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Abstract Automated formal verification of security protocols has been mostly focused on analyzing high-
level abstract models which, however, are significantly different from real protocol implementations written in
programming languages. Recently, some researchers have started investigating techniques that bring automated
formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that
target the application code that implements protocol logic, rather than the libraries that implement cryptography.
According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive
formal proofs that, under this assumption, give assurance about the application code that implements the protocol
logic. The two main approaches of model extraction and code generation are presented, along with the main
techniques adopted for each approach.
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1 Introduction

Background

Security protocols are communication protocols that aim to reach some goals despite the hostile activity of
attackers that interfere with the protocol (e.g. by having access to the public channels used by protocol actors).
Typical goals are concealing information to unauthorized parties or giving one actor assurance about the identity
of another actor with which it is communicating. The typical means used for this purpose is cryptography.

Security protocols are generally used to protect something valuable. This is why high assurance about their
correctness is highly desirable. Unfortunately, despite their simplicity, security protocols are quite difficult to
get right. The main difficulties, experienced even by security experts, are not just related to the strength of
the cryptographic algorithms employed (even if these problems must be faced too); when designing a novel
security protocol it is necessary to take into consideration all possible behaviors of hypothetical attackers,
including violations of the protocol rules, and any possible forgery of messages. The number of these behaviors
is typically unbounded or at least huge, because an attacker can forge and inject a new message at each protocol
step in a number of ways that is typically unbounded. This fact adds extra complexity to the already complex
concurrent interactions that a communication protocol must normally manage. Thus, despite the existence of
best practices and recommendations [ ], the manual design of a novel security protocol remains a very
error-prone and challenging task. The difficulty of defining security protocols right is witnessed by stories like
the one of the Needham-Schroeder public-key protocol | ], which was believed secure for 17 years before
Lowe discovered it was affected by a flaw | ]; another witness is the recent discovery of a logical flaw! in
the renegotiation feature of the widely used TLS protocol | ], 13 years after the first version of the protocol
was published (under the SSL 3.0 name).

Due to the inherent complexity, developing security protocols right demands rigorous, mathematically based
methods for reasoning about their correctness. It is significant, for example, that the above mentioned flaw
affecting the Needham-Schroeder public-key protocol could be found by applying formal methods | ].

The rigorous methods that have been developed so far for reasoning out security protocols belong to two
main lines of research. One is based on quite abstract, symbolic modeling: it was originated from the seminal
paper by Dolev and Yao | ], and was developed mainly in the formal methods community. The other one
was originated from the papers by Goldwasser and Micali | ] and by Yao [ |, and is based on more
detailed computational models, involving complexity and probability theories. Both approaches have made
much progress in the last few years, pushed by a growing interest in secure computing. The symbolic approach,
being more abstract, enables better automation in developing proofs, but gives results that are more complex
to relate to real world security goals. On the other side, the computational approach, being closer to reality,
gives more realistic security assurance at the expense of increased difficulty in proof automation. After the
seminal paper of Abadi and Rogaway | ], researchers have been trying to define a relation between the
two approaches, either by proving computational soundness for the symbolic model, or by applying reasoning
techniques that proved successful in the symbolic model to the computational model. An extensive account of
the recent progress in this direction can be found in | ]

Motivation

Both symbolic and computational approaches provide rigorous proofs based on abstract models, albeit at dif-
ferent levels of abstraction. Despite this, a large gap still exists between these models and a real-world protocol
implementation and its execution. This gap may be responsible for final unsatisfactory security levels, even
when correctness proofs have been developed for a model of the protocol. One important component of this
gap is the usually big difference between an abstract protocol model on which proofs are developed and the
real code that implements the protocol, written in programming languages. For example, the real control flow
and data types of a protocol implementation are generally more complex than the ones of the abstract models.
Moreover, when deriving an implementation from a model or specification, programmers may introduce logical
and coding errors, and some of these errors may not be detected by testing and may make the behavior of the
implementation not corresponding to the model or specification. In practice, widely spread implementations
of security protocols, such as OpenSSL and OpenSSH, receive several security patches per year, due to low-
level implementation bugs. Notoriously, in OpenSSL an error condition returned by a cryptographic function
was incorrectly interpreted by the function caller, making the application accept corrupted data;? such a fault
cannot be found if a formal model that has no relation with the implementation code is analyzed, because the

lhttp://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3555
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semantics of the model itself defines the (correct) interpretation of the results of cryptographic functions, and
the way the code handles return values is neglected.

Additionally, each programming language has its own mechanisms for accessing data and its own libraries
for performing basic operations. Of course, these details cannot be considered by language-agnostic abstract
models like the ones that are usually analyzed in a rigorous way, and may be responsible for program bugs that
affect security.

On the basis of such considerations, in recent years some researchers have started working towards methods
that reduce the gap between models and implementations, bringing formal security proofs closer to real protocol
implementations.

Focus

This survey focuses on research work aimed at automatically getting formal security proofs that apply to models
close to the source code of real protocol implementations, and presents the current state of the art.

The problem of whether security properties are preserved when the source code is compiled into executable
code is generally not considered by the work surveyed here. Compilers and run time environments are thus
considered part of the trusted computing base.

Moreover, the focus of the survey is on the implementation of protocol logic rather than on the implemen-
tation of cryptography or the implementation of the operating system, along with its basic communication
primitives and device drivers, which are considered here part of the trusted computing base as well. In particu-
lar, the research work that is surveyed aims at ensuring that some security properties hold when an application
program source code that implements the protocol logic is executed, under certain environmental assumptions,
including the one where the cryptographic libraries used by the code behave as expected.

In the papers surveyed here, the attacker model is such that the attacker can interact with the protocol only
through the network, as a separate computing entity. In some works, compromised actors are considered: in
these cases the protocol is proved secure for honest actors, even in the presence of compromised actors on which
the attacker has complete control. However, what is not covered in the surveyed work is an attacker model
where the attacker runs as a parallel process on the same machine as one of the honest actors, and can thus
access its memory or its trace of system calls. A formal account of such an attacker model is given for example
in [ ].

Preview

The naive approach to prove security properties directly on the source code, interpreted according to some
formal semantics, is not practical because of its complexity. A common practical approach, also used in other
fields, is to perform formal analysis on a simplified model of the program using state-of-the-art verifiers, and
prove that there is a formal link between the program and the abstract model on which the proof has been
derived. The formal link must be such that a useful conclusion about the program can be drawn. Such a
link is generally expressed by soundness theorems that informally sound like this: if the model is proved free
from certain attacks under some assumptions, then the program is also free from the same attacks under some
corresponding assumptions.

This is the kind of approach that this survey intends to present.

The following ingredients are essential in order to be able to apply such an approach: a formal abstract mod-
eling language and a programming language, both with formal semantics, a formal definition of the relationship
between the abstract model and the program, and a soundness proof. If any of them is missing, the formal
chain is not complete. Since the most commonly used programming languages lack standard formal semantics,
a modified approach has been explored by some researchers where, in place of the real protocol implementation
code, formal models that are quite close to it are used (e.g. code translations to similar languages having
formal semantics). In this way, even if the formal proof does not apply to the actual code, the gap between
the formally verified model and the actual code is small. This survey will also consider techniques taking this
approach. However, approaches that develop artificial languages from scratch with no relation with existing
programming languages are neglected here.

The link between model and program can be enforced in several ways. There seems to be no widely
acknowledged taxonomy on this. Nevertheless, two main approaches can be identified, namely automated model
extraction [ , , , | and automated code generation |

, ]. The typical workflows used by these methodologles are
1llustrated in Flgure 1 Some Varlatlons of these approaches will also be discussed here.
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Figure 1: Typical workflows used by a) model extraction; b) code generation.

With model extraction, the starting point is source code, possibly annotated with semantic information. An
automatic tool builds the abstract model out of the code. During this operation those code details that are not
relevant for proving the property of interest are discarded.

Code generation works in the opposite way: the starting point is an abstract model from which an automatic
tool builds source code. User-provided implementation choices drive the code generation process and provide
information that is missing in the abstract model.

Both approaches have pros and cons.

In principle, model extraction can work on legacy implementations or on implementations that use legacy
libraries, which is impossible for code generation. In practice, however, state-of-the-art model extraction ap-
proaches cannot deal with arbitrary legacy code, but introduce some requirements on how the code should be
written. For aspects that are not captured formally (e.g. timing or memory footprint), an experienced devel-
oper can carefully write the security critical code in a way to mitigate attacks based on information leakage,
while other parts of the code can be optimized for efficiency. Then, when using model extraction, it is possible
to start from code that is already optimized and carefully developed by experienced programmers. Another
advantage of model extraction over code generation is that in principle it allows hiding abstract models to the
user, who can see model extraction and verification tools as black boxes. This way the user is not required to
know abstract modeling languages. Moreover, editing and debugging tools for programming languages are more
advanced than corresponding tools for high-level models.

On the other hand, in principle code generation can avoid information leakage via side channels (like timing
and memory footprint) by construction, although state-of-the-art approaches normally do not take such aspects
into account in the code generation phase. Low-level programming errors, such as for example the ones that
may cause buffer overflows in C programs, can be avoided by construction as well. These errors may affect hand-
written code and may be the vector leading to security vulnerabilities. While it is true that code generation
requires knowledge of abstract modeling languages, at the same time it lets the user focus attention on simpler
artifacts (the models), leaving out the error-prone and time-consuming coding phase, according to the well
recognized model-driven software engineering practice.

It is important to note here that some of the classical refinement techniques used in model-driven software
engineering practice may not preserve some security properties, as it has been explained for example in | ]
For this reason, refinement techniques can be applied safely only if they have been proved to preserve the
intended security properties.

In addition to the pure model extraction and code generation approaches, slightly different ways are also
possible. For example, one is to manually write both program code and abstract model and then automatically
prove that (i) the abstract model fulfills certain properties and that (ii) the program code is a correct implemen-
tation of the verified model. This approach can be considered as a variation of the model extraction technique,
when the “source code annotation” phase becomes so extended, that almost all the model information has been
given by the user, by means of annotations.

In other cases, the user writes an intermediate, abstract version of the protocol, which is not refined enough
to run directly as an implementation, and is not yet a fully abstract model. On this intermediate version, on one
hand an abstract compiler is run to derive the fully abstract model, on which formal verification is performed.
On the other hand, a concrete compiler transforms the intermediate version into a concrete implementation of
the protocol. This approach stands in the middle between model extraction and code generation, leveraging
techniques from both approaches.

Besides classifying methods according to whether they adopt the model extraction or the code generation



approach, another possible classification could be based on the kind of abstract models they use: symbolic
versus computational models. As the work on automating proofs on computational models is quite recent,
not so much work has already been done on formally linking computational models to real code. Accordingly,
this survey is oriented towards symbolic models, and just mentions the first attempts made in the direction of
computational models | , , , ].

There is still another approach that has been investigated by some researchers as a means for ensuring or
verifying the correspondence between an abstract security protocol model and its implementation: runtime
verification | , , ]. According to this approach, the protocol model is formal and
proved correct. The protocol code instead, has no particular restrictions. At runtime, the behavior of the
protocol implementation is monitored and any deviation from the behavior described in the abstract model is
reported as a potential security problem. This survey does not drill into this approach because attention is
focused on getting provably secure code rather than on discovering attacks or non-conformance at runtime.

The rest of the survey is organized as follows. Section 2 gives some basic background and notation. Then,
section 3 presents the model extraction approach, with a survey of the most relevant research work falling in
that category. Section 4 presents recent work based on an approach that can be considered as a variation of
model extraction, namely security by typing. Section 5 follows presenting the code generation approach and
surveying the most relevant research work based on it. Section 6 presents some results about the non-relevance
of certain implementation details for proving some security properties. These results are presented separately,
because they equally apply to both model extraction, code generation and their variations. Finally, section 7
discusses the state of the art and points out some directions for future research. Section 8 concludes.

2 Background and Notation

This section introduces some notation and basic concepts that will be used throughout the survey.

2.1 Security Protocols and Their Vulnerabilities

A security protocol involves two or more communicating actors (also called principals). Each actor plays a
protocol role and is usually associated with an identity (e.g. the identity of a human user). Each protocol role
defines the rules that actors playing that role have to stick to. Communication among actors may occur on
communication channels of various kinds (a public network, dial-up lines, etc.), by message exchanges. Multiple
sessions of the protocol can run concurrently. In addition to honest actors, there may be dishonest actors or
attackers aiming to subvert the protocol, i.e. to prevent protocol sessions from reaching their security goals. Of
course, attackers are not constrained to follow the protocol rules.

Attackers can be broadly divided into two classes: passive attackers can just intercept, record and analyze
protocol messages; while active attackers can also interfere with the protocol, by altering, deleting, redirecting
and reordering protocol messages, as well as by forging and inserting new protocol messages into the conversa-
tion.

As shown in | 1, [ ] and [ ], it is also possible to categorize the attacks on security protocols
depending on the weaknesses they exploit. For completeness, a non exhaustive list of the most common types
of attacks follows.

Attacks based on cryptographic flaws are those that try to break ideal cryptographic properties by exploiting
weaknesses of the cryptographic algorithms. Analyzing an encrypted message to extrapolate the secret key is an
example of a cryptographic flaw attack. These attacks can be refined to take into account collateral information
leaked by a cryptographic primitive or by its particular usage within a security protocol. For example, the
measure of the power consumed or the time taken to encrypt the same message with different secret keys can
be used to infer some information on the secret keys themselves.

Other attacks exploit the absence of some operation that is crucial to guarantee a security property. This
kind of weakness falls within the so-called internal action flaw class and may be due to protocol design errors
or to implementation mistakes. An example of this type of vulnerability was found in the Three Pass Protocol
definition [ ], where the absence of a check on the message received in the third phase of the protocol
enables the attack.

Other similar attacks are based on the absence of proper message type checking, in which case the attacks are
known as type flaw attacks. In this kind of attack, the attacker sends a protocol actor a message of different type
than what expected, and the actor fails to detect the type mismatch, so misinterpreting the message contents
or behaving in an unexpected way. An example of this type of vulnerability can be found in the Otway-Rees
protocol | ].



When some actor is not able to distinguish between a fresh message and an old message that is being re-
used, then replay attacks (or, in other words, attacks exploiting freshness flaws) are possible. For example, the
Needham-Schroeder secret key protocol | ] has this type of vulnerability: the attacker can force server and
client to re-use an old secret key — that the attacker may already have compromised — in a fresh session.

Other attacks, like the one possible on the Needham-Schroeder public-key protocol, are called man-in-the-
middle attacks because the attacker stands in the middle between two honest actors and breaks the protocol
while relaying messages from one actor to the other.

Some of the vulnerabilities that are most difficult to spot are those related to possible bad interactions
among multiple sessions of the same protocol. For example, an attacker could be able to use a protocol actor
as an oracle to get some information that the attacker could not generate on its own. Then, this information
can be used by the attacker to forge new messages that get injected into another parallel protocol session. This
type of attack is known as oracle attack. An example of a protocol vulnerable to this type of attacks is again
the Three Pass Protocol | ]

As already remarked, the vulnerabilities exploited by attackers may depend on logical flaws or ambiguities
in the protocol specification itself or on divergences between the protocol specification and its implementation,
caused by programming errors.

The code that implements a protocol may also be affected by other more general errors (buffer overflows,
memory leakages, and so on) that may affect not only the security of the implemented protocol itself but also
the security of the system where the protocol is executed. For this reason, verifying that the implementation
code does not diverge significantly from the intended model and that it is not affected by critical bugs is as
important as verifying the security properties of the protocol specification.

2.2 Symbolic Protocol Models

Symbolic protocol models are also known as Dolev-Yao models, after the names of the researchers who introduced
them | ]

In these models, data are represented symbolically as terms of a free-term algebra, and cryptographic
functions are represented as operations in the same algebra. The ideal properties of real cryptographic functions
are captured by the algebraic properties of the symbolic operations.

For example, if symenc(z, k) symbolically represents the symmetric encryption of x with key k, the term
algebra is such that the only way to get back the plaintext = from the ciphertext symenc(zx, k) is by applying the
inverse function symdec, i.e. symdec(symenc(x, k), k) = z. This algebraic property captures the ideal property
of symmetric encryption whereby the plaintext can be recovered from the ciphertext only by decrypting it with
the corresponding encryption key.

Channels can be either public or private. Attackers are assumed to be able to access public channels but
not private channels. On public channels attackers have full control. They can eavesdrop, remove and inject
messages. Furthermore, attackers are assumed to be unable to guess secrets. The only way for an attacker
to learn some data is to derive them from the messages exchanged on public channels. This can be done by
combining data coming from different protocol sessions at different times. Similarly, an attacker can influence
the behavior of honest actors only by interfering with their communications. This means, for example, that it
is assumed that the attacker has no control on the scheduling of internal honest actors’ operations but it has
control on the scheduling of network operations (e.g. by delaying the delivery of a message).

2.3 Computational Protocol Models

Computational models of security protocols are mathematical models closer to reality. In such models data are
represented as bit strings and cryptographic primitives as probabilistic polynomial time algorithms working on

bit strings. These algorithms are assumed to fulfill some positive functional properties (e.g. symdec(symenc(zx, k), k)

x) and some negative security properties expressing what the adversary cannot do (e.g. distinguish between two
implementations of the encryption scheme). An attacker is represented by any polynomial time algorithm hav-
ing access to public communication channels but also to certain oracles that are introduced in order to model
some assumptions about extra information the attacker may have access to. A run of the protocol is finally
modeled as a probabilistic machine and a security property is defined to computationally hold if the probability
that it is violated by a polynomial time attacker in a run of the probabilistic machine is negligible in the size of
the protocol secret.



2.4 Protocol Implementation Models

Formal reasoning about a program (source code) is possible as long as formal semantics are associated to the
programming language in which the program is written. Even if the standard semantics of the most common
programming languages like C and Java is given only informally, some formalizations of the semantics of
(subsets of) these languages have been provided in literature (e.g. | ). Although such formalizations
are not standard, they typically express the most common way compilers and runtime environments interpret
these languages. Hence, they can be considered as a fairly accurate basis for formal reasoning about programs
written in these languages. Other languages, such as SML, already come with their formal semantics, which
can be directly used for formal verification.

In order to formally prove security properties of security protocol implementations, it is not enough to
formally model the behavior of the programs run by protocol actors. The behavior of the underlying communi-
cation infrastructure and the possible interactions of the executions of these programs with potential attackers
(via messages exchanged on public communication channels) have to be considered and formally modeled.

Let P be a program (or set of programs) written in a language with formal semantics, and let E be a
set of formal assumptions on the environment in which P is executed. For example, E may formally specify
how attackers behave, how communication works, or the fact that attackers have physical access to some
communication channels while they have no access to other communication channels. From P and E, an overall
closed formal model that represents the behavior of the whole system (protocol actors, attackers, and execution
and communication infrastructures) can be built. Let us denote M = M(P, E) an overall formal model built
from P and E. Security properties about M can be formulated as predicates using an appropriate logic. If ¢
is a formula representing a security property, M | ¢ means as usual that formula ¢ is true in M.

The same notation can be used for abstract descriptions of the protocol. For example, let P, be an abstract,
symbolic model of protocol roles, given in an abstract modeling language with formal semantics, such as the
applied pi-calculus | ], and E, be a set of formal assumptions on the environment in which the roles described
in P, are executed. M, = M(P,, E,) denotes the overall formal model, and abstract security properties can be
expressed using an appropriate logic.

For example, when derivatives of the pi-calculus such as the spi-calculus | ] or the applied pi-calculus
[ | are used to abstractly model protocol actors, the environmental assumptions that are normally made
are that an attacker may be any process described in the same language, running in parallel with protocol
actor processes, with a given initial knowledge (where, for example, some secrets are assumed to be initially not
known by the attacker). If P, is the process that cumulatively represents all honest protocol actors, the overall
system behavior is formally modeled by any process taking the form P,|Q, where @) is any process expressible
in the language and satisfying the assumptions made.

3 Automated Model Extraction

As already mentioned, and shown in Figure la, model extraction works on already existing implementation
(source) code. In some model extraction techniques, annotations can be added to the original code, in order to
drive the model extraction process or in order to specify the desired properties the code should have.

A model extractor builds an abstract model that is then analyzed by a formal prover.

According to the classical theory of abstractions [ ], model extraction can be formally described as
an abstraction mapping a(-) that maps a concrete protocol model M = M(P, E) onto a corresponding «(M)
abstract program model, and a concrete property ¢ onto a corresponding «(¢) abstract property.

The mapping is a sound abstraction with respect to property ¢ if

a(M) Fa(d) = Mo (1)

In practice, if the security property a(¢) has been proved on the abstract model and «(-) has been proved
sound with respect to ¢, then ¢ is proved on the concrete model.

3.1 Overview of Existing Approaches

Two major features can be considered when analyzing a model extraction approach for security protocols:
(i) existence of formal proof of soundness for the abstraction function «f(-); (ii) degree of coverage of source
programming language features, i.e. how significant is the subset of the source language that is actually handled
by the method.

Table 1 presents the main features of the main model extraction approaches that have been proposed so far.
The last but one column reports the security properties that can be verified on the abstract model, while the

7



Table 1: The main model extraction approaches.

References Programming  Abstract Model Model Security Formal
Language Language Kind Properties Soundness
[ ] F# RCF Symbolic and Trace properties Yes
computational

[ , ] F# applied pi-calculus Symbolic Secrecy, Authentication Yes

[ ) ]

[ ] F# CryptoVerif Computational  Secrecy, Authentication No

[ ] C ASPIER Symbolic Secrecy, Authentication Yes

[ , ] C Horn clauses Symbolic Secrecy, Information flow  Yes

[ , ] Java First-order logic (FOL)  Symbolic FOL properties No

[ ] Java LySa Symbolic Secrecy, Authentication No

last column indicates the existence of a formal soundness proof that relates the abstract model language and a
language with formal semantics close to the source programming language.

Although several takes have been tried on extracting abstract models from concrete implementations written
in different languages, only some of them provide formal soundness proofs. For example, in | ] no soundness
proof is provided, although a formal definition of the abstraction mapping is given.

Moreover, due to the complex nature of each programming language, none of the listed methods covers the
full syntax of a source programming language. Instead, proper subsets of the standard programming languages
F+#, C and Java have been defined in order to enable the extraction of formal models.

For example, model extractors that use C implementations, like | ] and | , |, are promising
because in principle they can be used to validate widely deployed existing protocol implementations, written
in this popular language. The drawback, however, is that it is very hard to correctly model such a low level
programming language, formally guaranteeing, at the same time, soundness between model and implementation.
This difficulty has brought the developers of model extraction approaches for this language to limit the features
of the C language admitted for model extraction.

Some limitations regard minor aspects of the code, and are mainly motivated by implementation limits:
as an example, in [ ] floating point operations are not modeled exactly (but they are approximated as
operations on integers) and bitwise operations are left as uninterpreted functions. In [ , ] instead,
explicit casts and negative array indexes are not supported, restricting verification to a“well-typed” code subset.

Besides these minor limitations, a major aspect of the C code that is left out is pointer aliasing and pointer
algebra. So, neither solution can provide a sound technique to model all pointer aspects, thus restricting their
application field or the significance of their results.

Using a higher-level programming language as a starting point, like Java or one of the several available
ML dialects, enables model extractors to admit a lager subset of the original code expressiveness. It is still
necessary, however, to limit the original syntax in order to automatically recognize particular operations, and
this is usually performed by forcing the user to link to a particular ad-hoc API for the cryptographic and
networking functionalities or to adopt related programming disciplines. On one hand this can be seen as a
facilitation, as these libraries usually greatly simplify code and development, but on the other hand this makes
existing legacy protocol implementations hard to verify with these approaches.

The usage of higher-level programming languages also brings a relevant advantage: in fact, the code is less
error prone, which also facilitates the formal verification task. For example, buffer overflow vulnerabilities are
a serious problem that can affect protocol implementations written in the C language. Model extractors for the
C language usually delegate the detection of this problem to other tools or remove the problem by forbidding
pointers, so further limiting language expressiveness. By using Java as source language, instead, model extractors
do not even have to care about this problem as the runtime execution machine automatically handles it. Of
course, when using higher level programming languages, the security results depend on the further assumption
that the language interpreters (e.g. the Java virtual machine) do not introduce vulnerabilities themselves.
Another advantage of higher level programming languages is that they sometimes present strict similarities to
the target formal languages. This is the case for F#, whose first-order subset is not so far from formal languages
derived from pi-calculus. This similarity greatly facilitates soundness proofs.

Only two of the existing model extraction approaches deal with computational models | , ]
In | ], extraction of computational models is cited as preliminary work, where an F# program is taken
to generate a corresponding CryptoVerif | ] model. However, soundness proofs are left for future work.

The other approach | ] works on a subset of the F# language. Here, the formal semantics of the source
language is expressed by means of the RCF calculus and security trace properties are expressed as first-order logic
formulas. The approach of this work is to deduce security trace properties defined in the computational model
from corresponding symbolic security properties, exploiting a computational soundness theorem. This theorem



states that, under some assumptions, security trace properties defined in the computational model are implied
by corresponding symbolic properties. As a consequence, a property can be proved in the computational model
by proving the corresponding symbolic property. However, the assumptions under which the computational
soundness implication has been proved are rather strict for the moment: the work in | | considers only
encryption and digital signatures as cryptographic primitives and assumes they are implemented by very strong
algorithms (IND-CCA2 encryption algorithms and strongly existentially non-forgeable signature algorithms),
which does not apply to most current real protocols. Moreover, in order to avoid the key cycle and key
commitment problems that are typically encountered in computational soundness proofs, security protocols
that can be verified by this approach are further restricted so that, for example, messages sent on public
channels never include secret keys.

The next subsections give a more detailed view of the most relevant model extraction approaches developed
to date. The work in [ | targets F# programs, and was the first method to appear, while the one
in [ | targets C code and is more recent.

3.2 From F# to pi-calculus

The approach described in [ ] applies to protocol implementation code written in F+#, a dialect of ML
targeting the .NET framework. A formal semantics for F# is available, which is used as a basis for formal
proofs.

The method described in | ] is not general enough to work on any code written in F#, but it applies
only to code adhering to a given subset of the possible syntax, called F. Essentially, in order to be acceptable for
the model extraction tool described in [ ], a F protocol implementation has to perform cryptographic
and communication operations exclusively by invoking functions through appropriate interfaces. Moreover, the
F syntax forbids high-order functions and some imperative features available in the F# semantics.

The definition of well-known interfaces used by the application code to access cryptographic and communi-
cation operations makes it possible to decouple the protocol application code P4 from the implementation of
cryptography and communication.

A key point is that the cryptographic operations defined in the interface operate on an abstract type called
bytes, and two distinct implementations of the cryptographic library are provided, one symbolic and one concrete.
The concrete implementation PC¢ implements bytes as regular byte arrays, and cryptographic operations as
regular cryptographic algorithms finally provided by the .NET framework. PC¢ is not verified, rather it is
assumed to correctly implement cryptography and networking: for this reason PC¢ does not need to comply
to F syntax, but it can exploit the full F# expressive power. The symbolic implementation PCg instead
implements bytes as algebraic expressions in the Dolev-Yao modeling style.

When P4 executes linked to PCg it abstractly simulates the protocol, while when the same code executes
linked to PC¢ it behaves as a regular implementation of the protocol.

If M = M(P, E) is the formal implementation model to which formal security proofs are targeted, P includes
P4 and PCgs. Note that PCg, like P4 is constrained to be F' code, so that the whole P is written in F. Note
also that P is quite close to the real implementation code, with which it shares the same application code.

For the environmental assumptions FE, it is assumed that the F protocol code P can be extended with
additional code Pp that implements the behavior of an opponent. Pp can be any F' code that uses exclusively
a particular predefined set of interfaces. These interfaces are appropriately crafted so as to let Py interact with
P, with a power matching the one of Dolev-Yao attackers.

Security properties about this model are formally expressed as predicates about event logs generated by the
protocol application code (this requires that appropriate event logging code be included in the protocol code
when the code is developed). A simple logic is introduced for this purpose. For example, an authentication
property can be expressed as a correspondence ev : Accept(z) = ev : Send(z), meaning that each execution
that logs event Accept(x) also previously logged the corresponding Send(x) event.

Finally, M = ¢ means that for any opponent program Pp written according to the above restrictions, all
the event logs generated by the program P Py satisfy ¢ (the program P Pg is the concatenation of P and Pp).

In order to formally verify a security property about a protocol implementation, a simpler, more abstract
protocol model expressed in a variant of the pi-calculus can be automatically extracted from the F code P using
a tool named fs2pv. The variant of the pi-calculus into which fs2pv converts the F input program is a subset
of the modeling language accepted by the automatic ProVerif | , ] tool. In addition, the opponent
concept is very similar to the typical environmental assumptions made by ProVerif in order to verify security
properties, and correspondence properties defined on event logs are directly mapped to similar properties in the
ProVerif model.

A formal proof of the soundness property for this abstraction step can be found in | ] along with



the formal syntax and semantics of F and of the target pi-calculus language, and the formal definition of the
abstraction function.

Practical experience with the combined use of fs2pv and ProVerif has shown that this approach can be applied
with success to automatically prove secrecy and authentication properties on real protocol implementations.
However, the outcome of the ProVerif tool changes in a rather unpredictable way when making small changes
in the source code, which requires careful tweaking of the implementation, before such results can be obtained.
Nevertheless, implementations of some standard Web Services Security protocols have been developed and
formally verified by translating them to pi-calculus and by verifying the output model with ProVerif | ,

!

3.3 ASPIER

The ASPIER model extraction and verification tool | ] operates on protocol implementation code written
in C and uses a model checker for verification. ASPTER works in a way similar to the previous approach, but
the starting language and the verification engine are different.

Since the C language has no standard formal semantics, C protocol programs are first translated into a C-like
language called the ASPIER concrete protocol language, which has formal semantics. This formalized version
of the protocol code is close to the original program and includes abstract models of cryptographic operations.
More precisely, the ASPIER concrete language divides variables into two disjoint classes: message variables and
numeric variables. While on numeric variables ASPIER operates just like the C language, message variables
can only be manipulated in ASPIER by specification state machines (SSM). The latter abstractly specify the
behavior of corresponding library functions that are called in the C code for message processing. For example,
if the C code calls a function symenc(z,k) in order to encrypt message x using key k, when the C code is
translated to the ASPTER language each call to this function is substituted with an instance of a corresponding
SSM which simply computes the result as an algebraic expression according to the Dolev-Yao modeling style.

The ASPIER language is a simplified version of C, where, for example, features such as floating-point
numbers, bitwise operators and some features of pointers are absent. This entails several restrictions on the C
code that can actually be fed to the tool.

The formal semantics of the ASPIER language expresses the meaning of a program by a Labeled Transition
System (LTS) where each state may include multiple components, corresponding to multiple concurrent threads,
each one executing a protocol role. The same LTS also tracks the evolution of the attacker’s knowledge, modeled
according to the Dolev-Yao style as a set of messages known by the attacker. Thus, the formal semantics of the
concrete ASPIER language incorporates environmental assumptions.

Events are defined onto an LTS execution trace as statements labeled by the identity of the thread that
executed the statement. Properties such as secrecy and authentication are formally expressed as predicates on
event traces.

Since a protocol coded in the ASPIER language results in an infinite-state complex LTS, a second translation
from this code to a more abstract model is performed, in order to facilitate formal verification. By using a model
checking verification technique, the approach is inherently limited to verification of a finite number of concurrent
sessions.

The abstract model to which the concrete ASPTER program is translated is built using predicate abstrac-
tion | ]. All numeric variables are substituted by predicates about their values. According to how such
predicates are built and to how many predicates are used, different levels of abstraction can be obtained.

The abstract model has a formal semantics defined in the same way as for the concrete ASPIER, language,
by LTSs defined over the same alphabet. This implies that properties can be defined in exactly the same way
on the concrete and abstract models. A soundness theorem proves that the abstract model LTS simulates the
concrete model LTS, thus finally proving that if M is the concrete model, a(M) is the corresponding abstract
model, and ¢ is a security or authenticity property expressed as a trace property, then (M) E ¢ = M = ¢.

The model checker used for proving properties on the abstract model (COPPER) is integrated with a CEGAR
(Counter Example Guided Abstraction Refinement) approach. This means that initially a quite abstract version
of the program is built, using few predicates. Since this is an over-approximation of program behavior, it is
possible that the model checker will find out false property violations. In this case, the model checker produces
a counterexample, which is an error trace. This trace is replayed on the concrete model, in order to discover
if it is a real error or not. If the error is false, the counterexample is used to automatically build a new
predicate that is added to the existing predicates, thus obtaining a more refined abstract model. The predicate
construction procedure guarantees that the refined model will not present the same counterexample. After
successive refinements, either the property will be proved, or a real counterexample will be found or the model
will grow so much to become intractable.
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Table 2: The main security-refined type checking approaches.

References  Programming Type Checking Model Security Formal
Language Architecture Kind Properties Soundness

[ ] Java Jif Symbolic  Information flow (Secrecy) No

[ ] F# RCF Symbolic  Authentication, Authorization, Yes

Information flow (Secrecy)

This method was applied on the OpenSSL implementation. From the whole protocol code, only the core
handshake implementation code was manually extracted, and some further manual editing was necessary before
the code could be fed to the model extraction tool. Secrecy and authenticity properties for a bounded number
of concurrent sessions could be finally proved on this implementation.

4 Security-Refined Types

Security-refined typing is a further means to ensure correctness of implementations. Essentially, an existing
implementation is enriched with refined types that formally express the security requirements of the application.
If the application type-checks against these security-refined types, then the application is proved to fulfill some
security properties.

This technique has similarities with the model extraction approach, because the user provides the protocol
implementation enriched with annotations. However, in this case annotations are not just a way to direct
model extraction. They could be considered as the formal abstract model itself, built by the security-refined
typing activity. Type checking implements the formal verification strategy, by ensuring conformance between
model and implementation. Furthermore, the techniques associated with security-refined type checking present
significant peculiarities that set them apart from the model extraction approaches that were presented in the
previous section. For this reason they are treated separately. For example, when using security-refined type
checking each function can be type-checked in isolation, making verification modular. Also, the way security
properties are expressed is tightly coupled with the security-refined types paradigm.

Two main works addressed correctness of security protocol implementations by means of refined types | ,

]. They are detailed in the next sections, and summarized for reference in table 2.

4.1 Jif Types for Java

In | |, the Jif (Java Information Flow) framework is exploited to ensure an information flow property (which
ultimately implies a kind of secrecy) on a multi-player on-line poker protocol that does not require a trusted
third party (TTP).

The Jif framework has primarily been conceived to express and verify by typing standard information flow
properties on Java code. The work in | | represents the first documented experiment of applying security-
refined types to a real security protocol implementation.

The work consists of three main steps: (i) Java application development as a monolithic application em-
bedding all protocol actors; (ii) application tweaking so that it fits into the Jif framework; (iii) Jif application
transformation in order to split protocol actors.

In the first step, the on-line poker protocol is developed as a standard Java application. Each actor is indeed
implemented as an instance of a “Player” class, which in fact makes each actor’s code already neatly split from
each other. However, all actors run together as part of the same application.

In the second step, the code is refactored up to the point where Jif types can be assigned to the code. This
refactoring step required significant effort, and was far from linear, calling for several refactoring iterations.
Unfortunately, these non-trivial refactoring iterations are not formally proved to preserve the semantics of the
original Java application. Indeed, some refactoring implies much finer handling of Java run-time exceptions,
since an uncaught exception could in fact leak some information. Thus, this step breaks the formal link between
the original application and the verified one, although a good confidence about secrecy preservation is still
achieved informally.

In the third step, the code is finally modified to make each protocol actor run on a different process, like a
real distributed application.

On one hand, the number of modifications required by step (ii) suggests that the Jif framework is probably
not able, in the current form, to handle arbitrary already developed Java applications. On the other hand,
the refactoring made on the original code gives an insight on which programming patterns are most effective
in tracing information flow and improving understandability of a program, and can be used as a reference in
future application development.
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The case study in | ] mainly focused on proving that the cards held by a player remain secret until the
end of a game. This can be modeled as an information flow property, where a policy enforces that no one except
the holder of the cards can read their value.

In Jif, policies are expressed through labeled Java types. A Jif labeled type takes the form of

type{Owner — Readers}

where type is a standard Java type, and {Owner — Readers} is the label expressing the policy for that variable,
which respectively names the owner of the data and the allowed readers. For example

boolean{Alice — Bob}

is a valid Jif type where Alice owns values of that type and Alice and Bob can read them.

As hinted above, if a Jif-labeled program type checks, it means that the policies specified in the program
are enforced. In the online poker protocol example, it means that the cards remain secret.

In | | cryptography is treated symbolically, by giving axiomatic annotations to the Java methods imple-
menting the cryptographic algorithms. As in other symbolic approaches that abstract computational hardness
problems of cryptography away, soundness is proved assuming the cryptographic implementations behave ac-
cording to a symbolic algebra.

4.2 FT7 Types for F#

In | |, a refinement type framework named F7 is developed and applied to express and verify security
properties of security protocol implementations written in F#. Essentially, while a standard F# program
is composed of interfaces declaring input and output types of functions and their implementations, the F7
framework adds a layer of more refined interfaces, where pre- and post-conditions of such functions can be more
finely specified, in the form of refined types.

A refinement type is a type of the form x : T{C} where x is a value of type T, such that the formula C
holds, where x is bound in C. For example, given the type int of all the integers, it is possible to define the
refinement-type of the natural numbers by « : int{z > 0}.

A function type T'1 — T2 can be refined as z : T1{C1} — y : T2{C2}, where z is bound in C1 and C2, and
y is bound in C2. Type checking a function of this type means assuming that the conjunction of the formulas of
the input values hold, and proving that all possible return values of that function satisfy the formula refining the
output type. That is, a refined type checking function will always satisfy its post-conditions, provided the pre-
conditions were true. For example, the inc : int — int function that returns the given argument incremented
by one can be refined to

inc:x:int — ¥’ : int{Suc(¥’,x)}

where the predicate Suc(a,b) indicates that a is the logical successor of b. The implementation of the function
will refinement-type check if the returned value is in fact the successor of the input value, and refinement-type
checking will fail otherwise (while the function may still successfully type check with non-refined types).

As illustrated by the example above, since in a refined function type a variable is bound in all subsequent
appearing formulas, it becomes possible to express the relation existing between input and output of a function,
or the constraints that must hold among the input parameters of a function.

By defining security-related predicates, and by using refinement types in a particular pattern, it is possible to
express some security properties of a program, such as secrecy and authentication. By refinement type checking
its functions, it is possible to prove that such security properties hold in the implementation.

Refinement type checking as described in | ] uses type inference algorithms to carry formulas from one
statement to the next one, mapping F# code into the RCF concurrent A-calculus language. The F7 type checker
can handle a significant portion of the F# language, not imposing any fundamental limitation to the code that
can be analyzed. However, experience showed that the refined type inference algorithm works best with specific
programming patterns, failing in other cases: although this limitation does not reduce the expressiveness of
the implementation, it narrows the number of existing applications that can be analyzed without modification.
Moreover, F# is not a very popular language among common developers, which makes it more challenging to
find widely deployed applications to validate and test scalability of the approach.

The work in | ], mainly focuses on the classical secrecy and authentication properties in the Dolev-Yao
symbolic model.

Secrecy is expressed by using an information-flow approach, although not expressed in classical information-
flow terms. Essentially, if a special Pub(-) predicate can be proved to hold on some data, then these data
are “public” (low confidentiality), and thus they can be made available to the attacker through the network;
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otherwise, they are “private” (high confidentiality). Hence, like in classical information-flow, the sets of low and
high confidentiality data are disjoint.

Classification of data is always possible, because no special predicate has to be proved for the data to be
classified. Conversely, encryption functions fulfill the role of de-classifying data: their input (plaintext) is any
data (crucially including private data for which Pub(-) cannot be proved); and their output (ciphertext) is some
data for which no relation with the input is expressed and on which the Pub(-) predicate holds. Leveraging the
modularity of the assume-guarantee approach, the encryption functions are not refinement type checked, rather
they are assumed to behave as specified, and their refined interfaces express the Dolev-Yao model.

Since interaction of the application with the attacker only happens by means of communication channels,
the API implementing such channels is carefully refined. In particular, functions sending data over the network
will only accept public data, so that only data for which an explicit proof of low confidentiality exists will be
given to the attacker; conversely, the Pub(-) predicate will hold for any data returned by functions reading data
from the network.

Authentication can be obtained by defining authentication related predicates and using them with a partic-
ular pattern, which in fact makes them equivalent to correspondence events often used to express authentication
with agreement on data.

In [ ], it is assumed that authentication can be achieved through MAC (Message Authentication
Code) functions. In particular, encryption, although expressed in a Dolev-Yao style and thus being injective,
does not give any authentication assurance, to take into account malleable encryption schemes.

Essentially, the pattern used for authentication consists of defining a special predicate, M ACSays, such
that it can be considered an event. Basically, this predicate must be carefully defined to hold if and only if the
application is in a “valid” state where data can be transmitted, and correct data have been computed. The
MACing functions only accept data for which the M ACSays predicate can be proved to hold. Conversely, if
MAC verification succeeds, then the M AC Says predicate holds for the MACed data. Finally, by the definition of
MACSays, it follows that if MAC verification succeeds, then authentic data have been received (or the MACing
key was compromised, in case compromised actors are considered). Like for secrecy, the implementation of the
MACing and MAC verification functions is trusted, and the interfaces of these functions express the Dolev-Yao
model.

A soundness theorem proves that if a security protocol implementation that uses the network and cryp-
tographic libraries as annotated above type checks, then it is safe for secrecy and authentication against a
Dolev-Yao attacker. Here, instead of directly referring to the abstract and concrete models o(M) and M, the
proof focuses on the application and the opponent types. The attacker is given a special Un type, which is a
super- and a sub-type of any other type, so that it accounts for all the behaviors typical of a Doley-Yao attacker.

Since refinement types can be naturally recursive, they offer an effective way to model security protocol
features that are inherently recursive and open ended such as certificate chain checking, or concatenated protocol
sessions, where secrets agreed in a previous session are used in a subsequent session as a basis to agree new
session secrets | , , ]. These protocol features cannot usually be verified by model
checking, and even state-of-the-art automatic theorem provers such as ProVerif often fail in proving this kind
of properties.

5 Automated Code Generation

Code generation fits the model-driven approach for software development, where a high-level model is first
developed and analyzed (e.g. in order to prove that it fulfills some desired properties, such as the security
properties of a security protocol). When good confidence on the correctness of the high-level model has been
achieved, the model is refined into a concrete implementation, written in a programming language. This second
step can be automated, using automatic code generation tools. Since the high-level model does not include all
implementation details, further details have to be provided by the user during code generation.

The relationship that should exist between the abstract model and the concrete implementation can be
informally stated as “The generated implementation has the same security properties that were proved for the
starting abstract model”. It can be formalized in the same way as already shown for model extraction.

More precisely, code generation can be formally described as a refinement mapping p(-) that maps an abstract
program model M, with some associated implementation choices C' onto a corresponding p(M,,C) concrete
program model, and an abstract property ¢, onto a corresponding concrete property p(¢,). We say that p(+)
is a sound refinement with respect to an abstract property ¢, if, for all implementation choices C' that satisfy
some implementability constraints

My | ¢a = p(Ma,C) FE p(da)- (2)
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Table 3: The main code generation approaches.

References Abstract Model Programming Model Security Formal Interop
Language Language Kind Properties Soundness

[ | Custom notation  C, Java, WTgX  Computational ZK-PoK Yes (PoK only) N/A

[ ]

[ ] Custom notation F#, Ocaml Symbolic Secrecy, Authentication  Yes N/A

[ ] Casper C# Symbolic Secrecy, Authentication No Yes

[ ] ASM Java Card Symbolic Custom Yes Yes

[ ] Casper + JML Java Symbolic Secrecy, Authentication  No Yes

[ ] XML C Symbolic Secrecy, Authentication No No

[ ] Custom notation  C++ Computational ZK-PoK No N/A

[ ] Spi calculus Java Symbolic Secrecy, Authentication  Yes Yes

[ ] Custom notation  Java Symbolic Secrecy, Authentication  Yes N/A

[ ] Spi calculus Java Symbolic Secrecy, Authentication No No

[ ] Proverif input Java Symbolic Secrecy, Authentication No Yes

[ ] LySa Java Symbolic Secrecy, Authentication No No

In practice, if a security property ¢, has been proved on the abstract model and p(-) has been proved sound
with respect to ¢, then p(¢,) is proved on the concrete model.

5.1 Overview of Existing Approaches

Two major features can be considered when analyzing a code generation approach for security protocols: (i)
the existence of a formal proof of soundness for the code generation function p(-); (ii) the extent to which
implementation choices (such as for example protocol message formats) can be freely specified by the user, so
that the generated implementation can interoperate with third party existing implementations.

In the literature, several automated code generation approaches for security protocols have been proposed.
Table 3 summarizes the main features of the main code generation approaches that have been proposed so
far. Many of them do not address all the considered features | , , , , , ]
For example, in | ] the focus is to provide a fast C source code security protocol generator, so that
mobile devices can replace or update current implementations on-the-fly. In that work the novelty and main
contribution stands in the realization of a fast protocol generator. However, formal soundness of the generated
implementations is not considered, and although the user can loosely specify the intended security properties
on the starting model, no means are provided to verify them.

As another example, in | ] a formal CSP model of a security protocol used by smart cards is derived
and refined from its informal description, and then a Java implementation of the refined model is manually
derived. Finally, the source code is manually enriched with JML | | annotations to check whether the
implementation satisfies its specification. Although all the steps are performed manually, the work in | ]
documents a general way to refine formal models of security protocols into running implementations. Unfor-
tunately, this approach does not come with a formal proof ensuring that the starting CSP model matches the
JML annotations on which some formal analysis is finally done.

The code generation approach described in | | does not provide a formal soundness proof, but it is
originally combined with a corresponding model extraction tool [ | already mentioned in section 3. The
code generation tool, named Hajyle, generates a Java implementation from a protocol model expressed in a
process algebra named LySa. The Java code can then be modified by the programmer and converted back to a
LySa model, by the model extraction tool named Elyjah, to be formally verified again.

AGVI | ] is a framework for the design and implementation of custom security protocols starting from
their security requirements. It was the first documented approach of security protocol synthesis and verification.
Given some security requirements, AVGI generates a family of custom security protocols that fulfill those security
requirements. Then the user can generate implementations of a chosen custom protocol. The framework lacks
a formal proof showing that the generated code preserves all the security properties that hold in the protocol
model. Clearly, with a protocol synthesis approach, interoperability of the generated implementation cannot
be discussed, because each synthesized protocol is custom, and so there can be no existing implementation to
interoperate with.

Recently, protocol synthesis has become an emerging trend with Zero-Knowledge Proof-of-Knowledge (ZK-
PoK) protocols. A ZK-PoK protocol allows a verifier to be convinced by a prover that a fact is true (PoK),
without getting any further knowledge except the fact itself (ZK). For example, users might want to get au-
thorization to access a resource from a server, without disclosing their identities to the server. Two main
approaches have been proposed, CACE | , | and ZKPDL | ]. Despite some differences
in implementations, essentially both approaches start from a ZK-PoK specific language, in which the intended
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security properties are specified. A compiler then transforms the given specification into a ¥-protocol, which is
in turn translated into implementation code. A fine comparison of their implementation differences can be found
in | ]. In [ ] a certifying compiler is presented, which means that the generated code comes with
a certificate of correctness that can be proved in the Isabelle/HOL interactive theorem prover. Currently, the
soundness proofs only cover the PoK property for the generated implementation, while the ZK formal proof is
left for future work. Being protocol synthesis approaches, neither CACE nor ZKPDL can be evaluated about the
interoperability of the generated implementation, as discussed above. Indeed, none of them takes the problem
of handling a custom marshaling layer into account.

In | ], a similar protocol synthesis approach is developed to address multi-party session protocols.
A custom notation is defined to describe the graph of protocol actors and the protocol control flow, expressed as a
sequence of asynchronous messages exchanged among the protocol participants. From this graph representation,
a custom compiler infers the cryptographic functionalities needed to achieve the committed security requirements
and it generates an API in F# with a full protocol implementation. The generated implementation is also
enriched with refinement types. In this way, assuming the refinement types added by the compiler correctly
express the intended security properties, a refinement type checker can be used to check whether the generated
code satisfies the required security properties.

The work in | | starts from an abstract state machine (ASM) model of the Mondex [Inc] protocol
and generates an interoperable Java Card implementation by refinement. The generated implementation is
proved to be correct by showing that it is a sound refinement of the original ASM, where the custom Mondex
security requirements are proved to hold. By sound refinement, it is intended that any possible behavior of the
Java Card implementation can be mapped to a behavior of the verified ASM. Technically, the sound refinement
is proved by simulating symbolic Java execution steps in a calculus expressed in the KIV interactive theorem
prover | ]. The main drawbacks of the approach lay in the fact that most of the proofs require manual
interaction, and thus a high level of expertise. Moreover, the methodology and results are not totally general,
rather specifically tailored to the analyzed Mondex case, which makes the results not so reusable in other works.

The work in | ] presents a code generation framework, called Spi2Java, which starts from spi calculus
specifications of security protocols, and semi-automatically generates Java implementations of the protocol
roles. The framework comes with a formal proof of soundness related to symbolic models | , ], and
the user is allowed to provide enough refinement details, so as to enable the generation of an implementation
that interoperates with third party existing implementations | ]. The framework has been used mainly to
implement classical client-server security protocols, where secrecy and authentication are proved under a Dolev-
Yao attacker. Among the limitations of this approach it is worth to point out that only the protocol core logic is
automatically generated, while the functions for serialization and de-serialization have to be written manually.
Hence, soundness is ensured under the assumption that serialization functions have been implemented correctly.
Another limitation is that the language for specifying the input abstract model is restricted to a version of the
spi-calculus where each protocol role is a sequential program. This does not prevent to have multiple concurrent
sessions of the protocol, but each role in each session is restricted to be a sequential program. It is also important
to note that the spi-calculus comes with a fixed number of cryptographic primitives. Although this number
could be extended in principle, the current implementation can only be used for those protocols that use the
provided primitives.

Some of these limitations, i.e. the restriction to sequential code and the fixed set of built-in cryptographic
primitives, have been overtaken by Expi2Java | , ]. Expi2Java extends the Spi2Java approach by
modeling cryptographic operations by constructors and destructors, using the ProVerif input language | ]
This facilitates the introduction of new cryptographic primitives. The transformation from the extended formal
language to Java has been formalized with the language of the Coq | ] proof assistant, which enables
the development of machine-checked proofs. However, up to now a formal soundness proof has not yet been
developed for Expi2Java; at the moment, a simpler theorem about well-formedness of the generated code has
been proved | , ]

5.2 Formally Linking Abstract Models to Generated Implementation Code: The
Spi2Java Example

This section describes in more details how the formal link between an abstract protocol model and the corre-
sponding implementation code written in a programming language can be defined and proved sound. To this
extent, the Spi2Java framework is taken as a representative example, because it comes with a formal proof of
soundness, and its implied methodology is general enough, and not tailored to a specific protocol.

Taking into account that many classical security properties, including secrecy and authentication, are safety
properties that can be defined as predicates on single traces (or protocol executions), the soundness property
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expressed by (2) is a corollary of a trace refinement relation between the implementation code and the abstract
model. A trace refinement relation means that each protocol execution trace that can be executed by the
concrete program, can also be executed by the abstract model. So, if the concrete program can execute a trace
that represents an attack (i.e. that leads to the violation of a security property), the same trace can also be
executed in the abstract model, and thus the potential security violation can be detected during the formal
analysis of the abstract model.

The approach taken in [ ] for proving the soundness of the spi calculus to Java transformation is to
prove that a weak simulation relation exists between the generated Java code and the corresponding spi calculus
model. Briefly, a weak simulation relation binds the transitions between external states of an abstract process
to the transitions between external states of a concrete process, but each process is still allowed to perform any
internal step in between two external states. This form of relation is needed, because a Java program will in
general compute many internal steps before exhibiting the next external state that will match a corresponding
spi calculus state. More details about the weak refinement referred to here can be found in | ]. A weak
simulation relation implies trace refinement.

The refinement mapping p transforms a spi calculus model into a Java program, i.e. p : Spi — Java, where
Spi is the set of spi calculus models that can be translated into Java®, and Java is the set of the generated Java
programs. The implementation choices do not occur explicitly as arguments of p. Instead, they are implicit
parameters of p.

An LTS is defined for spi calculus, and one for Java, so that the two systems can be formally related by
matching traces. The Java LTS is built according to a formal semantics that has been defined for a subset of
the language in [ ]. This subset includes all the language features used by the generated code, so that the
choice of this restricted language semantics is not restrictive for this application.

A generic spi calculus state can be written as Po where P is a spi calculus process expression and o is a
(possibly empty) substitution that binds variables in P. Using this representation for processes, a generic state
transition can be written as

Pio A Ploo’

where L is the transition label, which indicates an input of data on a channel or the output of data on a channel
or an internal step 7.

In the LTS for the spi calculus, all states are defined as external.

An LTS for a sequential subset of Java which is enough to implement spi calculus processes within the
Spi2Java framework has been defined in | ]. In order to relate the Java behavior to the spi calculus behavior,
the Java LTS uses the same abstract labels used for the spi calculus LTS. Let j be the Java code that is going
to be executed, JavaVar the set of identifiers that can be used as variables in Java programs, and JavaObj
the set of object identifiers. Then a generic state (j,Val, Res) is defined by the code j that is going to
be executed, plus a partial function Val : JavaObj — SpiTerm, mapping each Java object that has been
created by previously executed code to the spi calculus term the object is implementing, and a partial function
Res : JavaVar — JavaObj mapping each Java variable in the scope of j to the referenced Java object. For
example, Val(o) = {M}n means that the Java object o implements the {M}n spi calculus term; Res(var) = o
means that the Java variable var references the object o. The intended invariant that should hold is

Val(Res(J(M))) = Mo

where o is the variable substitution in the corresponding spi calculus process and J is a bijection that gives
the name of the Java variable for term M, by mangling it. That is, the object referenced by the Java variable
J(M) must implement the Mo term, which is the run-time value of the M spi calculus term. A Java state
(j,Val, Res) is defined as external iff j = p(P) for some spi calculus process P. The transitions of the form

7,Val, Res A i, Val', Res'

take from one generic state to another, following an abstract operational semantics for the Java language, as
given in [ ]
The simulation relation .5, that relates external spi calculus states to external Java states, is formally defined
as
S(Pao, (j,Val, Res)) & J=p(P) Nojgypy =ValoReso Jyypy N o2 ValoResolJ

Informally, a spi calculus state Po and a Java state (j, Val, Res) are S-related, iff the Java state is external,
and the invariant Mo = Val(Res(J(M))) holds. Note that it is required that the domain of Val o Res o J

30nly a strict subset of all possible spi calculus models can be translated into Java by the Spi2Java framework, namely those
spi calculus models that can be translated into a type-safe Java program.
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contains all the free variables in P (denoted by fv(P)); however some compound terms may not (yet) be stored
in Java memory: it is enough to require that the invariant holds for the already built terms, which are stored
in Java memory.

The main soundness theorem in | ] relies on the existence of a trusted Java library, called SpiWrapper,
that implements the behavior of spi calculus terms and processes in Java. For example, it is assumed that a
spi calculus pair is implemented by a Java class “Pair” that offers the getRight() and getLeft() methods,
so that the pair splitting process can be implemented; or a spi calculus channel is implemented by a Java
“Channel” class, offering the send() and receive() methods to implement the input and output spi calculus
processes. In | ], a full formal definition of the intended semantics of the SpiWrapper library is given. As
shown in | |, the correctness of the classes implementing the SpiWrapper library can be proved using the
same Java semantics used to prove the simulation relation. Of course, the proof assumes that the underlying
Java libraries used by the SpiWrapper layer for communication and for cryptography behave as expected.

The main soundness theorem (code generation soundness) is finally stated as follows: If the SpiWrapper
library behaves as formally specified, then, for any external state (j, Val, Res) of the generated Java program
and for any spi calculus process state Po,

S(Po,(j,Val,Res)) A j,Val,Res A 3", Val', Res’ = Po 5 Plo’ A S(P'o’,(j',Val', Res"))

i.e. if the simulation relation S holds between the spi calculus process state and the Java program state, and
if the Java program can evolve into a new external state, then the spi calculus process can evolve into a new
external state too, and the new external states are still related by the simulation relation S.

In other words, every step that can be done by a generated Java program, can also be done in the starting
spi calculus model. As a corollary, it follows that every trace (sequence of steps) that the Java program can
execute, is a valid trace in the original spi calculus model, finally implying that every (trace) security property
that is proved on the spi calculus model, holds in the generated Java program too.

6 Safe Abstraction of Data Formatting Functions

When dealing with techniques that formally link program code to corresponding abstract protocol models, a
common issue is knowing if certain code aspects or parts are relevant or not for proving a given security property.
If it is possible to prove that a given code aspect is not relevant for some security properties, that aspect can
be safely abstracted away during model extraction. Similarly, it can be safely added during code generation,
without compromising the validity of proofs related to the abstract model. In both cases, the final effect is a
simplification of the models to be formally analyzed, thus facilitating formal automated verification.

A common intuition is that data formatting functions should not be essential to the security of the protocol,
and thus it might appear natural to try to abstract them away during verification, to get smaller, and thus
easier to verify and more understandable models.

However, arbitrary implementations of such data formatting functions can still break security properties,
in very trivial ways. For example, an incorrect implementation of a marshaling function could unwillingly leak
secret data, or the function that encodes some data before applying a hash function to them could erroneously
transform part of the data (e.g. a nonce) into a constant, thus enabling replay attacks. These errors do not
necessarily infringe interoperability, so they may be difficult to discover by testing.

These considerations also apply to the code generation approach, when the user provides custom implemen-
tations of such data formatting functions.

Hence, some researchers have focused on formally finding and proving sufficient conditions under which data
formatting functions cannot break security properties, so that they can be safely abstracted when analyzing the
formal models | , , ].

The most comprehensive results are reported in [ ], where data formatting functions are partitioned into
two categories. (i) “marshaling” functions, that are functions formatting data in packets to be sent over the
network, e.g. by adding a header with content type, or packet length. And (ii) “encoding” functions, that are
functions formatting data before they are processed by cryptographic operations such as encryption or hashing,
e.g. functions that add a padding, or concatenate several items to be processed.

This partition is motivated by a difference in criticality for marshaling and encoding functions. Intuitively,
less constraints are required on marshaling functions, because their input data are already protected by cryp-
tography and would be ready to be transmitted over the network anyway; the data are simply in a format which
is unsuitable for the chosen protocol. Conversely, encoding functions operate on unprotected data, so much
stricter constraints on their implementation correctness are expected to be required. Besides this intuition,
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Figure 2: The 2-steps simplification procedure leading from a refined model including marshaling functions to
an abstract one.

formally finding the exact definition of these constraints is a useful step for the formally based approaches
considered in this survey.

In | ], sufficient conditions for both marshaling and encoding functions abstraction are found with a
2-steps simplification procedure. For example, the 2-steps procedure for marshaling functions is depicted in
figure 2. The most abstract model at the top of the figure is the one where marshaling functions are completely
neglected, only the protocol logic P, of each actor is represented. In a code generation approach, this model
would be the one on which formal verification is done, and from which code generation is started. Conversely,
the most refined model at the bottom explicitly includes the marshaling functions M,,, and each protocol logic
P! is a refined version of its corresponding abstract P,, where marshaling parameters and interaction with the
marshaling functions are taken into account.

The first simplification step soundly removes the model of the marshaling functions. This step is safe for any
security property that can be expressed as a safety property on protocol traces, like for instance weak secrecy
and authentication.

In the second step, the fault-preserving simplifying transformations (FPST) originally described in [ ]
are used to bring each refined P, back to its abstract version P,. A FPST is a function that transforms a refined
model into a more abstract one, preserving secrecy and authentication attacks. That is, if the abstract model
is safe with respect to secrecy and authentication, then the refined model is implied to be safe too.

The final result is that in order to abstract marshaling functions away, no assumptions are requested about
injectivity, nor about implementation correctness; instead, it is only required that the implementation of en-
coding and decoding functions cannot access any application data, except the ones that are given as input by
the application. This condition can be checked by standard static information-flow analysis techniques. The
consequence of this result is that, if such information flow properties are satisfied on implementation code, then
even erroneous specifications or implementations of encoding schemes cannot be more harmful than a Dolev-Yao
intruder is.

For what concerns instead abstracting away encoding functions applied to key material or to data on which
cryptographic operations are applied, much stricter constraints are required. When verifying secrecy, it is
required that the implementation of the encoding and decoding functions is correct w.r.t. their specification.
If instead authentication is being verified, an additional constraint requires that all actors agree on the same
encoding parameters too.

7 Discussion and Future Directions

As can be seen in the reference tables proposed in this work, most state-of-the-art research providing automated
formal verification of security protocol implementations focuses on symbolic models. Certainly, automatic
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verification in the symbolic domain is a more mature research field, compared to automatic verification in
the computational domain, which explains why most of the surveyed approaches deal with symbolic models.
Considering computational models would bring advantages, because the formal proofs would rely on more
realistic assumptions, at the cost of increased complexity. Nevertheless, before considering the possible research
shift towards computational models, it is worth pointing out the main current limitations that are still present
at the symbolic level.

The recent purely logical flaw discovered on the renegotiation feature of the TLS protocol could have been
fully captured by state-of-the-art symbolic verification techniques. Notoriously, this attack came out after several
papers claimed verification of “the TLS” protocol | , , , , , ], even down
to the implementation level | , , ]. Basically, the flaw went undiscovered for years because it
exploits the standard renegotiation feature of TLS, which has been widely neglected during formal verifications
of the protocol. This happened because usually the verified models represented a simplified version of the
protocol, in order to cope with the verification complexity. As a result, advanced features such as renegotiation
were neglected. Even verified implementations did not support renegotiation, thereby allowing the flaw to go
undetected.

In practice, this experience shows how most of the approaches presenting case studies focus on soundness
of an incomplete version of the protocol, leaving room for logical attacks that lie in the unverified parts of it.
Thus, a significant challenge for the symbolic verification of protocol implementations, is to be able to scale up
to real, fully-compliant implementations. In order to achieve these results, much work has to be done on the
composability and scalability of formal methods and implementation verification techniques.

On the computational side, sound automatic verification of security protocol models has made significant
progress recently. For example, an automatic tool called CryptoVerif has been recently developed | 1,
which takes a spi calculus-like description of a security protocol, and can automatically prove strong secrecy
and authentication properties in the computational model.

It is expected that as computational verification techniques are further refined on the models, more ap-
proaches will be developed to link implementations to these computational models. In fact, preliminary results
in this respect have already been published both in the model extraction and in the code generation domains.
For example, the fs2cv tool | ] extracts CryptoVerif models from F# protocol implementations, to get
a computational proof of correctness. Conversely, the approach described in | | starts from verified Cryp-
toVerif models to automatically generate ML implementations. These results are here considered as preliminary,
because a formal link between the implementation code and the model is currently left as future work.

More ongoing work exists and is being developed in this field. For example, a computational soundness
proof for refinement types in F# was developed | |, and a similar approach applied to the Java language
exists | |. However, none of these approaches has been applied in large case studies yet.

It is worth mentioning that there are mainly two ways that this shift towards computational models can
be approached. One way is to set the proof directly in the computational model, by taking into account
the computational complexity of cryptographic problems, and trying to use well-established techniques in the
computational cryptography domain, like game theory. The CryptoVerif tool is an example of a tool built in
such a way, and so are the code generation and model extraction approaches based on it. The other way is to
prove a soundness refinement theorem between a symbolic model and its computationally refined counterpart,
so that formal verification of a security property on the symbolic model implies that a corresponding property
holds on the computational model | ]

In the model extraction approach, a foreseeable research trend could be moving from functional languages like
ML or F#, where formal semantics and type safety are easily achieved, down to imperative and object oriented
languages such as C or Java, where the model extraction techniques have to be refined, in order to abstract away
lower level problems such as memory and type safety, without compromising the security proofs. Preliminary
attempts in this direction are shown in | , , , ]. In [ ], C implementations
of security protocols are annotated with semantic information, so that a general purpose C verifier can prove
security properties in the Dolev-Yao model. Currently, a custom cryptographic library has to be used, and only
small fragments of ad-hoc written code can be verified. The work in | ] builds on | ] by adding a
layered refinement technique: abstract protocol narrations are first linked to binary data formats and finally
to the C functions implementing the protocol. This technique helps making the approach more scalable, so
that larger chunks of ad-hoc written code can be verified. In | , ], annotated implementations
in C are symbolically executed in order to obtain a ProVerif | ] or a CryptoVerif | ] model that
can be verified. Both translations from C to ProVerif and to CryptoVerif are proved sound, meaning that all
attacks present in the C program are preserved into the extracted models. This technique is just a first step in
the direction of automatically analyzing real C implementations of security protocols. The main limitation of
the current approach is that it can only handle protocols that have a single execution path, without branches
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and loops. Of course, this applies only to ad-hoc written code or to finite variants of normally unbounded
protocols (where loops are unrolled to a finite number of iterations). In general, state-of-the-art approaches
targeting common implementation languages are not yet powerful enough to reliably verify widely deployed
implementations of security protocols such as OpenSSL or OpenSSH without making any modification to their
source code, and at the same time taking into account all protocol features, including re-keying or error message
handling.

Moreover, in the model extraction approach the starting point is the source code, however, the verification
results refer to the extracted model. In particular, when a proof of correctness fails, the verification tool gives
feedback on the model. In order for this feedback to be useful, it must be ported back to the source code
from which the model was extracted, so that the source code can be patched, and verification is run again on
the updated model. Research work addressing this engineering issue will make these tools more user friendly,
potentially broadening the scope and adoption of these methodologies.

On the code generation side, the steep learning curve to handle abstract models makes this approach usually
not affordable by non experts. A possible way to overcome this issue is to make abstract models closer to real
programming languages. Preliminary results in this direction, which currently lack formalization, are presented
in [ |, where Java is directly used both as a modeling and as an implementation language.

In addition, in order to keep the soundness proofs simple, the generated code is usually close to a one-to-one
mapping with the starting model. While this can help to generate clean and understandable code, it may
also lead to inefficient implementations, that the user cannot improve without losing the soundness result. New
fundamental approaches geared towards letting the user interact with the code generator, or taking into account
code optimization would mitigate this issue.

Finally, many methods focus on classical security properties such as secrecy and authentication, with some
others addressing zero knowledge proofs or multi-party session protocols. However, many other kinds of security
protocols and properties remain uncovered by such approaches.

For example, e-voting protocols are not explicitly addressed by state-of-the-art approaches, even though
researchers are actively proposing new protocols of these kinds, for which no automation is provided in proving
soundness between protocol descriptions and their implementations. These kinds of protocols often come with a
set of custom security properties which are not trace properties, and require current approaches to be extended in
order to take them into account in their soundness proofs. For example, an e-voting protocol may be designed to
be coercion-free, or an e-auction protocol may avoid the scenario where a dishonest bidder gets unfair advantage
over other bidders or the seller.

Furthermore, the surveyed papers often neglect the so-called side channels, like execution timing and power
consumption, letting related attacks go undetected. Nevertheless, popular protocols like SSH and DTLS (a
variation of TLS that works over a datagram transport layer) have been found vulnerable to such kind of
attacks: in [ ] the timing of user keystrokes was exploited to infer the content that the user typed;
in [ ], the time taken for a server to answer carefully crafted keep-alive messages was used to recover the
plaintext of encrypted packets. While some formal work has been done on side channels, the link between this
work and protocol implementations, binding results on the formal level down to the implementation level in a
general way, is currently missing.

Finally, attacks can come from incorrect usage of encoding operations before cryptography is applied, such as
padding | , , ]. In general, these attacks exploit the weaknesses coming from bad interaction
between specific encoding procedures applied on bit strings and the way specific cryptographic algorithms
operate on such bit strings. Moreover, these attacks often lead to partial disclosure of the secret (e.g. by making
two protocol sessions distinguishable), but they do not break the classical weak secrecy verified in most Dolev-
Yao approaches, where bit strings are abstracted as algebraic terms and full disclosure of a session secret is
considered. Verifying strong secrecy (e.g. observational equivalence) in the computational domain can often
spot these kinds of attacks. Unfortunately, the papers surveyed in section 6 about the conditions for safely
abstracting away encoding functions in formal models are currently limited to Dolev-Yao models and weak
secrecy. Once again, this calls for a shift towards more realistic models, which would broaden the applicability
and validity of the formal verification results.

8 Conclusions

This paper has surveyed state-of-the-art approaches that formally link security protocol implementations to
their verified formal models.

It emerges that two main approaches have been recently developed by researchers to address this challenge,
starting either from the protocol code and extracting an abstract, simpler model on which security properties
can be verified, or starting from the abstract verified model and generating a fully refined implementation.
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Significant samples for each of these approaches have been analyzed in detail, highlighting the way the formal
link between the source code and the model is achieved, and how this can be used to specify and verify security
properties.

Not surprisingly, many of the state-of-the-art approaches operate in the mature Dolev-Yao domain, for
which automatic verification tools are available. Furthermore, classical security properties such as secrecy
and authentication are usually targeted. However, verification tools working in the computational model are
becoming available, and security protocols requiring custom properties are becoming widely deployed, which
calls for a shift towards computational models and analysis of different security properties.
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