown to be the best predictor of survival among healthy men Myers et al
(2002). Unfortunately, incremental cardiopulmonary tests are not suitable for all and early prediction could
be very useful to avoid overstressing the subjects being tested. In addition, cardiopulmonary testing is time
consuming and reducing the time needed to perfom one test could make more affordable cardiopulmonary
testing as a routine procedure Franklin and McCullough (2009).

Ways of predicting maximal exercise capacity have been proposed since the origins of exercise physiology Astrand and Ryhming
(1954) to indirectly assess the highest workload and the maximal aerobic capacity achieved in the test, thus
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avoiding the need of the equipment required to execute the test. Nomograms and short supramaximal pro-
tocols, based on the linear relationship between heart rate, workload, and oxygen consumption, have been
proposed Arts et al (1993), as well as techniques to estimate from other measures, and thus without a direct
measurement Luttikohlt et al (2006), the peak workload elicited by the individual. A series of predicting regres-
sion equations, based on factual data such as age, gender, life styles and habits (investigated through specifically
designed questionnaires) have been proposed more recently to predict cardiovascular events in the general pop-
ulation according to exercise capacity Myers et al (1994); Nogueira and Pompeu (2006). In Kim et al (2007)
a comparison between nomograms is presented, together with a discussion of their use as clinical tools. An
evaluation of their accuracy is presented in Patton et al (1982).

A major factor limiting the application of nomograms and other ways of predicting exercise capacity based
on factual data is that they are not applicable to measuring a subject’s improvement in performance. In
our approach, instead, an effectively trained subject will show adaptations to the early stages of testing and
Wpeak will be predicted accordingly. Finally, factual parameters based indices aim at providing a different
information (e.g., cardiovascular risk of events stratification) and cannot detect changes in performance in a
time as short as a training programme (usually weeks). Hence the need of a more dynamic tool to avoid missing
fundamental information about adaptations to training, be more accurate in prescribing exercise intensity, and
monitor progression over the course of a training programme. As stated in the recent American College Sport
Medicine “the exercise prescription is best adjusted according to individual responses because of the individual
variability” Stand (2011).

To our knowledge, the early prediction of the highest workload reached during incremental tests has not
been investigated. Differently from previous aproaches, our technique does not replace testing, but instead
provides an additional tool to reduce the physical effort of the individual and reduce the duration of an ongoing
test. Thus, our approach can make cardiopulmonary testing more affordable, while preserving the relevant
information that its execution provides. The idea of exploiting the cardiopulmonary efficiency index (CPE) to
summarize both the cardiac and pulmonary response of the individual to exercise and to predict the Wpeak

value reached by the individual in the incremental test was first introduced in Baralis et al (2010). This paper
significantly improves over the previous approach by (i) presenting a new approach for Wpeak prediction based
on artificial neural networks (ANN) and (ii) analyzing a new set of incremental tests run by using a different
test protocol (50 W× 2 min).

In this paper, the physiological signals monitored during the test are analyzed by means of data mining clas-
sification techniques based on an instance based learning approach and an artificial neural network Tan et al
(2005). The k-NN-based classifier uses previously labeled data for Wpeak prediction, without building a classi-
fication model from them. The ANN-based classifier, instead, exploits a multilayer feed-forward neural network
trained with backpropagation. Given the high variability of individual characteristics and body responses,
traditional prediction techniques (e.g., the ARIMA model) Chatfield (2004) are not suitable for our analysis.

Data mining techniques have been widely used in the healthcare domain Green et al (2006); Chuang (2011);
Lin et al (2008) to analyze physiological signals and to support clinicians during the diagnosis. Time series clas-
sification techniques have been devised to deal with specific physiological signals and to predict the next signal
value based on its previous values (e.g., EEG and ECG beat classification Tomioka et al (2007); Yu and Chou
(2008)). Differently from these works, our approach does not analyze the monitored signals to estimate their
next trend, but instead to predict the maximum value of a different signal, i.e., the workload. Several techniques
have been proposed for the general task of multivariate time series classification Yang and Shahabi (2004). In
incremental tests, the body response to the increments of workload is peculiar for each individual, and gen-
eral techniques do not support well these domain specific characteristics (e.g., the joint analysis of factual and
dynamic information).

9 Conclusions and Future Work

The highest workload reached in incremental tests is a crucial information to evaluate individual characteristics
and plan training intensities. The proposed approach allows a reliable Wpeak prediction since the early steps
of the test, thus allowing a reduction of its duration. As future developments of this work, we will address the
following issues.
(i) Support for individual comparison. Muscular efficiency has been defined as the ratio between the mechanical
power output and the consumed metabolic energy, usually computed from data collected at a steady state. By
summarizing both cardiac and pulmonary responses to exercise, the CPE index provides to exercise physiologists
additional information on the individual performance in the test. The final CPE value, coupled with the analysis
of the CPE trend during the test, may be used to compare the performance of different individuals.
(ii) Extension to other application domains. Our approach may be applied on a wide range of protocols char-
acterized by different increments of workload and step durations. Thus, it might be effectively exploited also
in the clinical domain to analyze the exercise of pulmonary and cardiac patients. In this domain, protocols are
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usually characterized by lower workload increments and shorter step durations.
(iii) Support for the prediction of additional parameters. The proposed prediction approach may become a build-
ing block to develop a predictor for crucial physiological parameters such as the maximal oxygen consumption
(VO2max) during the test.
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