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Abstract—Nowadays, Graphical Processing Units (GPUs) have
become increasingly popular due to their high computational
power and low prices. This makes them particularly suitable for
high-performance computing applications, like data elaboration
and financial computation. In these fields, high efficient test
methodologies are mandatory. One of the most effective ways
to detect and localize hardware faults in GPUs is a Softwar
Based-Self-Test methodology (SBST). In this paper a fully co
prehensive SBST and fault localization methodology fo
is presented. This novel approach exploits different

strategies guarantee both permanent fault detectio
fault localization.

Performance Computing (H
support hundreds of cores and they 2
to perform parallel operations. Mo

[11[2][3]1[41[5]. Reliabili
While in their ofigiral applicatidn domain (i.e., video process-

negligible effect pr’the user experience, when GPUs are ex-
ploited in HPC applications such as financial or scientific com-
putations, correctness and high dependability become a pri-
mary requirements. In this context, Software-Based-Self-Test
(SBST) represents a promising test solution already exploited
in several single-core processor architectures [6][7][8][9].
SBST techniques exploit the microprocessor Instruction Set
Architecture (ISA) to generate instruction sequences able to
test a wide range of hardware modules, without introducing
any hardware modification, and thus stressing the system in
its actual operational condition. One of the main drawbacks
of SBST, when applied to black box modules such as GPUs
whose internal architecture is usually hidden and not available
to the systems designer, is a precise evaluation of the obtained
fault coverage. This requires a careful design and selection of
the type of functional test applied to the core. Techniques such

¢ Srrors- lica However, they usu-
intsoducehigh perfor n% hedd or require custom
ifications to be adap the> highly parallelized GPU

. ¢ of our’ Knowledge, no comprehensive

afid effective SBS gthodology, targeting GPUs, has been
proposed so @pr tries to cover this gap, introducing
an SBST.and fa ‘alization methodology suitable for the
of CUDA Fermi GPUs. It guarantees fine-

d an accurate localization of the faulty streaming multi-
vsor unit. The paper is organized as follow: in Section
re overview is provided, in Sections
sed methodology and test procedures
e experimental results are depicted.
are drawn.

II. CUDA OVERVIEW

Compute Unified Device Architecture (CUDA) is a parallel
computing architecture developed by nVidia for graphic pro-
cessing, used as computing engine in nVidia GPUs. nVidia
supports programmers by releasing the CUDA Toolkit, which
embeds the Software Development Kit (SDK), a compre-
hensive software development environment. Among the tools
provided by the CUDA Toolkit, the CUDA Visual Profiler
(cudaprof) provides the user with feedbacks for code opti-
mization. Furthermore, the CUDA Occupancy Calculator helps
to set-up the execution on the GPU in order to achieve high
occupancy of internal resources. nVidia also released a soft-
ware architecture that enables CUDA-based GPUs to execute
programs written in C, C++, Fortran, OpenCL, DirectCom-
pute, and other languages [17]. In general, a CUDA program
is a set of parallel kernels (i.e., blocks of code executing a
given function on the GPU) organized by the compiler into
threads, thread blocks, and grids of thread blocks. A thread
block is a set of concurrently executing threads. Each thread in
a thread block executes an instance of the kernel. It is assigned
with a thread identifier (thread ID) within its thread block, a
program counter, a set of registers, per-thread private memory,
inputs, and output results [17]. A grid is an array of thread



blocks that execute the same kernel. The CPU provides in
input to the GPU the grid in order to start the kernel execution.
At the end of the execution, the CPU can flush the GPU
global memory to acquire output data. The internal architecture
of a CUDA GPU comprises: (1) a Block dispatcher that
schedules the input grid by assigning each thread block to
the internal logic; (2) a Global Memory to store data and final
results during the kernel execution; (3) a Shared Cache to
speed up read/write operations on the global memory; and
(4) several Streaming Multiprocessors (SM), representing the
main computational units in charge of executing the scheduled
thread blocks. Fig. 1 reports the internal architecture of a
SM. The Thread Dispatcher, dispatches each thread of a
thread block to one of several computational cores. These
cores include: CUDA cores equipped with a fully-pipelined
Integer Unit (IU) and a fully pipelined Floating Point Unit
(FPU), several Special Function Units (SFU) able to execute
transcendental instructions (i.e., sine, cosine, inverse square
root, etc.), a Shared Memory shared among threads inside a
thread block and several Load/Store Units (LD/ST) managi
read/write operations on the shared memory.
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ingle precision integer and floating
point instruction UDA GPUs with CC 2.1 each SM
contains 48 CUDA)cores (3 columns of 16 cores), with just
the third column able to execute double-precision instructions.
Moreover, cores on the third column can execute dual-issued
single precision instructions. All remaining parts of the SM
are the same in both architectures and include 16 Load/Store
Units and 4 Special Function Units [17].

The Compute Capability (CCj fs the
terizing a CUDA GPU.

in this paper, are char

execute both dot

III. OUR METHODOLOGY

The proposed SBST methodology targets each SM inside
a Fermi GPU, providing both permanent fault detection and
localization. Fig. 2 introduces the computational flow exploited
to test SMs.
First, a set of test kernels, one for each internal component
of the SM, has been defined. Some of these kernels (i.e.,
the ones for testing CUDA cores) exploit well-known SBST
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of the SM re it has been executed, and this
information 1% \se to the CPU. The SM ID is computed

reading t tent of the special register %smid [18]. The
compares the TR/TS contained in each test response

a fault is detected and the SM ID
faulty SM. In order to execute test
, every test kernel must be written
eXp101t1ng
[18] Th

by the test procedure must be unrolled exploiting the
c er directive #pragma unroll [19]. This directive placed
before each for loop, prevents the insertion of extra operations
at compile time that could alter the test coverage.

Finally, to ensure the complete execution of the test procedure
on each internal module of a SM, the test kernel must be
executed with the right configuration, taking into account the
size of the grid and the size of the thread blocks (see Section
I). The way this can be achieved will be deeply analyzed in
Section IV.

IV. TEST KERNEL CONFIGURATION

Fig. 3 shows the steps required to compute the optimal test
kernel configuration. This task exploits the Visual Profiler and
the CUDA Occupancy Calculator (see Section II). The CUDA
Occupancy Calculator is able to define the size of the grid
(GrS) required to achieve the complete occupation of all re-
sources available in a SM. This computation is based on three
parameters, namely: (1) the Register per Thread (RpT), (2) the
Shared Memory per Block (SMpTB) and (3) the Threads Block
Size (TBS). RpT and SMpTB define respectively the number
of registers used by each thread and the amount of shared
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Fig. 3: Distribution methodology flow diagram

memory used by each thread block. These two parameters
can be defined by running the kernel inside the Visual Profiler
(see Fig. 3).

Providing in 1nput to the CUDA Occupancy Calculator t

the kernel configuration is computed by testing different
of Threads Block Size until the full SM resources a
allocated.

V. TEST PROCEDUR

(SECDED ECC) [17]. Any time
detected by the ECC, the kern
error message is sent to the Cj

core. SBST of these kind of components has been deeply
analyzed in the literature. Among the available solutions, in
this paper we exploit those proposed by Paschalis et al. [20]
and Xenoulis et al. [21], which can be applied to black box
modules and, at the same time, guarantee high coverage.
Regardless the implementation details that are available in the
cited papers, the overall idea of these two procedures is to
execute a sequence of arithmetic/logic operations, involving
the unit under test, repeated using several deterministic (in
the case of [20]) or pseudo-random (in the case of [21]) input
test patterns. Finally, the selected test procedures require to
compact the outcomes of all into an output signature.

The way this test procedure can be implemented in a GPU
changes between Fermi architectures with CC 2.0 and Fermi
architectures with CC 2.1. In CUDA GPUs with CC 2.0 both
the IU and the FPU can perform single and double precision

2 -- edure with duplicated instructions, with the corresponding

instructions. No modifications are required to the original
test procedure to cope with this architecture and the test can
follow the flow introduced in Fig. 2. A different situation
arises when CUDA GPUs with CC 2.1 are considered. In
this architecture only the third column of CUDA cores is able
to execute double-precision instructions. Moreover, during the
execution of single-precision instructions, this column of cores
executes only dual-issued instructions. Therefore, to ensure
the complete test execution on every CUDA core, the test
procedure for single-precision IU and FPU must involve dual-
issue instructions. Dual issue instructions are used whenever
the thread dispatcher (see Section II) finds two consecutive
independent instructions. Duplicating each instruction of the
test procedure_is enough to guarantee this condition. Let
us consider the following example of ingtfuction duplication
where the [ef in S

mul(rl,r2, r3 ul(r5,r6’r7)
add( r4, 1 add(rd,rd,rl)
add(r8,r8,r5)

To guar

nd_there
egisters. The correct activation of this mechanism can be
red by comparing the instruction throughput of a test

upllcated instructions are independent
ual 1ssued it is enough to use disjoint sets

operations do not need to be duplicated.

B. Special Function Unit Test Procedure

SFUs in a CUDA GPU execute a fast approximation of tran-
scendental instructions on 32-bit input floating-point numbers.
The supported transcendental operations (SFU operations) are:
sine, cosine, base-2 logarithm, base-2 exponential, reciprocal,
square root and inverse square root.

The way to test these functions still need to be properly inves-
tigated. The test procedure proposed in this paper computes
each SFU operation for a set of pseudo-random test patterns.
Then, the obtained test results (GPU results) are compared
with golden results precomputed on the CPU.

The fault-detection cannot be performed with a simple equiv-
alence check, because golden and GPU results are affected
by different tolerances. In fact, CPU results are affected by
the machine epsilon [22], that depends on the used processor,
while GPU results are influenced by the SFU tolerance. More-
over, each SFU operation is affected by a different tolerance
and, in the CUDA-ISA User Guide [18], these tolerances are
not well documented. To overcome these issues, tolerances
of SFU operations must be characterized. A test campaign



performed on different Fermi GPUs has highlighted that SFU
operations do not provide reasonable results for the entire 32-
bit floating-point range. Outside a given input range (valid
input range), the obtained results are saturated to a fixed
value. Valid input ranges for each SFU have been computed
exploiting a binary search approach and reported in Table I.

TABLE I: Valid input ranges for SFU operations

Valid input range

SFU operation Negative range Positive range

UB LB LB UB

sine - - 1.87E-07 1.57

cosine - - 1.31E-06 1.57
base-2 logarithm - - 1.17E-38 | 3.36E+38
base-2 exponential | -1.27E+02 | -1.19E-07 | 1.19E-07 | 1.28E+02
reciprocal -8.50E+37 | -1.18E-38 | 1.17E-38 | 8.50E+37
square root - - 1.17E-38 | 3.36E+38
inverse square root - - 1.17E-38 | 3.36E+38

SFU characterization consists of computing the relative err

between results obtained executing the SFU operati n a
golden CPU and on a golden GPU, according to
Egpu = Yepu — Ygpu (1)
ycpu

CPU.

input range (i.e., exhaustive
overall execution time ¢

The €4, ranges \{rom a minimum (€gpy,min) 10 @ Maximum
(Egpu,maz). For each SFU, €gp min is always zero, while
€gpu,max have significant variation depending on the input
values. Since € gpy, maq fluctuations are of some order of mag-
nitude, for obtaining a better characterization the following
steps are performed: (i) the valid input range of each SFU
is split, (ii) each sub-range is characterized with a €4py maz,
(iii) sub-ranges with similar 4y, mq, are grouped, and (iv)
grouped sub-ranges are characterized with the maximum
€gpu,maz inside the group. This approach ensures a fine-grain
characterization resulting in a better precision.

After the characterization task, input test patterns are generated
maintaining their values inside input valid ranges reported
in Table I. They are defined by generating a set of equally
distributed 32-bit floating point numbers inside each valid
input range.

Then, CPU golden results (yp,,) and GPU results are com-
puted for each SFU operation and for each input test pattern.
For each couple of CPU and GPU results, €g4;,,, is computed.
Fault detection is performed exploiting a well known approach
used in Oscillator-Based Test (OBT) [23] methodologies (see
Fig.4).

Faulty Range : Filgl;ﬁr:e :
—————— | g —----—>

gpu.min Gpu max

Fig

ault detection strategy

all results con-
1aracter12at10n task,
D oposed approach is
n result without bringing
it Quiside the €4y
view, these fauits 1

comparable natively introduced by the SFU
operatio ape can be therefore accepted (i.e., these
faults cai intained undetected)

logic cores. It is a completely custom
idia, so an ad-hoc test methodology

PU. Another kind of fault could cause a change of
the thread identifier (thread ID).

The proposed test procedure is composed of a part executed
on the CPU and one executed on the GPU. Algorithm 1
shows the basic operations performed by the proposed test
methodology on the CPU side, where max_thread_per_block
is the maximum number of threads that can be contained into
a thread block (i.e., in Fermi architecture this value is equal
to 1024).

Algorithm 1 CPU-side test procedure

1. flag_vector|max_thread_per_block] = {-1,...,—1}
2: Run_kernel(flag_vector)

3 fault = FALSE

4: for i = 0 — size_of(flag_vector) do

5: if flag_vector[i] | = i then

6 fault =TRUFE

7 end if
8: end for

The kernel is executed on the GPU (Run_kernel in Alg. 1)



as a grid. The kernel simply assigns to the flag_vector cell,
pointed by thread ID, the thread ID value. At the end of the
GPU execution, the CPU receives the vector and it verifies that
each cell contains a value equal to the cell index (statements
from 4 to 8 of Alg. 1), any mismatch represents a fault.

The only fault that is not covered is the case in which
two threads swap their identifier. Although, in this case the
fault cannot lead to a wrong execution because the complete
execution is anyway computed in the right way.

Since in each SM there is only one thread dispatcher,
to ensure the complete test of this component, the kernel
must be executed as a grid composed of thread blocks of
max_thread_per_block threads.

VI. EXPERIMENTAL RESULTS

Performed experiments target two main characteristics of
the proposed methodology: the execution time of each test
procedure and the fault detection capability.

The CUDA devices used for the tests are: a GeForce GTX
560Ti and a GeForce GTX 580. The former has 1 GB
dedicated RAM, 8 SMs, each one equipped with 48 Ck
cores and 4 SFU, and 2.1 compute capability. The laéte
a card with 1.5 GB of dedicated RAM, 16 SMs
compute capability. Each SM contains 32 CUDA\co
SFUs. An Intel Core i5-2500k CPU is us

The execution time of each test proce
in terms of GPU Execution
on the CPU to perform the i

2\
P

Moreover, comparing the execution time of the two proposed
test cases, the only differences concern the IU and the FPU
test procedures. This is due to the different test approaches to
test the IU and FPU in GPUs with CC 2.0 and 2.1. In fact, as
described in Section V-A, more operations are required to test
GPU with a CC 2.1 (e.g., GeForce GTX560¢ti) compared to
the operations required by GPU with a CC 2.0 (e.g., GeForce
GTX580).

In order to verify the fault detection capability of the proposed
test procedures a fault injection campaign has been performed.
The fault injection aims at injecting single and multiple stuck-
at faults on each module inside a SM.

Since nVidia does not provide a description of the internal
structure of SMs, the faults are injected only on the input and
output interfae of each SM functional b

e\infogmation are pro-
iti bitmask. The GPU,
&y, performs the injection of

bn addition, the GPU takes

the faults 1dent1ﬁed by
trage of the SM in w

d of the test, 2 s this information to the CPU.
Finally, the P@s e number of the detected faults in
order to wveriiy\ t ieved fault coverage. It also compares

the locali 1lty SMs with the ones traced by the GPU, in
to verify the fault localization.

JIT reports the number of faults injected in each SM
nal block, and the related fault coverage.

4

TAB :\Fault injection campaign

Table II shows the executio Mo@@\ j@njected Faults | Detected Faults [%]
procedure. N\ 16,648,768 99.9%
TABLE II: Test proce es ZNANL [N 16,648,768 99.8%
eguss (SFONIGEpatterns) | 16,484,549 92.38%
CUDA GPU |  Test procedufe CET [ms] “SEL}100k patterns) 16,484,549 93.16%
T \\L 0.096 “Thread Dispatcher 16,463,528 100%
GeForce [ (FPU 1201.252 | 0.181
((322(526(1);1 ru N\&&patyg) ;;) ;;22(6) 11983'?01; 1 The high fault detection re.lte achieved by the IU and FPU test
\‘E w”palcher 0,611 0,039 procedures (see Table III) is due to the adopted test procedures
1359 0.109 (i.e., [20] for IU test and [21] for FPU test). In fact, these
GeForce 7PU 609.991 0173 two procedures ensure by them self very high-fault coverage
GTX580 SFU (10k patterns) 36,701 18125 independently by the internal architecture of the module under
(CC 2.0) SFU (100k patterns) | 133.495 194.023 test.
Thread Dispatcher 0314 0,039 A particular remark has to be done for the SFU test. The fault

As shown in Table II, the CET related to the IU and FPU
test is shorter than the one associated with the SFU test. This
strictly depends on the operations that must be performed by
the CPU to detect a fault. The procedure adopted to test the
IU and the FPU provides a single test signature, thus the CPU
must check the correctness of one data, only. Instead, the SFU
test procedure provides in output a test result for each applied
input test pattern, leading to a high number of checks to detect
a fault.

detection rate of this test procedure strongly depends on the
precision adopted to characterize the €, (see Section V-B).
In our tests, the gg4,, associated with each SFU operation
is characterized by defining six different ranges. For the
sake of completeness, Fig. 5 reports an example of egp,
characterization. As shown in Table III, increasing the number
of test patterns the fault detection rate does not increase too
much. This is due to the fact that the fault escapes associated
to our methodology do not depend on the number of used test
patterns, but they depend more on the precision whereby the
Egpu 18 characterized.
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