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Image Forgery Localization via Fine-Grained
Analysis of CFA Artifacts

P. Ferrara, T. Bianchi Member, IEEE, A. De Rosa, and A. Piva Senior Member, IEEE

Abstract—In this paper, a forensic tool able to discriminate
between original and forged regions in an image captured
by a digital camera is presented. We make the assumption
that the image is acquired using a Color Filter Array, and
that tampering removes the artifacts due to the demosaicing
algorithm. The proposed method is based on a new feature
measuring the presence of demosaicing artifacts at a local level,
and on a new statistical model allowing to derive the tampering
probability of each 2 × 2 image block without requiring to
know a priori the position of the forged region. Experimental
results on different cameras equipped with different demosaicing
algorithms demonstrate both the validity of the theoretical model
and the effectiveness of our scheme.

Index Terms—Image forensics, CFA artifacts, digital camera
demosaicing, tampering probability map, forgery localization.

I. INTRODUCTION

Image forensics is a multidisciplinary science aiming at ac-
quiring important information on the history of digital images,
including the acquisition chain, the coding process, and the
editing operators. The extraction of such data can be exploited
for different purposes, one of the most interesting is the
verification of the trustworthiness of digital data. Image foren-
sic techniques work on the assumption that digital forgeries,
although visually imperceptible, alter the underlying statistics
of an image. These statistical properties can be interpreted as
digital fingerprints characterizing the image life-cycle, during
its acquisition and any successive processing. One of the tasks
of image forensics is then to verify the presence or the absence
of such digital fingerprints, similar to intrinsic watermarks, in
order to uncover traces of tampering.

As a first basic application of the above principle, the
presence/absence of forensic fingerprints can be verified on
the whole image (or a given suspected region, as a sort of
sub-image), thus providing information about the authenticity
of the entire image (or the entire region). However, a more
sophisticated result would be a sort of map indicating for
each image pixel (or small image block) its trustworthiness:
in this case no manual choice of suspected regions would be
necessary. Currently, several fingerprints have been studied for
acquiring information on an image at a global level, but only
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few examples of tools that provide a fine-grained localization
of forgery within a digital image have been proposed, in
particular for double JPEG compression artifacts detection
[1]–[5]. In many cases a sufficiently large portion of the image
(e.g. a B × B block, with B ≥ 100) is needed for a reliable
statistical analysis of the chosen feature, so even if the image
is processed block-wise only a coarse grained localization of
tampering is possible.

In this paper, we focus our attention on the fine grained
forgery localization problem, assuming to have no information
on the position of possibly manipulated pixels. Among the
numerous fingerprints considered in image forensic literature
[6], [7], we consider the traces left by the interpolation
process. Image interpolation is the process of estimating values
at new pixel locations by using known values at neighbouring
locations. During the image life cycle, there are two main
phases in which interpolation is applied:

• Acquisition processing, to obtain the 3 color channels
(red, green, and blue). The light is filtered by the Color
Filter Array (CFA) before reaching the sensor (CCD or
CMOS), so that for each pixel only one particular color
is gathered. Thus, starting from a single layer containing
a mosaic of red, green, and blue pixels, the missing pixel
values for the three color layers are obtained by applying
the interpolation process, also referred to as demosaicing.

• Geometric transformations, to obtain a transformed im-
age. When scaling (shrinking and zooming), rotation,
translation, shearing, are applied to an image, pixels
within the to-be-transformed image are relocated to a new
lattice, and new intensity values have to be assigned to
such positions by means of interpolation of the known
values, also referred to as resampling operation.

The artifacts left in the image by the interpolation process
can be analyzed to reveal image forgery. Ideally, an image
coming from a digital camera, in the absence of any successive
processing, will show demosaicing artifacts on every group
of pixels corresponding to a CFA element. On the contrary,
demosaicing inconsistencies between different parts of the
image, as well as resampling artifacts in all or part of the
analyzed image, will put image integrity in doubt.

Our effort is focused on the study of demosaicing artifacts
at a local level: by means of a local analysis of such traces
we aim at localizing image forgeries whenever the presence
of CFA interpolation is not present. Obviously our approach
is based on the hypothesis that unmodified images coming
from a digital camera are characterized by the presence of
CFA demosaicing artifacts. Starting from such an assumption,
we propose a new feature that measures the presence/absence
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of these artifacts even at the smallest 2 × 2 block level, thus
providing as final output a forgery map indicating with fine
localization the probability of the image to be manipulated.

The paper is organized as follows. In Section II, we will
provide a brief overview of previous works considering the
fingerprints left by the CFA and the interpolation process,
highlighting if and how the localization problem is taken
into account by the methods proposed so far. In Section
III we will present a statistical model for describing the
presence of CFA, and starting from it we will propose the
new forgery localization algorithm and describe the overall
system in Section IV. In Section V, firstly the proposed model
will be validated through a set of experiments, and secondly
the detection capability of the proposed forgery localization
algorithm will be investigated. Some conclusions will end the
paper in Section VI.

II. RELATED WORK

Previous works considering CFA demosaicing as the to be
analyzed fingerprint can be divided in two main classes, i)
algorithms aiming at estimating the parameters of the color
interpolation algorithm, and ii) algorithms aiming at evaluat-
ing the presence/absence of demosaicing traces. Whereas the
second class focuses on forgery detection (inconsistencies in
the CFA interpolation reveal the presence of forged regions),
algorithms within the first class are mostly intended to classify
different source cameras, though sometimes they can also be
used to detect tampering.

As to the first class, Swaminathan et al. in [8] propose a
method for camera identification by the estimation of the CFA
pattern and interpolation kernel; while in [9] the same authors
exploit the inconsistencies among the estimated demosaicing
parameters as proof of tampering. Cao and Kot in [10] aim
at estimating the demosaicing formulas, employing a partial
second-order image derivative correlation model, in order to
classify different demosaicing algorithms. In [11], Bayram
et al. detect and classify traces of demosaicing by jointly
analyzing features coming from two previous works (see [12]
and [13] below), in order to identify the source camera model.
In [14], Fan et al. propose a neural network framework for
recognizing the demosaicing algorithms in raw CFA images,
and use it for digital photo authentication.

Regarding the detection of demosaicing traces, Popescu
and Farid propose an approach for detecting the interpolation
artifacts left on digital images by resampling [15] and de-
mosaicing [12] processes. In their approach, the Expectation-
Maximization algorithm is applied to estimate the interpo-
lation kernel parameters, and a probability map is achieved
that for each pixel provides its probability to be correlated
to neighbouring pixels. The presence of interpolated pixels
results in the periodicity of the map that is clearly visible in
the Fourier domain. Such an analysis can be applied to a given
image region, however a minimum size is needed for assuring
the accuracy of the results: authors tested their algorithms on
256× 256 and 512× 512 sized areas.

Gallagher in [13] observed that the variance of the second
derivative of an interpolated signal is periodic: he thus looked

for the periodicity in the second derivative of the overall
image by analyzing its Fourier transform. Successively, for
detecting traces of demosaicing, Gallagher and Chen proposed
in [16] to apply Fourier analysis to the image after high
pass filtering, for capturing the presence of periodicity in the
variance of interpolated/acquired coefficients. The procedure
has been tested only up to 64 × 64 image blocks, whereas a
variation yielding a pixel-by-pixel tampering map is based on
a 256-point discrete Fourier transform computed on a sliding
window, thus lacking resolution.

In [17] by Dirik and Memon, the sensor noise power of
the analyzed image is taken into account: its change across
the image (i.e. its difference value for interpolated and ac-
quired pixels) is considered for demonstrating the presence of
demosaicked pixels. In the above paper, a block based CFA
detection was also proposed, however the features proposed
therein have to be computed on 96×96 blocks, thus permitting
only a coarse grained localization of tampering.

Demosaicing can also be detected using methods which
analyze generic resampling artifacts. In this area, Kirchner in
[18], [19] consider an approach similar to [15], by observing
that the actual prediction weights of the resampling filter are
not necessary for revealing periodic artifacts, thus simplify-
ing the analysis, however experimental results consider only
512 × 512 images. Mahdian and Saic in [20] consider the
derivatives of the interpolated image and apply the method
to suspected windows of size at least 64 × 64, while in
[21] they adopt the spectral correlation function, but only
considering 512×512 sized images. Finally, in [22] Vazquez-
Padin et al. demonstrate that the interpolated image is an
almost cyclostationary process, with a period depending on
the resampling factor. However, the authors use image blocks
of size 128× 128 pixels for the analysis, which only permits
a coarse forgery localization.

III. CFA MODELING

During the CFA interpolation process, the estimation of
the values in the new lattice based on the known values
can be locally approximated as a filtering process through
an interpolation kernel periodically applied to the original
image to achieve the resulting image. Thus, the identification
of artifacts due to CFA demosaicing can be seen as a particular
case of the detection of interpolation artifacts, that has been
deeply studied in these last years, as exposed in Section II.

In [18], Kirchner demonstrated that for a resampled station-
ary and non-constant signal s(x), with x ∈ Z, the variance
of the residue of a linear predictor Var[e(x)] is periodic
with a period equal to the original sampling rate. Hence,
if we consider the signal resampled according to an integer
interpolation factor r, we have Var[e(x)] =Var[e(x+r)], since
the original sampling period corresponds to r samples of the
resampled signal.

For the case of CFA demosaicing, if we consider a single
dimension, the general result presented in [18] turns into
Var[e(x)] =Var[e(x+2)], that is the variance of the prediction
error assumes only two possible values, one for the odd
positions and another one for the even positions. In more
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detail, considering for example the interpolation of the green
color channel G(x) in a particular row of the image, the
acquired signal sA(x) is

sA(x) =

{
G(x) x even
0 x odd (1)

If we consider a simplified demosaicing model, the resulting
signal sR(x), composed by the acquired component sA(x) and
by the interpolated component, takes values:

sR(x) =

{
sA(x) = G(x) x even∑
u husA(x+ u) x odd (2)

where hu represents the interpolation kernel. In the above
model, we assume that each color channel is independently
interpolated using a linear filter and that original sensor sam-
ples are not modified by the interpolation process1. In practice,
since only odd values of u contribute to the above summation,
we will restrict our attention to the case hu = 0 for u odd.
The prediction error is then defined as e(x) = sR(x)−sP (x),
with:

sP (x) =
∑
u

kusR(x+ u) (3)

the predicted signal, and ku the prediction kernel. Hence:

e(x) =

{
G(x)−

∑
u kusR(x+ u) x even∑

u husA(x+ u)−
∑
u kusR(x+ u) x odd

(4)
By assuming to use the same kernel for the interpolation
and the prediction (i.e. hu = ku), the prediction error in
odd positions is identically zero, while in the even positions
takes values different from zero. Hence, in such an ideal case,
var[e(x)] is expected to be zero in the positions corresponding
to the demosaicked signal, and different from zero in the
positions corresponding to the acquired signal.

In general, the exact interpolation coefficients may not be
known, however we can assume that ku = 0 for u odd.
Moreover, we can also assume

∑
u ku =

∑
u hu = 1, which

usually holds for common interpolation kernels. In this case,
equation (4) above can be rewritten as

e(x) =

{
G(x)−

∑
u ku

∑
v hvG(x+ u+ v) x even∑

u(hu − ku)G(x+ u) x odd
(5)

By assuming the acquired signal samples to be independent
and identically distributed (i.i.d.) with mean µG and variance
σ2
G, the mean of the prediction error can be evaluated as

E[e(x)] =

{
µG − µG

∑
u ku

∑
v hv = 0 x even

µG (
∑
u hu −

∑
u ku) = 0 x odd (6)

whereas the variance of the prediction error is

Var[e(x)] =Var
[
(1−

∑
u

kuh−u)G(x)

+
∑
t6=0

(∑
u

kuht−u

)
G(x+ t)

]
=σ2

G

[
(1−

∑
u

kuh−u)
2 +

∑
t6=0

(
∑
u

kuht−u)
2
] (7)

1The first assumption is often not verified in practice, however the second
one usually holds since most practical demosaicing algorithms do not change
the value of acquired pixels.

(a) (b)

Fig. 1. (a) the Bayer’s filter mosaic; (b) the quincunx lattice A for the
acquired green channels and the complementary quincunx lattice I for the
interpolated green channels.

for x even and

Var[e(x)] = Var
[∑

u

(hu−ku)G(x+u)
]
= σ2

G

∑
u

(hu−ku)2

(8)
for x odd. According to the above model, the prediction error
has zero mean and variance proportional to the variance of the
acquired signal. However, when the prediction kernel is close
to the interpolation kernel, the variance of prediction error will
be much higher at the positions of the acquired pixels than at
the positions of interpolated pixels.

Leaving the ideal conditions, the acquired signal will be
only locally i.i.d. and its variance only locally stationary: thus
σ2
G has to be computed on small parts of the signal and

consequently var[e(x)] will assume different values depending
on the specific signal content. Also, additive noise may be
present on pixel values due to rounding and truncation effects.
Nevertheless, we can still expect the variance of e(x) to be
higher at the positions of acquired pixels.

IV. PROPOSED ALGORITHM

In order to extend the previous analysis to the bidimensional
case, without loss of generality we will consider as specific
CFA the most frequently used Bayer’s filter mosaic, a 2 × 2
array having red and green filters for one row and green and
blue filters for the other (see Fig. 1(a)). Furthermore, we will
consider only the green channel; since the green channel is up-
sampled by a factor 2, for a generic square block we have the
same number of samples (and the same estimation reliability)
for both classes of pixels (either acquired or interpolated).

By focusing on the green channel, the even/odd positions
(i.e. acquired/interpolated samples) of the one-dimensional
case turn into the quincunx lattice A for the acquired green
values and the complementary quincunx lattice I for the
interpolated green values (see Fig. 1(b)). Similar to the one-
dimensional case, we assume that in the presence of CFA
interpolation the variance of the prediction error on lattice A
is higher than the variance of the prediction error on lattice
I, and in both cases it is content dependent. On the contrary,
when no demosaicing has been applied, the variance of the
prediction error assumes similar values on the two lattices.
Hence, in order to detect the presence/absence of demosaicing
artifacts, it is possible to evaluate the imbalance between the
variance of the prediction error in the two different lattices.
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A. Proposed feature

Let us suppose that s(x, y), with (x, y) ∈ Z2, is an observed
image. The prediction error can be obtained as:

e(x, y) = s(x, y)−
∑
u,v 6=0

ku,vs(x+ u, y + v) (9)

where ku,v is a bidimensional prediction filter. In the ideal
case, ku,v = hu,v ∀(u, v) where hu,v is the interpolation
kernel of the demosaicing algorithm. In general, we can
assume that ku,v 6= hu,v , since the in-camera demosaicing
algorithm is usually unknown.

Because of the local stationarity of the residue, the variance
of the prediction error e(x, y) is locally estimated pixel-
by-pixel for each position (demosaicked or acquired) only
from a neighborhood of interpolated (I) or acquired (A)
pixels respectively. In this work, we assume to know the
spatial pattern of the CFA (for example the Bayer CFA). This
hypothesis is not a serious constraint, because it is reasonable
to suppose either to know the CFA pattern or to estimate it by
adopting a proper estimation algorithm [8].

By assuming that the local stationarity of prediction error
is valid in a (2K + 1) × (2K + 1) window, it is possible to
define the local weighted variance of the prediction error as:

σ2
e(x, y) =

1

c

[( K∑
i,j=−K

αij e
2(x+ i, y + j)

)
− (µe)

2
]

(10)

where αij are suitable weights, µe =
∑K
i,j=−K αij e(x +

i, y + j) is a local weighted mean of the prediction error and
c = 1−

∑K
i,j=−K α

2
ij is a scale factor that makes the estimator

unbiased, i.e., E[σ2
e(x, y)] =var[e(x, y)], for each pixel class.

The weights αij are obtained as αij = α
′

ij/
∑
i,j α

′

ij where

α
′

ij =

{ W (i, j) if e(x+ i, x+ j) belongs to
the same class of e(x, y)

0 otherwise

and W (i, j) is a (2K+1)× (2K+1) Gaussian window with
standard deviation K/2.

Given a N × N image, we analyze it by considering
B × B non-overlapping blocks, where B is related to the
period of Bayer’s filter mosaic: the smallest period (and
block dimension) is (2, 2), but also multiples can be adopted.
The generic block in position (k, l) is denoted as Bk,l with
k, l = 0, . . . , NB − 1. Each block is composed by disjoint sets
of acquired and interpolated pixels, indicated as BAk,l and
BIk,l , respectively. We then define the feature L:

L(k, l) = log

[
GMA(k, l)

GMI(k, l)

]
(11)

where GMA(k, l) is the geometric mean of the variance of
prediction errors at acquired pixel positions, defined as:

GMA(k, l) =

[ ∏
i,j∈BAk,l

σ2
e(i, j)

] 1
|BAk,l

|

(12)

whereas GMI(k, l) is similarly defined for the interpolated
pixels.

The proposed feature L allows us to evaluate the imbalance
between the local variance of prediction errors when an image
is demosaicked: indeed, in this case the local variance of
the prediction error of acquired pixels is higher than that of
interpolated pixels and thus the expected value of L(k, l) is
a nonzero positive amount. On the other hand, if an image
is not demosaicked, this difference between the variance of
prediction errors of acquired an interpolated pixels disappears,
since the content can be assumed to present locally the same
statistical properties, and the expected value of L(k, l) is zero.
Our inference will be based on these two key observations.

Let us now suppose that a demosaicked image has been
tampered by introducing a new content, and that in order to
make this forgery more realistic, some processing (blurring,
shearing, rotation, compression, etc.) has been likely applied
to the added content, thus destroying the demosaicing traces
on the forged region. The proposed feature L(k, l) will assume
inconsistent values within the tampered image: in some regions
(the untampered ones) it will be significatively greater than
zero, while in other regions (the tampered ones) the feature
will be close to zero. We can thus employ these inconsistencies
to finely localize forgeries.

In some respects, the proposed feature is conceptually
similar to the approach in [16], where the variance is ap-
proximated using the average of absolute values. However,
an important difference is that the technique of [16] requires
a Fourier analysis, thus limiting the resolution of the method
when aiming at the fine-grained localization of CFA artifacts.
Moreover, the proposed feature can be described using a very
convenient statistical model, described in the following, which
allows us to associate to each block a probability of being
manipulated.

B. Feature modeling

By using a Bayesian approach, for each block Bk,l it
is possible to derive the probability that CFA artifacts are
present/absent conditioned on the observed values of L(k, l).

Let M1 and M2 be the hypotheses of presence and absence
of CFA artifacts, respectively. In order to have a simple and
tractable model, we assume that L(k, l) is Gaussian distributed
under both hypotheses and for any possible size B of the
blocks Bk,l. For a fixed B, we can characterize our feature
using the following conditional probability density functions:

Pr{L(k, l)|M1} = N (µ1, σ
2
1) (13)

with µ1 > 0, and

Pr{L(k, l)|M2} = N (0, σ2
2). (14)

The above densities hold ∀k, l = 0, . . . , NB −1, i.e., we assume
that the parameters of the two conditional pdfs do not change
over the considered image, such that they can be globally
estimated.

If a demosaicked image contains some tampered regions in
which CFA artifacts have been destroyed (as it may occur in
a common splicing operation), both hypotheses M1 and M2

are present, therefore L(k, l) can be modeled as a mixture of
Gaussian distributions. The first component, with µ1 > 0, is
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Fig. 2. The work flow of our algorithm.

due to regions in which CFA artifacts are present, whereas
the second component, with µ2 = 0, is due to tampered
regions in which CFA artifacts have been removed2. In order
to estimate simultaneously the parameters of the proposed
Gaussian Mixture Model (GMM), we employ the Expectation-
Maximization (EM) algorithm [23]. This is a standard iterative
algorithm that estimates the mean and the variance of the
component distributions by maximizing the expected value
of a complete log-likelihood function with respect to the
distribution parameters. In our case, the EM algorithm is used
to estimate only µ1, σ1, and σ2, since we assume µ2 = 0.

C. Map generation

The final aim we point at is to achieve a map indicating for
each B×B block Bk,l its probability to be original/tampered,
based on its probability to contain or not CFA artifacts.
Starting from equations (13) and (14) and assuming a-priori
probabilities Pr{M1} = Pr{M2} = 1/2, we obtain the
posterior probability of being an original block. By exploiting
Bayes’ Theorem and relying on the observed feature L(k, l)
for each Bk,l block, we achieve:

Pr{M1|L(k, l)} =
Pr{L(k, l)|M1}

Pr{L(k, l)|M1}+ Pr{L(k, l)|M2}
(15)

which can be expressed as:

Pr{M1|L(k, l)} =
1

1 + L(L(k, l))
(16)

where L is the likelihood ratio of L(k, l) defined as:

L(L(k, l)) = Pr{L(k, l)|M2}
Pr{L(k, l)|M1}

. (17)

Let us note that equations (16) and (17) have the same
statistical information. Applying equation (17) to each block
of an image, we obtain a likelihood map (LM), where each
pixel of the map is the likelihood ratio associated to a B×B
block.

These maps are usually noisy because they associate a
probability (or a likelihood ratio) value to a single realization
of L(k, l), which is very noisy itself. In order to denoise these
maps, we can cumulate feature values on larger blocks whose
size is C×C, where C = n·B with n ∈ Z+. Assuming blocks

2The above model may not be accurate in the case of copy-move forgeries
exhibiting a nonaligned CFA pattern, since these areas will result in negative
values of L(k, l). However, this is only a small subset of the possible forgeries
and it does not appears reasonable to complicate the model to cope with this
particular case.

to be conditionally independent given either M1 or M2, the
accumulated likelihood ratio is obtained as:

Lcum(L(k′, l′)) =
∏
k,l Pr{L(k, l)|M2}∏
k,l Pr{L(k, l)|M1}

. (18)

In order to further improve the localization performance, we
note that in a realistic forged image the manipulated areas are
usually connected regions, due to the image semantic content.
These connected regions can be highlighted by applying to
the map a simple low-pass spatial filter, like a mean filter or
a median filter. For better numerical stability, such filters are
applied to the logarithm of the likelihood map.

D. Overall system

In Fig. 2 we show the overall system that, given a suspected
image, produces the corresponding forgery map: each pixel in
the forgery map indicates for each C × C image block its
probability to contain CFA artifacts, so that low values in the
output map correspond to likely forged areas.

As a first step, the green channel is extracted from the im-
age, and the prediction error is computed. Because in-camera
processing algorithms are usually unknown, a fixed predictor
is used: the choice of the adopted predictor will be discussed
and validated in Section V. The weighted local variance is
then estimated and the feature L(k, l) is obtained for each
B × B block. The GMM parameters are globally estimated
exploiting the EM algorithm and used for the generation of the
forgery map. When C = B the forgery map is generated using
the likelihood ratios in (17), whereas for C > B we use the
cumulated likelihood map in (18). Optionally, the intermediate
log-likelihood map can be filtered using either a mean filter
or a median filter.

V. EXPERIMENTAL RESULTS

The results presented in this section have been obtained
on a dataset consisting of 400 original color images, in TIFF
uncompressed format, coming from 4 different cameras (100
images for each camera): Canon EOS 450D, Nikon D50,
Nikon D90, Nikon D7000. All cameras are equipped with
a Bayer CFA, thus respecting our requirement that authentic
images come from a camera leaving demosaicing traces, but
the in-camera demosaicing algorithms of such devices are
unknown. Each image was cropped to 512 × 512 pixels,
maintaining the original Bayer pattern, which is assumed to
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be known3. We will refer to such a dataset as the original
dataset.

A. Model Validation

The first step was to verify the assumption of Gaussian
distribution on L(k, l), both in the presence and in the
absence of CFA artifacts. To this end, starting from 100
images selected from the original dataset, we have created two
datasets satisfying the M1 (presence of CFA) and M2 (absence
of CFA) hypotheses. To create the dataset corresponding to
M1, the original images have been sampled according to the
Bayer CFA pattern and then re-interpolated using four possible
demosaicing algorithms, namely bilinear, bicubic, gradient-
based and median (see [12] for more details on such interpo-
lation algorithms). This allowed us to know the interpolation
kernel on the whole image, and then to exactly predict the
interpolated values with the four different predictors (we refer
to these cases as ’ideal’). To create the dataset corresponding
to M2, each color channel of the original images has been
upsampled by a factor two, blurred with a 7× 7 median filter,
and downsampled by a factor two, thus removing all CFA
artifacts. Features are then computed using again the four
predictors as before.

Moving towards realistic conditions, we also computed the
value of L(k, l) under the M1 hypothesis on the original
dataset of 400 TIFF uncompressed images interpolated using
their unknown in-camera demosaicing algorithms, and apply-
ing bilinear, bicubic, gradient-based and median predictors.

We verified the approximate Gaussian distribution of the
features for all the classes described so far, i.e.: absence of
CFA, presence of CFA with known interpolation kernel, and
the four sets of cameras with unknown CFA demosaicing
algorithms; for each of these six classes, the features have
been computed with the four different interpolation algorithms
(bilinear, bicubic, gradient-based, median) setting B = 8.
The approximately Gaussian behavior of the features has
been verified by fitting them with a generalized Gaussian
distribution (GGD), given by

p(L) =
1

Z
e−(|L−µ|/η)

ν

(19)

where µ is a location parameter (mean), η is a scale parameter,
ν is a shape parameter, and Z is a normalization factor so
that p(L) integrates to one. The Gaussian distribution is a
particular case of the GGD for ν = 2. Since our conjecture
is that the Gaussian assumption holds for a single image, but
not necessarily over the whole dataset, the shape parameter
has been independently estimated for each image using the
Mallat’s method [24]. In Table I we report the median value of
the estimated shape parameters for the six classes and the four
interpolation algorithms. The values indicate a reasonable fit
of the proposed model. Interestingly, the model appears more
fitting in the presence of CFA artifacts, and when the predictor
is matched to the actual interpolation algorithm.

Furthermore, we plot the mean value of the features in order
to verify how features in M1 hypothesis can be discriminated

3The correct CFA configuration has been verified by inspecting the technical
specifications of the raw image format.

TABLE I
MEDIAN VALUE OF THE GGD SHAPE PARAMETERS ESTIMATED FROM THE
DISTRIBUTION OF THE FEATURE L(k, l) FOR EACH IMAGE, CONSIDERING

DIFFERENT PREDICTORS ON DIFFERENT DATASETS.

bilinear bicubic gradient-based median
No CFA 1.589 1.558 1.672 1.812

Ideal 2.168 2.134 2.049 2.016
Canon EOS 2.001 1.908 1.897 1.962
Nikon D50 1.736 1.797 1.834 1.814

Nikon D7000 2.206 2.066 1.729 1.899
Nikon D90 1.998 1.924 1.667 1.927

by features in M2 hypothesis, both in ideal and in realistic
cases. In Fig. 3, we show the results for the ideal case in
absence of CFA (first row) and presence of known CFA
(second row). In Fig. 4, we show the 16 histograms of the
mean values of L(k, l): along each row we have histograms
referring to the same camera, from top to bottom, Canon EOS
450D, Nikon D50, Nikon D90, Nikon D7000. For both the
Figures along each column we have histograms referring to
the same predictor, from left to right, bilinear (red), bicubic
(blue), gradient-based (green), median (violet).

Globally, the above results confirm that the proposed fea-
tures has zero mean under the M2 hypothesis and mean
greater than zero under the M1 hypothesis. The histograms
also highlight that the four predictors have different behaviors.
The median predictor does not seem well suited to detect CFA
artifacts, since it produces values of L(k, l) closer to zero than
the other predictors, irrespective of the camera.

B. Detection Performance Validation

In this section, the detection capability of the proposed
forgery localization algorithm is investigated. Firstly, the be-
havior with respect to different predictors is analyzed. Then,
in order to characterize the algorithm performance in different
conditions, a particular predictor is chosen – the bilinear –
and the results are evaluated considering different scenarios,
different forgery sizes, and different choices of algorithm
parameters.

1) Experimental Methodology: The considered scenarios
correspond to nine different datasets derived from the original
dataset: a first group of four datasets include uncompressed
images obtained by applying bilinear, bicubic, gradient-based,
and median demosaicing (as described in the previous section),
representing the ideal case; a second group of five datasets
include uncompressed images obtained using the demosaicing
algorithm of the respective four cameras and JPEG compressed
images obtained from the previous images using four different
quality factors: 100%, 95%, 90% and 85%. The idea underly-
ing this choice is to verify the performance on sets of images
that completely satisfy the requirements of the proposed model
as well as on more realistic images.

For each dataset, forgery has been simulated by applying
to the central region of the image the procedure for removing
CFA artifacts described in the previous section. As to the size
of the forgery, we considered tampered regions of 128× 128,
64 × 64, and 32 × 32 pixels. In the case of JPEG datasets,
CFA removal has been simulated before JPEG compression.
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Fig. 3. Distribution of the average value of L(k, l) on an image, feature evaluated on 8× 8 blocks, in the absence of CFA artifacts (top row) and when the
predictor is the same as the demosaicing algorithm (bottom row), using different predictors: from left to right, bilinear (red), bicubic (blue), gradient-based
(green), median (violet).
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The analysis has been carried out under different resolutions
and filtering of the likelihood map. Concerning the resolution,
in order to permit a fine-grained localization of the tampered
regions, we chose to compute the proposed metric L starting
from 2×2 blocks (B = 2), the smallest possible size to detect
CFA artifacts. Different resolutions, equivalent to 4×4 blocks
and 8×8 blocks, can be obtained in two ways: the first one is
to define our features on larger blocks (e.g. B = 4 or B = 8).
The second way is to compute the proposed metric on 2×2 or
4× 4 blocks, and then to cumulate the posterior probabilities
according to (18) on C × C blocks (C = 8). Concerning the
filtering of the likelihood map, three cases were considered:
no filtering at all, 5 × 5 weighted average filtering using a
Gaussian window, and 5 × 5 bidimensional median filtering.
In all cases, filtering is applied on log likelihood maps to avoid
numerical problems.

As to the EM algorithm, we initialized µ1 and σ2
1 to the

mean and variance of the observed features, σ2
2 = σ2

1/10, and
α = 0.5. Convergence was assumed if the increase of the
likelihood function with respect to the previous iteration was
less than 10−3 or after 500 iterations.

The performance of the proposed algorithm has been mea-
sured by the true positive rate (RTP ), measuring the fraction
of tampered blocks correctly detected as forgery, and the false
positive rate (RFP ), measuring the fraction of unchanged
blocks erroneously detected as forgery. If we assume NR1

the amount of blocks in the untampered region R1, NR2 the
amount of blocks in the forged region R2, NmR1 the amount
of blocks detected as tampered in region R1 and NmR2 the
amount of blocks detected as tampered in region R2, we have:

RTP =
NmR2

NR2
; (20)

RFP =
NmR1

NR1
. (21)

The overall performance of the detector is evaluated by
plotting its receiver operating characteristic (ROC) curve,
obtained by thresholding the output maps (i.e. the cumulated
and filtered likelihood maps) using a varying threshold value
and recording the corresponding values of RTP and RFP .
Finally, the area under the ROC curve (AUC) is used as a
scalar parameter to describe detector capabilities: an AUC
close to one indicates good detection performance, whereas
an AUC close to 0.5 indicates that the detector has no better
performance than choosing at random.

2) Results: In Fig. 5(a), we show the detection performance
on the four ideal datasets, where for each datasets we use a
predictor matched to the demosaicing algorithm, whereas in
Fig. 5(b), we show the detection performance on the dataset
using in-camera demosaicing when different predictors are
applied. For each test a 128 × 128 tampered region has
been considered. Detection results are averaged over the four
different cameras. As to the resolution of the likelihood map,
we have B = C = 8. The results show that when the
predictor matches the demosaicing algorithm the performance
is nearly optimal, irrespective of the used predictor, whereas
in the presence of a realistic and unknown demosaicing
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Fig. 5. ROC curves considering images from the original dataset with
128×128 tampered regions. Features are computed on 8×8 blocks: (a) ideal
case: the 400 original images have been sampled according to the Bayer CFA
pattern and then re-interpolated using the four chosen interpolation algorithms;
results from all the 400 images are aggregated for each of the four predictors
and the behaviour is shown separately; for the sake of readability, we show a
zoom of the ROC curves for RTP > 0.8 and RFP < 0.2; AUC values are:
bicubic 0.9975, bilinear 0.9845, gradient-based 0.9975, median 0.9954; (b)
real case: the 400 original images coming from the 4 cameras with unknown
demosaicing algorithms; results from all the 400 images are aggregated for
each of the four predictors and the behaviour is shown separately.

algorithm the best average performance is obtained using the
bilinear predictor. It is worth noting that in the latter case
the performance of the median predictor is far worse than
that of the other predictors, which is in accordance with the
histograms in Fig. 4.

The following results show the detection performance, aver-
aged over the four cameras, when using the bilinear predictor
and different choices of algorithm parameters. In Fig. 6 we
report the AUC values obtained using different likelihood map
resolutions without filtering the likelihood map, under six dif-
ferent scenarios and considering different sizes of the tampered
area. In all cases, the best performance is obtained when the
exact interpolation kernel is known (in this case bilinear).
Note also that the ability to localize forged regions sensibly
decreases when the JPEG compression quality is below 95%.
This is due to the low-pass behavior of JPEG compression,
which drastically attenuates high frequency signals, such as
the prediction error. With a quality factor 85%, our algorithm
is unable to discriminate between the presence and the absence
of CFA artifacts.

By comparing the different curves, we observe that defining
our features on larger blocks makes our model more robust.
These better performances are obtained at the expense of
map resolution. However, in realistic conditions forgery sizes
less than 8 pixels are unusual. It is also worth noting that
computing the features on 2×2 or 4×4 blocks and cumulating
the probabilities on 8 × 8 block yields slightly worse results
than directly computing the features on 8 × 8 blocks. Lastly,
the performance of the proposed detector appears similar for
different forgery sizes, even though smaller tampered areas are
more difficult to detect due to the reduced number of tampered
blocks which decreases the reliability of the GMM estimation.

In Fig. 7, we compare the performance of the proposed
detector using the most favorable combination of parameters,
namely 8× 8 resolution without cumulation, with the perfor-
mance of the algorithms proposed by Dirik and Memon in [17]
(DM) and by Gallagher and Chen in [16], namely the block-



9

(I) (II) (III) (IV) (V) (VI)
0.5

0.6

0.7

0.8

0.9

1

Scenario

A
U

C

 

 

2x2
2x2 cumulated onto 8x8
4x4
4x4 cumulated onto 8x8
8x8

(a)

(I) (II) (III) (IV) (V) (VI)
0.5

0.6

0.7

0.8

0.9

1

Scenario

A
U

C

 

 
2x2
2x2 cumulated onto 8x8
4x4
4x4 cumulated onto 8x8
8x8

(b)

(I) (II) (III) (IV) (V) (VI)
0.5

0.6

0.7

0.8

0.9

1

Scenario

A
U

C

 

 
2x2
2x2 cumulated onto 8x8
4x4
4x4 cumulated onto 8x8
8x8

(c)

Fig. 6. Effects of the Likelihood Map resolution on the AUC values. We
consider TIFF images with bilinear interpolation (I) and TIFF images with
in-camera demosaicing (II). These latter images are then compressed in JPEG
format with quality at 100% (III), 95% (IV), 90% (V) and 85% (VI). Different
forgery sizes are investigated: (a) 32 × 32 pixels; (b) 64 × 64 pixels; (c)
128× 128 pixels.

wise version (GC-B) and the version based on local statistics
(GC-L). For a fair comparison, the DM and GC-B algorithms
have been applied on 8×8 blocks, whereas the features of GC-
L algorithm have been computed using 7× 7 local averaging
and 16-point discrete Fourier transform. The proposed feature
clearly outperforms the previous approaches, demonstrating
far better localization capabilities. It is also evident that the
performance of all CFA-based methods degrades similarly in
the presence of JPEG compression when such methods are
used to localize CFA artifacts at a fine-grained resolution.

We also investigated the use of filtering on the likelihood
map. In Figure 8, the AUC values are shown in the absence
or presence of either mean or median filtering, using 8 × 8-
features. The size of the tampered region is 128× 128 pixels.
We can see that filtering improves performances, except in the
ideal case, where the effects of the loss of resolution on the
edges of the tampered region is predominant, and that median
filtering gives better results than mean filtering.
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Fig. 7. Comparison between the proposed algorithm and the algorithms by
Dirik and Memon (DM) [17] and by Gallagher and Chen (GC-B and GC-L)
[16]. We consider TIFF images with bilinear interpolation (I) and TIFF images
with in-camera demosaicing (II). These latter images are then compressed in
JPEG format with quality at 100% (III), 95% (IV), 90% (V) and 85% (VI).
The features are computed on 8 × 8 blocks. Tampered region is 128 × 128
pixels.
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Fig. 8. Effects of Likelihood Map filtering on the AUC values. We consider
TIFF images with bilinear interpolation (I) and TIFF images with in-camera
demosaicing (II). These latter images are then compressed in JPEG format
with quality at 100% (III), 95% (IV), 90% (V) and 85% (VI). The features
are computed on 8× 8 blocks. Tampered region is 128× 128 pixels.

C. Examples

In this section, some examples of forgery localization are
shown on realistically tampered images. In all the cases, the
corresponding forgery maps have been obtained by computing
features on 8 × 8 blocks (C = B = 8), using the bilinear
predictor and applying median filtering on the log likelihood
map.

In Fig. 9 a copy-move forgery on an image acquired with
a Nikon D90 is shown. Both the original image, in Fig.
9(a), and the tampered copy, in Fig. 9(b), are saved in TIFF
uncompressed format. The flower in the upper-left corner has
been pasted disaligning the CFA pattern, whereas the flower
in the upper right corner has been pasted maintaining the
same CFA pattern. In Figs. 9(c)-(f) we show the forgery maps
obtained with the proposed algorithm and the DM, GC-B, and
GC-L algorithms, respectively. Even if the case of copy-move
forgery does not perfectly fit the proposed model, since in
the case of misaligned CFA artifacts the expected value of L
is less than zero, the proposed algorithm correctly localizes
the flower in the upper-left corner, whereas it is not able
to localize the flower in the upper-right corner. This is not
surprising, since the proposed method gives higher likelihood
values for positive values of the feature and reveals local
inconsistencies of the CFA artifacts even when L < 0. As
to the other algorithms, only the GC-B is able to localize the
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Fig. 9. Example of a copy-move forgery in an image with CFA artifacts. The resulting image is saved in TIFF format: (a) original image acquired by the
Nikon D90 camera; (b) tampered image; forgery maps obtained with the proposed (c), DM (d), GC-B (e), and GC-L (f) algorithms. Bright areas indicate high
probability of presence of CFA artifacts (unchanged blocks), whereas dark areas indicate low probability of presence of CFA artifacts (tampered blocks).

upper-left flower. Moreover, some false alarms are present in
the case of saturated white regions, in which CFA artifacts are
not detectable.

Very often, to make the forgery more convincing some im-
age processing operations, like smoothing, filtering, stretching,
rotating, etc., are applied. These operations, removing CFA
artifacts from the tampered regions, make easier the forgery
localization. In Fig. 10, we show an example where a tam-
pering is done by splicing a geometrically transformed image
onto an image taken by a Nikon D90 camera. In Figs. 10(c)-
(n) we show forgery maps obtained with different algorithms,
from top to bottom, the proposed algorithm, DM, GC-B, and
GC-L algorithms, assuming that the tampered image was saved
in JPEG format with quality, from left to right, 100%, 95%,
and 90%. As can be seen, the forged region can be correctly
detected in high quality images, but false alarms increase
abruptly when the quality of JPEG compression decreases,
because lossy compression tends to delete CFA artifacts. On
this example, DM algorithm appears less effective than the
other algorithms.

The inspection of the forgery maps in Figs. 9-10 suggests
that the proposed method is less effective in the presence of
either almost flat areas or sharp edges. In the first case, the
prediction error is almost zero irrespective of the presence
of CFA artifacts, so that this appears as an intrinsic limit of
the method. In the second case, this can be ascribed to the
signal adaptive and possibly non-linear behavior of realistic

in-camera demosaicing algorithms. At least in theory, such
effects could be eliminated by using some prior knowledge
regarding in-camera CFA interpolation, which should yield
results very close to the ideal behavior shown in Fig. 5. An
alternative approach could be that of reverse engineering the
CFA interpolation algorithm, for example using methods such
as in [8] to take into account a signal adaptive behavior.
However, in the presence of heavily manipulated images this
approach is likely to produce a biased estimate and must be
handled with care.

VI. CONCLUSIONS

In this work, a forensic algorithm to localize forged regions
in a digital image without any a-priori knowledge about the
location of the possibly tampered areas has been presented.
Considering the CFA demosaicing artifacts as a digital fin-
gerprint, we proposed a new feature measuring the presence
of demosaicing artifacts even at the smallest 2 × 2 block
level; by interpreting the local absence of CFA artifacts as
an evidence of tampering, the proposed scheme provides as
output a forgery map indicating the probability of each block
to be trustworthy.

The validity of the proposed system has been demonstrated
by computing the ROC curve of a forgery detector based
on thresholding the probability map, considering different
scenarios and different algorithm parameters, and comparing
the performance with the approaches in [17] and [16]. The
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Fig. 10. Example of a forgery in which a processed content (statue) is pasted on an image with CFA artifacts: (a) original image; (b) tampered image; (c)-(n)
forgery maps obtained after saving in JPEG format with quality, from left to right, 100%, 95% and 90%: (c)-(e) proposed algorithm; (f)-(h) DM algorithm;
(i)-(k) GC-B algorithm; (l)-(n) GC-L algorithm.

results show that by a proper parameter configuration CFA
artifacts are usually reliably localized even at 8 × 8 block
resolution. Results are also confirmed by tests carried out on
realistic forgeries.

The fine-grained localization of tampered regions using
CFA artifacts is the main contribution of this work, since in
previous approaches either the area to be investigated has to be
manually selected, or automatic block processing obtains poor
detection performance when forced to reveal CFA artifacts
at a fine-grained scale. The results show that the proposed

algorithm can be a valid tool for detecting and localizing
forgeries in images acquired by a digital camera. However, it
should be remarked that the detection performance is strongly
affected by JPEG compression, limiting the applicability to
scenarios in which the image under test is either uncompressed
or compressed with high quality factors. Moreover, the present
method may not be directly applicable to cameras using a
super CCD [25].

Test on realistically tampered images demonstrate that, due
to the presence of uniform or very sharp regions, automatic
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detection may give a remarkable false positive rate. Therefore,
in order to limit the incidence of false positives human
interpretation of the forgery maps is still required. Future work
will be then devoted to the study of segmentation algorithms
that, by taking into account the local content characteristics,
allow to produce a final map with reduced false positives.

REFERENCES

[1] Z. Lin, J. He, X. Tang, and C.-K. Tang, “Fast, automatic and fine-grained
tampered JPEG image detection via DCT coefficient analysis,” Pattern
Recognition 2009 - Elsevier, pp. 2492–2501, 2009.

[2] T. Bianchi, A. D. Rosa, and A. Piva, “Improved DCT coefficient analysis
for forgery localization in JPEG images,” in Proc. of ICASSP 2011,
Prague, Czech Republic, May 2011, pp. 2444–2447.

[3] T. Bianchi and A. Piva, “Analysis of non-aligned double JPEG artifacts
for the localization of image forgeries,” in Proc. of WIFS 2011, Foz do
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