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In spite of their intrinsic validity limits, a number of Boltzmann-like simulation schemes are

extensively employed in the investigation of semiconductor nanomaterials and nanodevices. Such

modeling strategies, based on the neglect of carrier phase coherence, are definitely unable to describe

space-dependent ultrafast phenomena. In this letter, we shall propose a quantum-mechanical

modeling strategy able to properly account for scattering-induced spatial non-locality. Its power and

flexibility will be demonstrated via a few simulated experiments. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4821158]

Following the path paved by the early proposal by Esaki

and Tsu,1 artificially tailored as well as self-assembled semi-

conducting heterostructures at the nanoscale now form the

leading edge of semiconductor science and technology.2–4

The design of modern optoelectronic devices, in fact, heavily

exploits the principles of band-gap engineering,5 achieved by

confining charge carriers in spatial regions comparable to

their de Broglie wavelengths. This, together with the progres-

sive reduction of the typical time-scales involved, pushes de-

vice miniaturization toward limits where the application of

the traditional Boltzmann transport theory6 becomes ques-

tionable, and a comparison with more rigorous quantum-

transport approaches7–13 is imperative. However, in spite of

the quantum-mechanical nature of electron and photon dy-

namics in the core region of typical solid-state nanodevices

(e.g., quantum dots14,15 and graphene-based structures16,17)

the overall behavior of such quantum systems is often gov-

erned by a highly non-trivial interplay between phase coher-

ence and dissipation/dephasing.10,11

In spite of the intrinsic validity limits just recalled, dur-

ing the last decades, a number of Boltzmann-like Monte

Carlo simulation schemes have been extensively employed

for the investigation of new-generation semiconductor

nanodevices.18–27 Such modeling strategies—based on the

neglect of carrier phase coherence (see below)—are however

unable to properly describe space-dependent ultrafast phe-

nomena. To this aim, the crucial step is to adopt a quantum-

mechanical description of the carrier subsystem; this can be

performed at different levels, ranging from phenomenological

dissipation/decoherence models5 to quantum-kinetic treat-

ments.10,11 Indeed, in order to overcome the intrinsic limita-

tions of the semiclassical picture in properly describing

ultrafast space-dependent phenomena—e.g., real-space trans-

fer and escape versus capture processes—Jacoboni and co-

workers have proposed a quantum Monte Carlo technique,28

while Kuhn and co-workers have proposed a quantum-kinetic

treatment;29 however, due to their high computational cost,

these non-Markovian density-matrix approaches are currently

unsuitable for the design and optimization of new-generation

nanodevices.

Aim of this letter is to propose a conceptually and com-

putationally simple as well as physically reliable quantum-

mechanical generalization of the conventional Boltzmann

theory, able to preserve the power and flexibility of the semi-

classical picture in describing a large variety of scattering

mechanisms; more specifically, employing a microscopic

derivation of generalized scattering rates based on a recent

reformulation of the Markov limit,30 we shall propose a

density-matrix equation able to properly account for space-

dependent ultrafast dynamics, and in particular to study

scattering-induced non-locality effects.

The crucial interplay between phase coherence and dis-

sipation/decoherence phenomena may be conveniently

described through the equation of motion for the electronic

single-particle density matrix10,13

dqa1a2

dt
¼

dqa1a2

dt

����
sp

þ
dqa1a2

dt

����
mb

; (1)

where

dqa1a2

dt

����
sp

¼ �a1
� �a2

i�h
qa1a2

(2)

accounts for the coherent evolution dictated by the non-

interacting single-particle Hamiltonian (here, a and �a denote

the single-particle eigenstates and energy levels correspond-

ing to the nanodevice potential profile), while the last

(many-body) term encodes dissipation and decoherence

processes, arising from the energy exchange between the car-

riers and the host material. Equation (1) applies to a broad

variety of problems ranging from quantum-transport to

ultrafast-optics phenomena, a remarkable example being the

semiconductor Bloch equations.10

It is crucial to stress that the degree of accuracy of the

density-matrix equation (1) is intimately related to an appro-

priate choice of its last term. Indeed, oversimplified phenom-

enological treatments can lead, for instance, to a violation of

the positive-definite character of the density matrix qa1a2
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mandatory prerequisite of any quantum-mechanical time

evolution fulfilled, e.g., by employing a so-called Lindblad

superoperator.31 To overcome this serious limitation, an al-

ternative Markov procedure has recently been proposed.30

Following this alternative adiabatic-decoupling scheme, it is

possible to perform a microscopic derivation of a Lindblad-

like scattering superoperator; more specifically, for any

one-electron interaction mechanism s (carrier-phonon,

carrier-plasmon, carrier-impurity scattering, etc.) in the low-

density limit one gets

dqa1a2

dt

����
mb

¼ 1

2

X
s

X
a0

1
a0

2

Ps
a1a2;a01a

0
2
qa0

1
a0

2
�Ps�

a0
1
a0

1
;a1a02

qa0
2
a2

h i
þH:c:

(3)

(H.c. denoting the Hermitian conjugate) in terms of general-

ized scattering rates

Ps
a1a2;a01a

0
2
¼ As

a1a01
As�

a2a02
; (4)

where the explicit form of the Lindblad matrix elements As
aa0

depends on the particular interaction mechanism considered.

The proposed quantum-mechanical generalization is

then given by the density-matrix equation (1) equipped with

the microscopic scattering superoperator in Eq. (3).

In order to investigate the space dependence of the phe-

nomenon under examination, let us recall the link between

our density matrix qa1a2
and the corresponding spatial carrier

density, namely,

nðrÞ ¼
X
a1a2

/a1
ðrÞqa1a2

/�a2
ðrÞ; (5)

where /aðrÞ ¼ hrjai denotes the real-space wavefunction

corresponding to the eigenstate a. Combining the above pre-

scription with the density-matrix equation (1), the time evo-

lution of the spatial carrier density is

@nðrÞ
@t
¼ @nðrÞ

@t

����
sp

þ @nðrÞ
@t

����
mb

; (6)

with

@nðrÞ
@t

����
sp

¼
X
a1a2

/a1
ðrÞ �a1

� �a2

i�h
qa1a2

/�a2
ðrÞ (7)

and

@nðrÞ
@t

����
mb

¼
X
a1a2

/a1
ðrÞ

dqa1a2

dt

����
mb

/�a2
ðrÞ: (8)

It is possible to show that, also for the simplest case of a

semiconductor bulk system (whose single-particle states are

momentum eigenstates: a ¼ k), in the presence of a non-

parabolic band, the single-particle evolution in Eq. (7)

deviates from the classical diffusion term;32–34 moreover, op-

posite to the Boltzmann theory, the scattering-induced varia-

tion in Eq. (8) is, in general, different from zero (see Figs. 1

and 2), i.e., the action of the proposed quantum-mechanical

scattering superoperator (3) is spatially non-local, in clear

contrast to the Boltzmann collision term.35

As stated in the fundamental solid-state text-book by

Ashcroft and Mermin, a general and rigorous (i.e., quan-

tum-mechanical) derivation of the standard semiclassical

charge-transport theory constitutes a formidable task. The

simplest approach to this tedious problem—usually referred

to as the “diagonal limit”—is to neglect all non-diagonal

density matrix elements, which implies to assume a single-

particle density matrix of the form qa1a2
¼ fa1

da1a2
.36 By

inserting such diagonal-limit prescription into Eqs. (1) and

(3), it is easy to get the following equation of motion for the

state population fa:

dfa
dt
¼
X

s

X
a0
½Ps

aa0 fa0 � Ps
a0a fa�; (9)

with Ps
aa0 ¼ Ps

aa;a0a0 . Equation (9) is Boltzmann-like, i.e., the

time evolution of the carrier population fa is dictated by a

standard (in-minus-out) collision term involving scattering

FIG. 1. Phonon-induced spatial non-locality in a GaAs bulk system: Initial

time derivative of the spatial carrier density (see Eq. (8)) as a function of the

relative coordinate z=Dz for three different values of the localization parame-

ter: Dz ¼ 5 nm (solid curve), Dz ¼ 50 nm (dashed curve), and Dz ¼ 200 nm

(dashed-dotted curve), together with the initial Gaussian density profile (dot-

ted curve).

FIG. 2. Phonon-induced spatial non-locality in a GaAs/AlGaAs superlattice

(band offset of 0.3 eV and well (GaAs) and barrier (AlGaAs) widths of

3.5 nm): Initial time derivative of the spatial carrier density (see Eq. (8)) as a

function of the (absolute) coordinate z for an initial spatial localization of

Dz ¼ 3:5 nm (solid curve) together with the initial Gaussian density profile

(dotted curve).
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rates Ps
aa0 given by the diagonal-approximation elements

(a1 ¼ a2 and a01 ¼ a02) of the generalized scattering rates in

Eq. (4). Indeed, Eq. (9) can be regarded as the formal justifi-

cation and starting point of the wide variety of Monte Carlo

simulations of semiconductor nanodevices previously

recalled.18–27 As anticipated, such diagonal-limit treatment

is not able to properly describe the time-dependent evolution

of the spatial carrier density; indeed, by inserting the diago-

nal prescription into Eq. (7), the single particle contribution

to the spatial carrier density is always equal to zero, which

implies that such a treatment does not allow one to account

for the diffusion dynamics of the semiclassical theory.

Moreover, within the diagonal approximation, the scattering-

induced variation in Eq. (8) comes out to be totally non-

local, in clear contrast to the Boltzmann collision term. Such

highly unphysical behavior can be easily understood noticing

that within the diagonal approximation the spatial carrier

density in Eq. (5) reduces to

nðrÞ ¼
X

a

j/aðrÞj2fa: (10)

This tells us that for the particular case of a bulk system—

the one considered in the derivation of the Boltzmann trans-

port equation—the single-particle states are momentum

eigenstates (a ¼ k) whose probability densities j/aðrÞj2 are

space-independent. It follows that in this case the diagonal-

approximation carrier density in Eq. (10) is space-

independent as well.

Opposite to the anomalous behavior just recalled, we

shall show that the proposed density-matrix treatment (i) in

the classical limit is able to well reproduce the local charac-

ter of the scattering dynamics, and (ii) in the presence of a

spatial carrier localization on the nanometric scale, it dis-

plays genuine non-locality effects. To this end, we have con-

sidered an effective one-dimensional (r ¼ z) GaAs-based

nanostructure,37 assuming for all the simulated experiments

an initial density matrix corresponding to a spatial Gaussian

carrier distribution

nðzÞ / e
� z2

2D2
z ; (11)

as well as to a corresponding Gaussian distribution in the

momentum space k, where Dz describes the degree of spatial

localization of our initial state and Dk ¼
ffiffiffiffiffiffiffiffiffiffi
m�kBT
p

�h describes the

thermal fluctuations of our carrier gas (m� denoting the car-

rier effective mass).38 As prototypical energy-dissipation/

decoherence mechanism, we have considered carrier scatter-

ing due to acoustic phonons via deformation-potential

coupling.6

Our first set of room-temperature simulated experiments

corresponds to a GaAs bulk system (i.e., no confinement

potential profile) and is displayed in Fig. 1. Here, we report

the initial time derivative of the spatial carrier density (see

Eq. (8)) as a function of the relative coordinate z=Dz for three

different values of the localization parameter Dz. As we can

see, in the presence of an initial nanometric confinement

(solid curve), the phonon-induced time variation is signifi-

cantly different from zero; the latter displays a negative peak

corresponding to a replica of the initial distribution

(so-called out-scattering contribution induced by the last

term in Eq. (3)), and more importantly, a positive contribu-

tion extending over a much larger range (so-called in-

scattering contribution induced by the first term in Eq. (3)).

This is exactly the signature of scattering-induced spatial

non-locality we were looking for. By increasing the value of

Dz (dashed and dashed-dotted curves), the magnitude and

relative spatial extension of such non-locality effects are sig-

nificantly reduced, thus, confirming that in the classical limit

Dz !1 the scattering-induced time variation tends to zero,

as predicted by the conventional Boltzmann theory.

Our second set of room-temperature simulated experi-

ments corresponds to a conventional GaAs/AlGaAs superlat-

tice and is displayed in Fig. 2. Here, we report again the

initial time derivative of the spatial carrier density (see Eq.

(8)) as a function of the (absolute) coordinate z for an initial

spatial localization of Dz ¼ 3:5 nm (solid curve) together with

the initial Gaussian density profile (dotted curve). As we can

see, also in the presence of the superlattice confinement

potential, the phonon-induced time variation corresponding to

an initial nanometric carrier localization is significantly differ-

ent from zero, displaying again a negative peak corresponding

to a replica of the initial distribution and a positive contribu-

tion extending over a much larger range. However, the pres-

ence of the semiconductor nanostructure gives rise to a

non-trivial interplay between the spatial quantum confinement

dictated by the nanostructure potential and the scattering-

induced diffusion, resulting in a superlattice-induced modula-

tion of the density variation (solid curve in Fig. 2). We stress

once again that the investigation of such space dependent phe-

nomena—not possible via Boltzmann-like Monte Carlo simu-

lation schemes—constitutes a distinguished feature of the

proposed quantum mechanical treatment.

To summarize, in this letter, we have proposed a

conceptually simple and physically reliable quantum-

mechanical generalization of the conventional Boltzmann

theory able (i) to preserve the computational power and flex-

ibility of the semiclassical picture in describing a large vari-

ety of interaction mechanisms, and (ii) to properly model

space-dependent ultrafast phenomena, including non-locality

effects leading to scattering-induced quantum diffusion. The

proposed microscopic-modeling strategy bridges the gap

between conventional (i.e., classical-like) Monte Carlo simu-

lations and highly expensive quantum-kinetic approaches,

and may play an important role in the investigation of ultra-

fast electro-optical processes in new-generation nanomateri-

als and nanodevices.

We are grateful to Rita Claudia Iotti for stimulating and

fruitful discussions.
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