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Abstract Coarse grain (CG) molecular models have been proposed to simulate complex systems with lower
computational overheads and longer timescales with respect to atomistic level models. However, their acceler-
ation on parallel architectures such as Graphic Processing Units (GPU) presents original challenges that must
be carefully evaluated. The objective of this work is to characterize the impact of CG model features on parallel
simulation performance. To achieve this, we implemented a GPU-accelerated version of a CG molecular dy-
namics simulator, to which we applied specific optimizations for CG models, such as dedicated data structures
to handle different bead type interactions, obtaining a maximum speed-up of 14 on the NVIDIA GTX480 GPU
with Fermi architecture. We provide a complete characterization and evaluation of algorithmic and simulated
system features of CG models impacting the achievable speed-up and accuracy of results, using three different
GPU architectures as case study.
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Acceleration and Optimization of a Coarse Grain (CG) Molecular Dynamics Simulator is
performed by porting its main computational kernels to Graphic Processing Unit (GPU)

architectures using CUDA language. A detailed analysis on CG features and their impact on
the achievable speed-up is reported for different GPUs, timestep values and arithmetic

precision. Correctness of the simulation accuracy is demonstrated. Simulations in recent GPU
architectures showed more stable trend of energy values compared to simulations in CPU.

1 Summary

In this work we characterize specific bottlenecks of CG models proposing specific strategies for handling them,
through the implementation of an accelerated CG model. We identify the impact of interaction computation,
data structures and memory transfers between CPU and GPU, on the optimization of the CG application. In
particular, we evaluate the impact of additional data structures needed to take into account interactions among
heterogeneous bead types. Then, we explore the speed-up achieved across various architectures characterized
by different parallelism and computational capabilities. We analyze the impact of the complexity of the system,
that is the amount of lipid beads, on the simulation performance. In addition, we investigate the impact of the
timestep duration on the achievable speed-up. We use several techniques leveraging on arithmetic operations,
data reuse and work merge to raise the simulator performance and subsequently for each of them assess the
accuracy of the simulations.

2 Introduction

Most aspects of cell activity may be perceived observing the dynamics of cell membranes which are composed
of patterns of lipid bilayers. Such aspects include, among others, the conformation of embedded proteins which
are directly influenced by the bilayer structure, the biomembrane permeability, interaction with drugs and
signaling (Orsi et al. [2008]).

The value of such biological processes brings to an increasing appeal for hardware and software optim-
ized realistic models of simulation which may provide in silico access to biological cell mechanisms otherwise
impossible to achieve through real experiments.

Molecular Dynamics (MD) is a technique of simulation in which sets of atoms and molecules interact with
each other over a certain time interval according to known physics laws. It is unfeasible to describe analytically
the properties of such complex systems, due to the considerable quantity of particles they are composed of.
Hence, MD emerges as a virtual laboratory, that is as an interface between laboratory experiments and theory.
Depending on the granularity of the particle model, MD can be distinguished between atomistic level (AL) and
coarse grain (CG) level.

AL models (Wohlert and Edholm [2006], MacCallum and Tieleman [2006], Hgberg and Lyubartsev [2006])
require considerable computational resources, due to the necessity of interaction calculations between each atom
and all other atoms in the system and the considerable amount of data involved in these calculations. Moreover,
the reliability of the calculation of some essential features, such as diffusion coefficients or the lateral pressure
profile, which require a large number of simulation steps, can be undermined by insufficient sampling.

CG modeling techniques have been proposed to address the shortcomings of atomic level models, in that they
allow longer timescales and thus a better sampling of relevant properties especially for large macromolecules
such as lipids (Orsi et al. [2008]), proteins (Dong and Zhou [2011]) and RNA (Orsi et al. [2008]). In a CG
representation specific atom groups are organized in clusters and each of the clusters is considered as a unique
particle called a bead. Hence, by lowering the number of system particles, computational requirements are
reduced as well. Figure 1 illustrates the relationship between AL and CG modeling for a lipid tail piece, where
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Figure 1: Coarse grain mapping of an atomistic representation of a lipid tail piece (at the top) to the corres-
ponding coarse-grained bead (at the bottom).

27 atoms are clustered into only 3 beads. Typically, a lipid represented by about 100 particles in AL approaches
is modeled by approximately 10 beads in CG representations (Orsi et al. [2008], Mller et al. [2006]).

A consequence of a bead-type organization is that interactions are now dependent on the bead type, compared
to the single type of atom-atom interaction. While CG models are promising and may allow simulations at a
longer time scale, the complexity of the biological systems they can simulate in reasonable time is still limited.
There are several interesting biological phenomena requiring higher time scales than what currently reachable
by CG simulators.

For this reason, techniques for accelerating CG simulators need to be developed. GPUs have emerged
as a powerful architecture for MD acceleration (Bauer et al. [2011], Friedrichs et al. [2009], Stone et al. [2007],
Schmid et al. [2010]). While previous work on GPUs mainly addressed AL models (Bauer et al. [2011], Rapaport
[2011], Ganesan et al. [2011], Friedrichs et al. [2009], Anandakrishnan et al. [2010], Stone et al. [2011, 2010],
Liu et al. [2008]), acceleration and optimization of CG models have only recently gained attention (Shkurti et al.
[2010], Anderson et al. [2008], Zhmurov et al. [2010], Anandakrishnan et al. [2010], Sunarso et al. [2010], Shkurti et al.
[2012], van Meel et al. [2008]).

Due to their features, CG models impose specific challenges that must be carefully addressed. In this paper
we characterize these features from a computational viewpoint, evaluating the consequences on different GPU
architectures. To the best of our knowledge, this is the first paper providing a comprehensive characterization
and evaluation of CG acceleration on GPUs.

In this work we first provide background about the programming environment exploited and the simulated
model. Thereafter, the main optimization methods are characterized followed from hardware specifications and
simulation setup. Then, we show the results achieved and analyze the accuracy of the simulations. Afterwards,
further detailed optimizations performed are described and the achieved results are discussed. Immediately
before concluding the work, we also report a state of the art review.

3 CUDA Environment

The Compute Unified Device Architecture (CUDA) environment represents a parallel programming model
and instruction set oriented to highly parallel computing. CUDA is designed for extending NVIDIA GPU
programming to general purpose parallel applications (i.e. not only graphic). In GPUs much more transistors
are assigned to data processing rather than to flow control or data caching with respect to general purpose
CPUs. However, memory latency is hidden with compute-intensive calculations (CUDA [2011]).

The GPU is divided into a set of Streaming Multiprocessors (SM) in which hundreds of threads reside
concurrently. In Figure 2, the 30 SMs of the GTX295 GPU architecture and their components are highlighted.

CUDA threads may access information from several memory spaces during their execution: (i) Each thread
has its own private local memory; (ii) All threads of a CUDA block have a shared memory (on-chip) visible only
at block level and with the same duration as the block; (iii) Global memory is accessible from all the threads;
(iv) Constant and texture memory spaces are read-only and cached memory spaces accessible by all threads. In
our work, we use all of these memory spaces but however we will not examine the details of each of them.

Threads are organized in blocks and only threads belonging to the same block can communicate with each
other by means of shared memory or synchronization barriers. Instead, different block threads are independent
and can be executed in the GPU in any order on any available GPU core. Each thread has a unique identifier
in the block which in his turn has a unique identifier among the program blocks (CUDA [2011]).
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Figure 2: GTX295 GPU architecture components from a parallel processing point of view.

As a consequence, problems adapted to GPUs are divided into independent sub-problems to be scheduled
in different thread blocks. Sub-problems are in their turn divided into even finer parts that can be solved by
threads of the same block.

The minimum hardware execution unit in the CUDA environment is called warp and contains 32 threads.
Each of the SM stores the information related to the instruction counter, register states and other thread context
information for each active warp. When a warp is waiting for the result of a long latency operation, context
switching is performed to another resident warp that is ready for execution, according to a priority mechanism.
Therefore, the cost of context switching from a resident warp to another is negligible with respect to CPUs,
and memory latency is hidden as well.

Furthermore, context conservation enables thread divergence, as it keeps independent thread information
for each divergent flow. Clearly, since divergent threads are executed sequentially, a price is paid in terms of
performance.

A large number of CUDA threads can be launched in parallel by means of kernels, representing C functions
executed in parallel by all CUDA running threads (CUDA [2011]). Anyway, the number of threads and con-
sequently warps residing concurrently in an SM is limited since they must share the limited resources available
for that SM such as registers and shared memory.

4 Coarse Grain Simulation

In Algorithm 1, the main steps of the MD simulation are reported. Here r, t, F, V, a, m, v, i represent
respectively position coordinates, time in the simulation, force, particles interaction potential, acceleration,
mass, velocity and bead indexes. For example, r(i,t+△t) represents the position coordinates of bead i at the
instant of time t +△t. At the beginning of the simulation, initial positions and velocities are assigned to all
beads, and a certain timestep value is chosen (line 1).

Algorithm 1 Main steps of MD Simulation

1: Give particles initial positions r(t=0) and velocities v(t=0); set timestep △t
2: for timestep := 0 to Total number of timesteps do

3: F(i,t) ← −δV(ri,t)/δri; a(i,t) ← F(i,t)/mi; a(i,t) ← δv(i,t)/δt; v(i,t) ← δr(i,t)/δt
4: r(i,t+△t) ← r(i,t) + v(i,t) ∗ △t+ 1/2 ∗ a(i,t) ∗ △t2 + ...
5: Move time forward: t← t+△t
6: end for

Then, forces acting on each bead are calculated (line 3) and atoms are moved according to the interaction
potential of particles in the system (line 4). These forces refer to bonded interactions among particles due to
chemical bonds and non-bonded interactions that include electrostatic and van der Waals forces. Van der Waals
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forces account for all attractive and repulsive forces among molecules (or among pieces of the same molecule)
that are not related to covalent bonds or to electrostatic interactions (McNaught and Wilkinson [1997]).

At last, time is moved forward according to the timestep value chosen (line 5). Actions from lines 3 to 5 are
repeated until the number of the desired simulation steps is reached.

The steps described in Algorithm 1 apply to both AL and CG simulations. However, while in AL models
a particle is represented by a single atom, in CG models a particle is represented by a bead, which is a cluster
of atoms. In addition, force computation has to take into account the different types of pairwise interactions
arising between beads, in CG models.

In this work, we perform an optimization and acceleration for CUDA environment of a CG simulator called
BRAHMS1. BRAHMS can simulate lipid bilayers (Orsi et al. [2008, 2010]), as well as more complex membrane
systems (Orsi et al. [2009, 2011]). BRAHMS was originally implemented in the C language as a serial code. The
main MD algorithms were developed following a standard approach (Rapaport [2004]). In particular, Newton
Leapfrog Equations are used to move the positions of beads (which in CG models represent clusters of atoms)
and their velocities one time step forward. BRAHMS uses the neighbor list method to optimize the calculation
of interactions: For the calculation of the non-bonded interactions among the beads of the system, a neighbor
structure is needed to avoid considering a contribution for each pair of beads, which would lead to a quadratic
time complexity. In this way, only bead pairs with a distance value under a cut-off distance value are considered
as neighbor beads.

At every step, after the forward time motion of the system obtained through the equations of motion
integration (generalized in line 4 of Algorithm 1), a check is performed to verify whether the structure containing
the neighbor beads is to be updated or not. Indeed, an update of the neighbor structure is necessary each time
a bead is displaced over a certain distance threshold.

Then, the bonded force interactions among system particles are calculated, which are followed from the com-
putation of non-bonded forces interactions among system beads. This is the most computational intensive part of
BRAHMS and of MD codes in general (Bauer et al. [2011], Rapaport [2011], Friedrichs et al. [2009], Stone et al.
[2011, 2010], Liu et al. [2008], Shkurti et al. [2010], Anderson et al. [2008], Zhmurov et al. [2010], Sunarso et al.
[2010], van Meel et al. [2008], Stone et al. [2007], Phillips et al. [2005], Nguyen et al. [2011], Harvey et al. [2009],
Colberg and Hfling [2011], Rapaport [2004]). After each simulation step, system properties such as temperature,
energy and pressure are updated.

BRAHMS includes CG beads treated as symmetric rigid bodies such as Gay-Berne (GB) (Gay and Berne
[1981]) ellipsoid molecules (with two non-zero moments of inertia), non-symmetric rigid bodies such as water
molecules modeled with the Soft Sticky Dipole (SSD) (Liu and Ichiye [1996]) potential (having three non-zero
moments of inertia) and simple point-masses beads modeled with standard isotropic potentials (such as LJ
and Coulomb) Orsi et al. [2008]. In addition to translational motion, rotational motion should be considered
for rigid body beads as well, at every step, during forward time motion. Rigid-body constraints relate to this
rotational motion of rigid-body beads.

5 GPU Optimization of Coarse Grain Models

Code profiling of BRAHMS was performed. In Table 1 the most computationally demanding parts of the code
are reported. Consequently, we focused on the optimization of these three parts.

Part of application Related percentage

Non-bonded forces computation 94.3%
Integration of equations of motion 2.3%
Neighbor structure generation 1.1%

Table 1: Bottlenecks and their percentage in terms of execution time (averaged over the total number of
simulation steps) in the case of the sequential application.

Note that besides non-bonded forces calculations, which account for the largest execution time, the execution
of the other two parts of the code on the GPU is required to avoid large CPU-GPU data transfer overheads.

Accordingly to the bottlenecks identified, we have implemented 4 kernels to be executed on the device
(GPU): One kernel for the first integration step, one kernel for the neighbor structure generation followed by
an auxiliary kernel for the verification of the correctness of the neighbor structure generation and finally the
last kernel for the calculation of non-bonded forces and accomplishment of the second integration step.

1http://www.soton.ac.uk/∼orsi/brahms/
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5.1 Kernel Implementing the First Equation of Motion Integration

We implemented the integration algorithm on the GPU to avoid additional transfers of data between CPU and
GPU needed by the non-bonded forces computation and neighbor structure generation kernels.

This first integration part of Leapfrog equations is performed at the beginning of each single step of the
simulation while the second integration part (similar to the first one) is performed at the end, after eventual
neighbor structure generation and forces calculation. Hence, we have implemented a kernel called integration
(Algorithm 2) to perform the first Leapfrog equation while we have included the implementation of the second
Leapfrog equation at the end of the kernel for non-bonded interactions computation called forces.

Algorithm 2 Algorithm that implements the first equation of motion integration.

1: i ← blockIdx.x ∗ blockDim.x+ threadIdx.x
2: if i < number of beads then

3: velocity(i,t+timestep/2) ← velocity(i,t) + timestep/2 ∗ force(i,t)/massi
4: position(i,t+timestep) ← position(i,t) + timestep ∗ velocity(i,t+timestep/2)

5: if beadi has an orientation then

6: half − advance momenta of inertia of bead i
7: calculations related to rotational motion of bead i
8: end if

9: if pressure is controlled then

10: coordinates of bead i are rescaled
11: end if

12: boundary conditions of bead i are applied
13: end if

In Algorithm 2, i is a variable which links the identifier of a CUDA thread (among all active threads) and
the identifier of a specific bead of the system simulated. The CUDA variables blockIdx, blockDim and threadIdx
represent respectively the block identifier, the number of threads in a CUDA block and the identifier of the
current thread in that block. We can obtain the unique identifier of a thread among all threads launched for
the application by means of these CUDA variables. The calculation of the thread identifier (line 1) is followed
by a check (line 2), to determine whether or not this identifier can be linked with any bead identifier2. In the
affirmative case the calculations related to the specific bead the thread is linked to (the bead having identifier
i), are performed (lines 3 to 12). velocity(i,t), position(i,t) and force(i,t) (lines 3 and 4) stand for the velocity,
position in the system and forces acting on the bead identified by i at time t. timestep (lines 3 and 4) indicates
the timestep of the simulation. The orientation (line 5) relates to the rotational motion of the beads considered
as rigid bodies. In the MD context, pressure can be controlled during simulations (lines 9 and 10) by a uniform
isotropic volume change brought about by rescaling the atomic coordinates (Orsi et al. [2008], Rapaport [2004]).
Boundary conditions are applied at the end of the kernel (line 12), so as to capture the typical state of an interior
bead (Orsi et al. [2008], Rapaport [2004]).

5.2 Kernel for the Generation of Neighbor and Interaction Type Structures

This kernel (called cudaneigh) is used to update neighbor list and data structures which are used by non-bonded
forces kernel. The optimization of these data structures is then critical to improve the performance of the most
demanding computation of the code.

In addition, accelerating this part of the code, even if its load in the sequential execution time amounts to
2%, prevents this contribution from becoming a bottleneck in the accelerated version.

5.2.1 Optimized Data Structures

Implementation and update of data structures within the GPU is needed to obtain maximum performance from
GPU by avoiding data transfer overheads between CPU and GPU.

Cell structure

For the calculation of the non-bonded forces among the beads of the system, a neighbor structure is needed
in order to avoid considering a contribution for each pair of beads, which would lead to a quadratic time
complexity. For this reason the system is divided into cells of beads, where each cell has a cubic shape and the

2The number of total threads launched for this kernel on the GPU is Number of blocks * Number of threads per block. The
Number of blocks is calculated as the ceiling of the value of Number of beads

Number of threads per block
. If the number of beads is not fully

divided by the number of threads per block, the last CUDA block of threads will have ceiling( Number of beads

Number of threads per block
) ∗

Number of threads per block −Number of beads threads that are not linked to any beads of the system and should perform no
calculations for our system.
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Figure 3: An example of the vector containing the system subdivision in cells in the CPU version implementation
of the application code. The circles and arrows illustrate the way in which the elements of a certain cell are
stored in the cells structure. The last Number of Cells elements with vector indexes varying from Number
of beads to Number of beads + Number of Cells − 1, refer to the Cells of the system: from 0th Cell to
(Number of Cells− 1)th Cell. Each value has two roles: (i) It indicates one bead identifier belonging to the
related cell and (ii) it indexes a cell vector position which contains a value having the same two roles. When
one of these values is −1, the cell list ends.

edge size equal to the cut-off distance. Only bead pairs with a distance value lower than that of the cut-off are
considered as neighbor beads. Hence, the search for neighbors is applied to bead pairs of the same cell and the
eventual 26 adjacent cells (Rapaport [2004]).

In the CPU version, the cell structure is a monodimensional vector organized as a linked list withNumber of beads+
Number of Cells elements. An example of the cell structure for the CPU version is reported in Figure 3.

Such a structure cannot be efficiently mapped on a GPU, as it would not provide coalesced accesses. Memory
accesses are optimized for coalesced accesses where all threads in a warp access the same relative memory address,
calculated as base address+ absolute thread identifier.

To enable coalesced accesses to the cell structure, we organized it as a bidimensional matrix. In Figure 4 we
show these matrix values for the same example that we reported in Figure 3. Its row identifier relates to the cell
identifier, while it has a number of elements equal to Number of Cells ∗Maximum beads per cell, where this
latter value indicates the maximum number of beads one cell can have in the simulated system. The elements
of this matrix represent the identifier of the beads contained in the related cell. For example, the first row of
the matrix refers to the cell of the system with identifier 0 which holds beads 1, 2, 4 and 7. In addition, we
also introduced an auxiliary vector which has Number of Cells elements and contains, for each element, the
number of beads residing in the cell indicated by that element.

We leave the task of cell matrix and related auxiliary structure construction to the CPU. Upon completion,
we transfer both to the device. The cell matrix is transferred to the global device memory. The related auxiliary
structure is transferred to the constant device memory as it is frequently accessed from the GPU during the
generation of the neighbor structure, when the iterations among all beads of the considered 27 adjacent cells
are performed, to identify the neighbors of each bead.

Neighbor and Interaction Structures

After the cell structure, the neighbor and interaction structures are generated. They store information on
bead pairs involved in the force computation and the type of bead-to-bead interaction. Hence, these structures
are accessed by the non-bonded forces kernel, to retrieve information on neighbor beads and their interaction
types.

Compared to its sequential counterpart (Orsi et al. [2008]) which does not provide coalesced accesses for the
GPU, we implemented a dedicated structure to store information about bead interaction types. The size of the
sequential version of the neighbor structure is 2∗Number of neighbor pairs. To fill this structure an algorithm
is used to detect the neighbors of each bead.

Each pair of neighbor beads is stored in the neighbor structure and, for each of them, their interaction type
is stored in the interaction type structure.

Following the example in Figures 3 and 4, let us suppose that there are 7 pairs of neighbor beads among all
possible pairs from the combination of the 9 beads of the system. Let these pairs be (0, 3), (0, 5), (0, 6), (1, 2),
(1, 4), (3, 8), (4, 7). Let us consider 6 types of interactions identified by numbers from 0 to 5. In Figure 5, we
show the related structures for neighbors (upper side) and interaction types (lower side).
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Figure 4: An example of the structure of the cells (on the left) implemented to be used for coalesced accesses
from the GPU and the related auxiliary structure (on the right).

These structures do not provide coalesced accesses for the GPU. Consequently, an optimized version is
proposed as shown in Figure 6 for the same system in the previous example.

In the neighbor structure (upper side) each column refers to a specific bead of the system and contains
the identifiers of the neighbors of that bead. In the interaction type structure (bottom side) the interaction
between the bead (having identifier equal to column index) and the neighbor in the corresponding position of
the neighbor structure is stored.

We also introduced an auxiliary structure (in the middle of Figure 6) of size Number of beads where each
element, associated (through its index) to one bead of the system, stores the number of neighbors of that bead.

Additional structures

In addition, to enable coalesced accesses by the GPU, we created separate structures for all beads positions,
all beads velocities, all beads orientations and all beads types, as these data are frequently accessed.

5.2.2 Kernel Description

Neighbor and interaction type structures are generated using an algorithm similar to the one proposed in Anderson et al.
[2008] for the neighbor structure construction.

However, the code reported in Anderson et al. [2008] considers a single bead type and thus does not take into
account different interaction types. Moreover, it is specialized for simulations of polymer systems and includes
integrators, neighbor lists, LJ potential and bonded forces but not rigid body constraints.

Furthermore, in Anderson et al. [2008], a one-dimensional texture type is used.
Since the texture cache is optimized for 2D spatial locality (CUDA [2011]), we have used two dimensional

textures in this kernel as well as in the non-bonded forces computation kernel, when the accesses in device
memory are not coalesced.

Moreover, as opposed to the description in Anderson et al. [2008], we make use of the cells auxiliary vector
described in Paragraph Cell structure, to limit the loop iterations to the number of beads actually present in
a cell. In this way we also save a check to determine whether a thread is related to any particular bead of the
cell considered or not.

5.3 Non-Bonded Forces Computation

The non-bonded forces computation is implemented by the kernel forces, that exploits the optimized access to
neighbor and interaction structures.
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Figure 5: A neighbor structure example (at top) used in the CPU version and the related interaction structure
(at bottom).

Compared to what has been done for single bead CG polymer models in Anderson et al. [2008], we use the
additional interaction type structure, described in Paragraph Neighbor and Interaction Structures. Moreover
we use 2D textures for random accesses in memory, to retrieve position and orientation coordinates.

The related pseudocode is reported in Algorithm 3.
In this Algorithm, we assign every thread of each block to a certain bead of the system (line 1) as in the

integration kernel. Then, a check is performed (line 2) to control whether the current thread can be associated
to a bead of the system or not, in order to avoid useless computations. In the former case, in Algorithm 3, a
cycling among all neighbors3 of bead i is carried out and for each neighbor n actions described in lines 4 to 18 are
accomplished. The bead identifier of the nth neighbor obtained from the neighbor structure is stored in variable
j (line 4). Then, the position coordinates of bead j are fetched from texture memory (line 5). The distance
between beads i and j is computed and stored in variable ri−j (line 6) and the minimum image convention4 is
applied (line 7).

If the value of ri−j is lower than a cut-off value (line 8), the orientation vector of bead j is fetched from
texture memory (line 9) and either Algorithm 4 (line 11) or Algorithm 5 (line 13) is performed depending on
whether the type of interaction between beads i and j is a water-water interaction or not (determined in line 10).
The contribution of couple i-j is added to the related auxiliary variables forcei, torquei and pot energyi for the
storage of values of force, torque and potential energy of bead i (lines 16 to 18).

After finishing the iterations among all neighbors of bead i, the state of the system and values of some of
its thermodynamic properties, related to force, torque, potential energy, virial and orientation vector of bead i

are updated (line 20).
The second Leapfrog equation for the motion integration related to bead i (line 21) which is very similar to

kernel integration of Algorithm 2, has been implemented in Algorithm 3 after the computation of non-bonded
forces acting on bead i. It accomplishes the second half-advance of inertia of bead i if bead i is considered as a

3The number of neighbors for each system bead is stored in the auxiliary neighbor structure, named neighEl and described in
Paragraph Neighbor and Interaction Structures.

4The Minimum Image Convention is a form of Periodic Boundary Conditions in which each particle in the simulation interacts
with the closest image of the remaining particles (Rapaport [2004]).
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Figure 6: From top to bottom: a neighbor structure example used in the GPU version, the related auxili-
ary structure for storing the number of neighbors for each bead and the interaction structure which stores
information about bead interaction types.
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Algorithm 3 Pseudocode of non-bonded forces computation

1: i← blockIdx.x ∗ blockDim.x+ threadIdx.x
2: if i < number of beads then

3: for n from 0 to neighEl[i] do
4: j← identifier of nth neighbor of bead i

5: Texture fetching of position of bead j

6: ri−j ← distancei−j

7: Minimum image convention
8: if ri−j < max cut− off then

9: Texture fetching of orientation vector of bead j

10: if interactioni−j is a water − water interaction then

11: Forces and momenta calculations in Algorithm 4
12: else

13: Forces and momenta calculations in Algorithm 5
14: end if

15: end if

16: forcei ← forcei + forcei−j

17: torquei ← torquei + torquei−j

18: pot energyi ← pot energyi + pot energyi-j
19: end for

20: Update of system state, virials and orientation vector related to bead i

21: Second integration step
22: end if

rigid body and the second half-advance of the velocity of bead i.
In the CPU implementation, the third Newton law is applied by adding the contribution of the interaction

i − j to the ith particle and by subtracting it to the jth one; Instead, in the GPU implementation to avoid
additional scattered accesses to memory and the corresponding impact on performance, we do not modify the
jth particle value for virials and torques but we correct that value once, for each of the beads after having
considered the contribution of all their neighbors.

Algorithm 4 SSD interactions computation

1: if ri−j < r cut− off then

2: Dipole-dipole interaction evaluation ⊲ SSD force field
3: LJ potential evaluation
4: Tetrahedral sticky term
5: end if

In Algorithm 4, ri−j is compared to the cut-off distance (line 1), and if it is lower, then the SSD force
field contribution (lines 2 to 4) on the state of the system and its thermodynamic properties are computed.
The SSD water is a single-site model. The three atoms of individual water molecules are coarse-grained into a
single interaction center, which comprises a point dipole (line 2) to account for electrostatics, a LJ core (line 3)
providing excluded volume, and a tetrahedral sticky term (line 4) to model hydrogen bonding (Orsi et al. [2008]).

Algorithm 5 Computation of interactions different from SSD interactions

1: if ri−j < r cut− off then

2: LJ potential evaluation
3: Switch(Interaction type) ⊲ Electrostatic interaction evaluation
4: Case Chargei −Dipolej
5: ...
6: Case Dipolei − Chargej
7: ...
8: Case Dipolei −Dipolej
9: ...

10: Case Chargei − Chargej
11: ...
12: end if

In Algorithm 5, if ri−j is lower than the cut-off value (determined in line 1), the LJ potential (line 2) and
electrostatic interaction (lines 3 to 11) are evaluated according to the interaction type dependent on bead i and
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bead j types. We must take into account that we have up to four different execution flows (as showed in Switch

Case of Algorithm 5) related to the six different types of beads modeled in our application.

6 Simulation Setup

To evaluate the impact of architectural characteristics on the achievable speed-up of the CG simulation, we
considered three different NVIDIA GPU architectures, in particular: i) GeForce GTX295; ii) GeForce GTX480;
iii) Tesla C2050.

In Table 2 the main characteristics of the employed architectures are reported. GTX295 has the smallest
number of cores, while C2050 and GTX480 are more recent and have higher parallelism. The main difference
concerns the amount of global memory (double for C2050 with respect to GTX480) and the memory bandwidth
(larger for the GTX480).

GTX295 GTX480 C2050

Number of SMs 30 15 14
Number of Cores 240 480 448

Global Memory (MB) 896 1536 3072
Memory Bandwidth (GB/sec) 112 177.4 144
Shared Memory per SM (kB) 16 48 48

Constant Memory (kB) 64 64 64
Processor Clock Rate (MHz) 1242 1400 1150
Max Registers per SM (k) 16 32 32
Max Threads per Block 512 1024 1024

Table 2: Technical specifications for the three nvidia architectures employed in this work.

The sequential simulation experiments, have been performed on a Processor Intel R© CoreTMi7-920, equipped
with 4 cores and 8 threads, a clock rate of 2.67 GHz, a 64− bit instruction set, 8 GB of RAM and a 25.6 GB/s
maximum memory bandwidth. In this work, we refer to this device as CPU. Linux 2.6.26−2−amd64 operating
system runs on this processor.

The results reported in the next section refer to simulations with steps of 1 fs except when analyzing the
speed-up depending on the timestep value. Neighbor structure generation takes place approximately each 100
timesteps, when the timestep duration is 1 fs. Therefore the neighbor structure contribution on total simulation
time is very low. We consider systems from 840 to 218904 number of beads. As for complexity, we consider
systems composed by heterogeneous types of beads. In particular, we consider either water systems uniquely
containing water molecules or lipid systems containing lipid molecules in water solution. We developed a GPU
version of the simulator customized to water systems, thus treating all the beads as a unique type (water beads),
to evaluate the impact of additional structures used for handling interactions among the lipids. From now on
we will refer to the version of the simulator which handles only water beads as water only version and to that
which handles also the beads of lipid molecules as complete version. Notice that we can simulate water systems
with either of the two versions.

The largest system simulated for the simulations reported in the next section, using: (i) The slowest version
of the simulator that is the CPU version; (ii) Lipid system configuration; (iii) Timestep duration of 1 fs; (iv)
5000 simulation steps, takes about 200 minutes.

Speed-ups reported refer to kernels with 64 threads per block (except for cudaneigh kernel).

7 Results

In this section we present results about the speed-up of the GPU version of BRAHMS with respect to the
CPU, considering: (i) Biological systems of different dimensions; (ii) Biological systems of different complexity
(i.e. lipid, water); (iii) Different versions of BRAHMS GPU code (i.e. customized or not for water systems
simulation); (iv) Three different GPU architectures; (v) Different timestep values.

Moreover we evaluate the impact of the arithmetic precision used for floating-point (FP) operations.
Moreover we evaluate the impact of the arithmetic precision used for floating-point (FP) operations.

7.1 Impact of System Complexity on Achievable Speed-up

In Figure 7, we report the comparison among the speed-ups (related to the CPU version) of two biological
systems, lipid and water only, characterized by different complexity and simulated on the GTX295 architecture.
For water systems, we distinguish between water only and complete version. Single precision FP arithmetic is
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Figure 7: Comparison among the speed-up of different BRAHMS versions with respect to the CPU achieved on
the GTX295 architecture.

used for these simulations. For a number of beads lower than 23K the speed-up is lower than the maximum
achievable because the parallelism of the GPU is not completely exploited. The water only version is the fastest
version with speed-ups up to 12x compared to the CPU version. The higher performance of the water only
version is mainly due to the absence of structures to handle different bead types. On the other hand, the lower
performance of the complete version with lipid systems with respect to water systems is due to the fact that lipid
systems involve six different types of beads with respect to the single type of beads present in water systems.
For lipid systems, the computations performed during the simulations are dependent from the bead type. This
leads to divergent execution flows among the threads, as we will show in the next section, thus leading to a
performance hit.

Moreover, Figure 7 shows also the impact of lipid data structures, highlighted by the gap between the
water-only and complete version for water systems.

This gap is quantified in Table 3, in terms of minimum, medium and maximum percentage of speed-up
lost by the complete version with respect to the water-only version. In this table, this analysis is performed
considering also double precision arithmetic.

Arithmetic used Average Max Min

Single precision 28.85% 36.34% 12.34%
Double precision 13.65% 15.71% 8.04%

Table 3: The percentage impact of lipid structures on the overall speed up performance, respectively when
single precision arithmetic and double precision arithmetic is considered for FP operations, on GeForce GTX295
architecture.

A smaller gap is observed (15.71% vs. 36.41%), when double precision arithmetic is employed. The larger
impact of lipid structures in case of single precision arithmetic computation is justified because the gap is mainly
due to a constant overhead for memory accesses and additional control statements associated to beads types
and interactions. Since single precision arithmetic simulations are shorter, this constant overhead has a larger
relative contribution in this case.

7.1.1 Branch Penalty Analysis

We report a quantification of the execution flow divergence of threads in Tables 4 and 5, where a summary of
the profiling of each kernel for both water and lipid systems containing 100K beads is reported for the GTX295
architecture.
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Integration Cudaneigh Forces

Speed-up vs CPU (times) 11.78 5.31 13.11
Execution time % on CPU 2.61 1.15 94.64
Execution time % on GPU 2.08 2.04 67.67

Average branches 201 18034 32652
Average divergent branches 1 853 2607

Div branches/Tot branches % 0.50 4.73 7.98

Table 4: Profiling of three kernels for a simulation of a 100k beads water system.

Integration Cudaneigh Forces

Speed-up vs CPU (times) 10.00 4.38 7.58
Execution time % on CPU 1.98 1.11 93.99
Execution time % on GPU 1.16 1.48 72.54

Average branches 203.00 46025.00 79277.60
Average divergent branches 3.00 2540.00 9204.80

Div branches/Tot branches % 1.48 5.52 11.61

Table 5: Profiling of three kernels for a simulation of a 100k beads lipid system.

A higher number of average branches and divergent branches is observed for each kernel of the lipid system
compared to the corresponding kernel of the water system. We note that corresponding to the speed-up gap
between water and lipid system simulations (13.109x vs. 7.577x) there is an increasing percentage of divergent
branches over the total number of branches (7.98% for water vs. 11.61% for lipids).

In both simulations, the impact of forces kernel on the total simulation time decreases after optimization,
remaining the most time consuming section of the code.

Analysis of Biological System Complexity

The reason of a greater speed-up achieved for water system simulations with respect to lipid simulations is
illustrated in Figure 8.

A descriptive explanation is provided, illustrating the execution time of the force fields calculations of water
and lipid beads. Two simulations of the same number of beads are shown: One having only water beads and the
other water and lipid beads. The former is longer than the latter when both are executed in a CPU architecture,
due to a more complex5 force field of the water-water than lipid-lipid and water-lipid interactions. Different
thread execution flows due to different force fields for the calculation of the interactions among the beads are
verified if at least one of the threads in a warp is related to a lipid bead and the other threads to water beads or
viceversa. Divergent execution flows within a warp are serialized and this is the reason that despite the water
system simulation is longer than a lipid system simulation in the CPU, the water system simulation is shorter
with respect to a lipid system simulation when executed in the GPU. For simplicity, in Figure 8 only one force
field (green rectangles) is reported when lipid beads are present in the system simulated, in addition of the
water force field. In our case 4 supplementary force fields due to the 5 added lipid bead types are considered.

7.2 Architectural Impact on Speed-up

In Figure 9 we report for lipid systems and water systems, the speed-ups6 achieved by the three considered
architectures for an increasing system size. The double precision arithmetic has been used for FP operations.

For lipid systems we achieve speed-ups up to 7x, 6.43x and 2.43x for respectively GTX480, Tesla C2050 and
GTX295 architectures, while for water systems the respective speed-ups achieved are 13.69x, 12.8x and 5.28x.

The GTX295 architecture is the slowest architecture, as we expected, due to its lower number of cores and
hence of parallelism. The small performance gap between GTX480 and C2050 can be justified because GTX480
has a higher parallelism with respect to Tesla C2050, having one additional SM, resulting in 32 additional cores.
Nevertheless, Tesla C2050 has two DMA engines for bidirectional PCIe communication while GTX480 has only
one enabled.

5The complexity of non-bonded forces calculations will be illustrated in detail in the next section.
6The speed-ups reported concern the GPU implemented part of the application because the servers where the GPU cards are

situated have different CPU architectures.
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Figure 8: Comparison among CPU and GPU execution times of 2 simulations having the same number of beads
K: The system of the first simulation contains only water beads while the system of the second simulation
contains water and lipid beads. The repeated blocks in both GPU execution parts represent the parallel
running of tasks on the GPU.

Figure 9: Speed-up of water and lipid in water solution system simulations among different architectures with
respect to the CPU.
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Figure 10: Speed-up of 80k bead systems of lipid in water solution and water NVT simulations on GTX480
architecture with respect to the CPU, when different timestep sizes are considered.

7.3 Impact of Timestep Value on Speed-up

In Figure 10 we show the speed-up achieved for: (i) 80k bead systems of lipids in water solution; (ii) 80k
bead systems of water; (iii) three different timestep values: 1 fs, 10 fs and 20 fs. The simulations have been
performed with constant volume and temperature ensemble (NVT) and the GTX480 GPU architecture has
been used.

The speed-up achieved is 7, 7.44 and 7.9 for lipid systems and 13.69, 13.83 and 13.88 for water systems, for
each of the timestep values respectively.

We notice that the greater is the timestep value the greater is the speed-up achieved. Indeed, for the same
number of timesteps, the construction of the neighbor structure occurs more often for a simulation with a larger
timestep value than for a simulation with a smaller timestep value. The construction of the neighbor structure
is verified around each 100, 10 and 5 steps for 1 fs, 10 fs and 20 fs timestep simulations respectively. In
fact, in the 20 fs timestep case the probability for a bead to cover the threshold distance and as a consequence
trigger the neighbor structure generation, is greater than in the simulations with timestep duration of 1 or
10 fs. In this way, the calls to the neighbor (and related structures) construction algorithm corresponding to
cudaneigh kernel, increase proportionally with the increasing of the timestep value. Instead, the non-bonded
forces calculation and motion integration algorithms, corresponding to the other 2 GPU kernels, undergo the
same number of calls, one call for each timestep, regardless of the timestep value. Hence, considering the
increased calls to the neighbor construction algorithm, the percentage of the CPU version of the application
that is parallelized for the GPU is greater for a larger timestep value, leading to a greater speed-up factor.

Since a water system simulation is longer than a lipid system simulation in the CPU, for the same number
of beads (as shown in Figure 8), the relative impact in the simulation time of the higher frequency of neighbor
structure construction is smaller in the case of a water system simulation. Indeed, in Figure 10 we can notice a
difference of 1.38% between the speed-up obtained for a timestep of 1 fs and a timestep of 20 fs in the case of
water systems versus a 12.89% difference for lipid systems.

8 Accuracy of the Simulations

In Table 6, we report mean and standard deviation values of temperature of simulations of lipids as well as
of water, for 23k bead systems of lipids in water solution, when CPU, GTX295, C2050 and GTX480 GPU
architectures are used to perform the simulations. The length of the simulations is 1 ns, performed after system
equilibration, with NVT ensemble.

The timestep used is 1 fs. Thus, 1 million steps have been performed for each simulation. For these simu-
lations, we show also the percentage of difference between mean values of temperature of all GPU architectures
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Lipids Temperature [◦C]

CPU GTX295 GTX480 C2050

Mean value 30.0018 30.0019 30.0023 30.0023
Diff. vs CPU mean value [%] 0.0000 0.0003 0.0017 0.0017
Standard deviation value 0.3119 0.3194 0.3129 0.3129

Water Temperature [◦C]

CPU GTX295 GTX480 C2050

Mean value 30.0030 30.0097 30.0000 30.0000
Diff. vs CPU mean value [%] 0.0000 0.0220 0.0100 0.0100
Standard deviation value 0.2921 0.2752 0.2951 0.2951

Table 6: Mean and standard deviation temperature for 23k beads of lipid in water solution NVT simulations.

employed for this work and the CPU. The maximum difference of mean temperature values obtained in the
GPU architectures with respect to the CPU is observed for the GTX295 architecture with a value of 0.022% in
the case of water temperature.

While Table 6 indicates a correct conservation of the temperature during 1 million of 1 fs steps, presenting
identical values of CPU, GTX295, C2050 and GTX480 architectures, the situation observed for system potential
energy is different. Table 7 reports mean and standard deviation values of potential energy for the same
simulations whose temperature values we analyzed before.

CPU GTX295 GTX480 C2050

Mean value [kJ/mol] -33.0969 -30.6396 -33.3228 -33.3228
Diff. vs CPU mean value [%] 0.0000 7.4200 0.6800 0.6800
Standard deviation value 0.1055 1.4017 0.0951 0.0951

Table 7: Mean and standard deviation values of potential energy for 23k beads of lipid in water solution NVT
simulations.

The GTX295 architecture has a mean value of the system potential energy that differs 7.42% from the mean
value obtained in the CPU, with a standard deviation of 1.4017 kJ/mol. The drift of potential energy when
the GTX295 architecture is used for the simulation is considerable for more than 40 ps of NVT simulation with
steps of 1 fs. Instead, according to Table 7, C2050 and GTX480 architectures report smaller fluctuations of
system potential energy than the CPU version.

To further confirm the correctness of the CG simulator implemented for the GPU architectures, we have
performed constant volume and energy ensemble (NVE) simulations, to verify the conservation of system total
energy throughout the simulations. In Figure 11, we show the values of total and potential system energy for
1 ns NVE simulations of 23K beads of lipids in water solution, with timestep of 1 fs.

The two small rectangular charts inside Figure 11 represent an enlarged portion of each case, for timesteps
from 50 to 150 ps and reduced energy values range as shown. They highlight the drift of energy values in
the case of GTX295 with respect to energy values in other architectures. We noticed an average difference
of 25.28%, 0.72% and 0.65% among system total energy values on respectively GTX295, GTX480 and C2050
architectures versus total system energy value on the CPU.

Therefore, we conclude that for NVE simulations performed in our CG simulator lasting more than 30 ps
with a timestep duration of 1 fs, the use of GTX295 architecture is not suitable, while the use of 2.0 and upper
compute capability GPU architectures leads to acceptable total energy results with a difference with respect to
CPU total energy results of only about 0.7%.

We can also observe in Figure 11, even a more stable trend of the total and potential system energy for
simulations on C2050 and GTX480 GPU architectures with respect to the simulation on the CPU. This trend
is confirmed from the calculated standard deviation values for total system energy in CPU, C2050 and GTX480
architectures for these simulations that has respectively values: 0.1514, 0.0428 and 0.0464 kJ/mol.

While the three architectures we evaluated support compute capability of 1.3 and more, thus being compliant
with the IEEE 754 standard, we observe a difference in the results of CPU versus GPU, after thousands
of simulation steps. This is expected in general as: (i) GTX295 architecture is a 1.3 compute capability
architecture and it does not support the IEEE-compliant implementation for some particular instructions of
single-precision FP numbers, such as division and square root (CUDA [2011]) that are frequent in the code of
our simulator. This is the major reason of the great difference reported among the simulations performed on
the GTX295 architecture and those performed in the CPU; (ii) Small changes, due to rounding errors caused
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Figure 11: Comparison of total and potential energy values among CPU and GPU architectures for NVE
simulations of 23k beads of lipids in water solution.

from a different order of arithmetic FP operations in the CPU with respect to GPU architectures7, lead to
accumulated differences throughout the simulations and finally to different results.

Indeed, the MD simulation systems are chaotic, which means that if two theoretically identical simulations
are being considered, whatever minimal difference occurs, in the rounding off or instructions order for example,
it grows exponentially throughout the simulation. This means that the trajectory of a certain bead in the CPU
simulation will inevitably diverge exponentially from the trajectory of the same bead in the simulation on the
GPU. Anyway, this is acceptable as long as the ensemble average, as for instance the average temperature or
the pressure, is coherent after a reasonably large number of steps.

However, the simulations on the different architectures explored are coherent from an ensemble viewpoint, as
observed from the experiments performed. The simulations on the GPU architectures are stable, except for the
GTX295 architecture case when the simulations last more than several picoseconds and timesteps of 1 fs are
used for them. Their energy, pressure and temperature resulted to have very similar values to energy, pressure
and temperature of the simulations performed on the CPU. Mean values related to these properties, both of
GPU and CPU simulations, are coherent.

9 Further Optimizations on Forces Kernel

Since forces kernel is the most computation demanding part of the CG simulator, we implemented several
techniques in order to increase its performance in terms of speed-up achieved.

9.1 Data Reuse and Work Merging

When we split in two different kernels the calculation of non-bonded forces and the accomplishment of the second
equation of motion integration, (instead of performing both in a unique kernel: forces kernel), a performance
deterioration up to 11% is observed.

We explain the improvement of the performance when using a unique kernel to implement both non-bonded
forces computation and second integration step, because of the following reasons: (i) A unique kernel, in our
case enables precomputed data reuse8, such as beads forces, torques and rotation matrix, avoiding additional

7Threads and blocks of threads in the GPUs are scheduled at different times while in the CPU there is a unique sequential
execution flow.

8We have also noticed in Stone et al. [2007] the reuse of in-register data among GPU optimization techniques used, making in
the related MD application case a reuse of atom coordinates and precomputed distance vector components.
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data reads/writes from/to global memory; (ii) The overhead due to an additional kernel initialization, launch
and release for each step of the simulation, is obviated.

9.2 Fixed-point Arithmetic and Intrinsic CUDA Functions

We leveraged on arithmetic operations to increase the simulator performance by means of: (i) Fixed-point

arithmetic implementation for FP operations instead of FP arithmetic; (ii) Intrinsic CUDA functions, to
perform addition, multiplication, division and square root among FP arithmetic operations.

The intrinsic CUDA functions used to implement addition, multiplication, division and square root, are only
supported in device code. Intrinsic functions are less accurate but generally faster versions than the standard
respective CUDA functions (CUDA [2011]).

In Table 8, we show speed-ups achieved for water and lipid simulations performed on GTX295, C2050 and
GTX480 architectures. FP operations of forces kernel have been carried out by means of: (i) Floating-point
arithmetic; (ii) Fixed-point arithmetic; (iii) Intrinsic CUDA functions: fadd rn, fmul rn, fdiv rn, fsqrt rn.

Water Systems

Floating Fixed Intrinsic

GTX295 5.28 6.13 2.66
GTX480 13.69 19.61 27.71
C2050 12.8 16.42 14.33

Lipid Systems

Floating Fixed Intrinsic

GTX295 2.43 2.81 0.52
GTX480 7 9.81 12.91
C2050 6.43 8.66 7.27

Table 8: Speed-ups achieved when fixed-point and intrinsic functions are used for floating-point arithmetic
operations.

We have a maximum speed-up of 27.71x for water simulations and 12.91x for lipid simulations, when intrinsic
CUDA functions and GTX480 architecture are employed for the simulations. In this case an improvement of
102.41% and 84.43% is achieved compared to FP implementation, for respectively water and lipid simulations.
From Table 8 we can observe that in all combinations of architectures and fixed-point arithmetic or intrinsic
CUDA functions used, we achieve improvement with respect to the FP CUDA implementation except when
we employ GTX295 architecture and intrinsic CUDA functions. This worsening of performance for the latter
case is due to the fact that some intrinsic CUDA functions such as fadd rn and fmul rn compile to tens of
instructions for devices of compute capability 1.x such as GTX295 architecture. In Papadopoulou et al. [2009],
the throughput for single precision FP multiplication is verified to be higher (11.2 ops/clock) than the intrinsic
CUDA function for the multiplication fmul rn (10.4 ops/clock) when characterizing GT200 GPUs. Instead,
the same intrinsic functions, map to a single native instruction for devices of compute capability 2.0 such as
C2050 and GTX480 architectures (CUDA [2011]). Hence, for 2.0 compute capability architectures explored,
using intrinsic CUDA functions would lead to higher performance in terms of speed-up as confirmed from the
experiments shown in Table 8.

Despite the higher performance for both fixed-point arithmetic and intrinsic CUDA functions, accuracy of
the simulations is prohibitive.

We observed the mean values of total system energy calculated over the first 10K steps of NVE simulations
with 1 fs timestep duration, for 23K bead systems of lipids in water solution in the case of: (i) CPU, GTX295,
GTX480, C2050 architectures; (ii) Floating-point arithmetic, fixed-point arithmetic and intrinsic CUDA func-
tions. We noticed that mean values of total system energy for the different combinations of architectures and
optimizations performed are different in the case of fixed-point arithmetic and intrinsic CUDA functions, with
respect to the floating-point CPU version. A maximum divergence with respect to floating-point CPU results of
112.4% and a minimum divergence of 104% are verified when fixed-point arithmetic and intrinsic CUDA func-
tions are used. We also noticed a 31.3% difference of mean values of total system energy between FP arithmetic
and fixed-point arithmetic in CPU simulations. After only few timesteps this discrepancy would become even
greater and lead to the explosion of the simulation.

We can finally deduct that the very high contrast in the results is due to: (i) The accuracy lack of fixed-point
arithmetic; (ii) The accuracy lack of the intrinsic CUDA functions; (iii) The different order of execution of the
operations in GPU architectures with respect to the CPU.
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10 Discussion

A discussion is needed to evaluate speed-up results obtained in this paper. According to other papers related
to acceleration of CG models (Anandakrishnan et al. [2010]), speed-up is in general much smaller than for AL
models. In this paper, we give a detailed explanation of specific characteristics of the simulation model we
target, devising general considerations about the impact of modeling techniques on the achievable speed-up.
These aspects can be summarized in the following contributions: i) A relevant role is played by the force field
for pair potentials, that includes particular representation for water and charges, which depends on the type of
interaction. This leads to frequent divergent branches that impact the overall speed-up9; ii) A second aspect is
related to the complexity of the force fields considered, which requires a large amount of local physical resources
(i.e. registers), that have to be distributed among all threads of a CUDA block thus limiting the total number
of threads per CUDA block, finally impacting the performance; iii) The adoption of transcendental functions to
perform the square root operations. For these kinds of functions the normal 8 and 32 FP units for respectively
the 1.x (such as GTX295) and 2.x (such as GTX480 and C2050) compute capability architectures are not
suitable. Instead, 2 and 4 special function units for single-precision FP transcendental functions are available
for respectively the 1.x and 2.x compute capability architectures (CUDA [2011]). Hence, when these functions
have to be performed the parallelism offered by CUDA architectures is not exploited entirely; iv) Finally, the
pair interaction potentials computation causes a relatively large amount of scattered memory accesses, causing
a considerable texture cache miss rate. That is because neighbors of a bead are not spatially clustered. This
issue could be addressed through additional optimizations obtained by adapting techniques developed for simple
polymer simulations (Anderson et al. [2008]) that cannot be applied as is for CG models characterized from rigid
body constraints and not homogeneous beads types and interactions. These optimizations will be the object of
future work; v) The CPU used for comparison represents a single core but high performance architecture.

In the rest of this section, we provide a more detailed analysis of the most intensive and critical part of code,
the forces kernel, highlighting the conditions controlling the execution flow, that are necessary to account for
the forces computation among heterogeneous bead types and solvent.

10.1 Non-bonded Forces Execution Flows

We report the flowchart of the simulator code, for non-bonded forces calculations in Figure 12. This part
corresponds to lines from 8 to 18 of Algorithm 3. In this code, conditions related to the electrostatic interactions
and soft sticky dipole potential are highlighted.

In the flowchart, condition A (corresponding to line 8 of Algorithm 3) checks whether the neighbor pairi-j
has a distance within the cut-off radius in order for its non-bonded potential contribution to be considered for
further non-bonded forces calculations. Then, condition B that refers to line 10 of Algorithm 3 follows and
checks whether the pairi-j interaction type is an interaction among water beads. The right part of the flowchart,
representing the execution flow of Algorithm 4, including conditions from C to H refers to potential calculation
of pairi-j in the case both beadi and beadj are water beads. If at least one of them is not a water bead, the
non-bonded forces potential will be calculated according to the left part of the flowchart including conditions
from K to Q which show the execution flow of Algorithm 5.

In the flowchart, percentages for two different simulated systems are associated to each condition except for
condition A, whose ”yes” branch is taken as reference for the following statistics.

Each percentage reported indicates the ratio between the times the ”yes” branch is taken, with respect to
the times the ”yes” branch of condition A is satisfied. Only for conditions B and Q the percentage of ”no”
branches is reported as well.

The two percentages reported for each condition refer to two different simulated systems. The right (and
green) percentage refers to a 23K beads simulation of lipids in water solution while the left (and red) percentage
refers to a 23K beads simulation of water only.

It can be observed that from condition A the execution flow may reach the end point of the flowchart in 23
different ways that lead to divergent execution flows among threads of the same warp. The percentage range
goes from 100% to 3.36% for water simulations and from 76.53% to 0.27% for lipid simulations.

The reported statistics show that the execution flow is very heterogeneous, with the various branches taken
depending on the system configuration. This results in a significant probability of having a fraction of the 32
threads of a warp being idle waiting for others to complete. In particular, since the ”yes” branches are on
the longest path and they are associated to low percentages, this implies that most of the threads wait for the
completion of a small number of threads.

9We report detailed information on different execution flows related to bead types and water and charge representations in the
following subsection
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Figure 12: Execution flow of non-bonded forces computation for each pairi-j of total neighbor bead pairs. Each
percentage reported indicates the ratio between the times the related condition ”yes” branch or ”no” branch is
verified, with respect to the times the ”yes” branch of condition A is satisfied. Percentages in red and on the
left of each percentage couple refer to a 23k beads water simulation while green ones on the right refer to a 23k
beads lipids simulation.

10.2 Size of Simulated Systems

A final consideration regards the size of simulated systems. The required device memory, allocated on the
GPU at the beginning of each simulation, increases linearly with the beads number up to the maximum system

21



memory that is limited by 896 MB, 1536 MB and 3072 MB device memory capability for respectively GTX295,
GTX480 and C2050 architectures. In detail, we can simulate up to 475K, 814K and 1630K beads water systems
and 211K, 363K and 726K beads lipid systems on respectively GTX295, GTX480 and C2050 architectures.
Because of the smaller memory occupation of water bead structures, we can simulate larger water systems than
lipid systems.

11 Related Work

Several MD tools have been proposed in the literature. In particular, some of them have been specifically
optimized for GPU acceleration. ACEMD is a biomolecular dynamics software package, designed specifically
for a single workstation with multiple GPUs (Harvey et al. [2009]). HOOMD is another MD simulations software
specifically implemented for running on GPUs (Anderson et al. [2008]). It is specialized in simulations of polymer
systems. NAMD has been the first MD simulation package to include GPU acceleration (Stone et al. [2007]).

In general, these implementations outperform traditional CPU cores by factors ranging from 10 to 20 and
100 in some ideal cases (Stone et al. [2010]). However, while large speed-ups have been obtained for AL mod-
els (Bauer et al. [2011], Rapaport [2011], Ganesan et al. [2011], Friedrichs et al. [2009]), CG models, very re-
cently explored in literature, show much lower speed-up values. For these, a complete characterization like
the one performed in this work was missing. Furthermore, most of the CG models use only one CG bead
type (Sunarso et al. [2010], Anderson et al. [2008], Nguyen et al. [2011]), or are limited to the acceleration of
specific and not complex parts of the model (van Meel et al. [2008], Colberg and Hfling [2011], Zhmurov et al.
[2010], Anandakrishnan et al. [2010], Liu et al. [2008]). In the present work it has been shown that the over-
head introduced by the conditionals and the data structures needed to handle different CG bead types severely
impacts the achievable speed-up.

In Table 9 we outline relevant work about CG model optimization which is the focus of this work.
The electrostatic potential computation has been parallelized on an ATI Radeon 4870 GPU (800 cores),

in Anandakrishnan et al. [2010]. This potential computation implemented by means of an analytical linearized
Poisson-Boltzmann method, is reported to be 182 times faster for the atomistic simulation of a virus capsid
structure with respect to the same conditions of simulation in an Intel Core 2 Duo E6550 processor and 22 times
faster when a CG technique is used to partition the charges, for the same architectures. We can observe that
the speed-up factor obtained for the CG simulation is several times lower than the speed-up factor achieved for
the AL simulation of the same system using the same conditions.

An acceleration of the time integration of particles using a simple LJ potential and a cut-off distance is
reported in Liu et al. [2008], showing speed-up factors of about 7 to 11 over optimized routines from LAM-
MPS (Plimpton [1995]).

In Zhmurov et al. [2010] an 85−fold speed-up is achieved implementing Langevin simulations of proteins
through a CG self-organized polymer model and using the GeForce GTX295 GPU. Langevin dynamics char-
acterizes the viscous aspect of a solvent without fully modeling an implicit solvent. This model does not
consider the electrostatic screening and the hydrophobic effect that are carefully characterized instead in our
model (Orsi et al. [2008]).

A GPU-based MD simulation has been developed in Sunarso et al. [2010] for the study of flows of fluids with
anisotropic molecules such as liquid crystals. A 50 fold speed-up is achieved on a GTX200 series GPU with
respect to an Intel Core i7 940 2.93 GHz processor, for a CG simulation. In addition to the difference between the
macroscopic flow under application of electric field simulations and lipid bilayer simulations, two main differences
in Sunarso et al. [2010] are present with respect to our work: (i) In the CG application in Sunarso et al. [2010]
only one CG mechanical bead type is present: ellipsoid molecules that are treated as symmetric rigid bodies.
Hence, the interaction potential is simplified as well. BRAHMS includes CG beads treated as symmetric
rigid bodies, non-symmetric rigid bodies and point-masses beads. (ii) The cell list in Sunarso et al. [2010] is
updated at every time step of the simulation. Intermolecular forces and torques are calculated using the cell-list
algorithm (used mainly to populate neighbor structures) and taking advantage of the GPU shared memory per
block suitable for this algorithm. In our work the neighbor list update frequency depends on the timestep value.
For the simulations presented with timestep of 1 fs, it is updated approximately every 100 timesteps. Hence,
the non-bonded forces calculations are separated from the neighbor structure generation algorithm where the
very fast shared memory exploitation is appropriate.

Velocity Verlet integrator, cell-list algorithm and only the simple LJ potential are used in van Meel et al.
[2008] to implement MD of CG simulations. Single precision floating point operations are used on an NVIDIA
GeForce 8800 GTX GPU, achieving speed-ups from 2 to 40 with respect to a 3.2 GHz Intel Xeon processor,
depending on the density of particles.

In Colberg and Hfling [2011], a soft-sphere MD application has been implemented for the GPU, to perform
simulations of LJ fluids. The velocity Verlet integrator has been used and only the LJ potential has been
considered in the application. Moreover, compared to our work, only one type of CG particle is present. Speed-
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Work Speed-up
ref.

Main similarities Main Differences
vs. CPU

- AL level

182

- Acceleration of electrostatic
potential computation only
- Virus capsid simulation
- Intel Core 2 Duo E6550 CPU
- ATI Radeon 4870 GPU
- 800 GPU cores

- CG level

- Acceleration of electrostatic

22

potential computation only
- Virus capsid simulation
- Intel Core 2 Duo E6550 CPU
- ATI Radeon 4870 GPU

Anandakrishnan et al. [2010]

- 800 GPU cores
- CG level - Time integration acceleration

7 - 11Liu et al. [2008]
- Cut-off applied - No electrostatics handling

- CG level

- 1 CG bead type

30

- Polymer systems
- Xeon 80546K 3 GHz CPU
- 1 GB RAM CPU
- GeForce 8800 GTX GPU

Anderson et al. [2008]

- 128 GPU cores
- Langevin Dynamics

85
- CG level - Protein simulations
- GeForce GTX295 GPU - 1 CG bead type
- 240 GPU cores - Xeon E5440 CPU

Zhmurov et al. [2010]

- Single FP precision GPU
- Flow under application of

50

- CG level electric field simulations
- Anisotropic molecules - 1 CG bead type
considered - Cell structure built each step
- Cut-off applied - Intel Core i7 940
- 240 GPU cores 2.93 GHz CPU

Sunarso et al. [2010]

- GeForce GTX280 GPU
- No electrostatics handling

2 - 40
- CG level - Intel Xeon 3.2 GHz CPU
- Molecular Dynamics - GeForce 8800 GTX GPU
- Cut-off applied - 128 GPU cores

van Meel et al. [2008]

- Single FP precision GPU
- CG level

2.5 - 40
- Rigid body constraints - 1 CG bead type
- Complex beads shapes - No electrostatics handling
- GeForce GTX480 GPU - 5 to 90 particles per

Nguyen et al. [2011]

- 480 GPU cores rigid body
- LJ fluids simulations

4 - 80

- No electrostatics handling
- CG level - 1 CG bead type
- Molecular Dynamics - AMD Opteron 2216 HE
- 240 GPU cores 2.4 GHz CPU

- GeForce GTX280 GPU

Colberg and Hfling [2011]

- Single FP precision GPU

Table 9: Comparison of state-of-the-art related works with our work reporting main similarities and differences
from our work.

ups of 4 to 80 folds are achieved in an NVIDIA GeForce GTX 280 GPU with respect to a 2.4 GHz AMD
Opteron 2216 HE processor, for the application, using single FP precision.

12 Conclusions

In this work we presented an optimized, accelerated version of a coarse grain molecular dynamics simulator on
GPU architectures. We described the optimization in terms of computation and data structures, specifically
targeted to CG models, taking into account bead type heterogeneity.

We compared molecular systems of different complexity, composed of water and lipids, observing that lipid
systems achieve a speed-up almost 2 times slower than water systems.

We performed an evaluation of the impact of CG features on the speed-up, and explored how these features
affect the achievable acceleration on three different GPU architectures and in case of single and double precision
arithmetic. We obtained a maximum speed-up of 13.88 for water systems and 7.9 for lipids on the GTX480
architecture for 20 fs timestep simulations. Moreover, we analyzed the dependance of the achievable speed-
up from the timestep value, obtaining slightly greater speed-up values for simulations with larger timestep
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duration. We performed a detailed analysis of CG features and their impact on the achievable acceleration, to
devise guidelines for writing more efficient CG MD codes.

Finally, we demonstrated the correctness of the accuracy of the simulations in the GPU architectures and
discovered a more stable trend of total and potential energy values for simulations on C2050 and GTX480
architectures with respect to the simulations in CPU.
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