
29 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Hierarchical Learning for Fine Grained Internet Traffic Classification / Grimaudo, Luigi; Mellia, Marco; Baralis, ELENA
MARIA. - STAMPA. - (2012), pp. 463-468. (Intervento presentato al convegno 3rd International Workshop on TRaffic
Analysis and Classification TRAC 2012 tenutosi a Limassol, Cyprus nel August 2012) [10.1109/IWCMC.2012.6314248].

Original

Hierarchical Learning for Fine Grained Internet Traffic Classification

Publisher:

Published
DOI:10.1109/IWCMC.2012.6314248

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2502294 since:

IEEE

Hierarchical Learning for Fine Grained
Internet Traffic Classification

Luigi Grimaudo
Politecnico di Torino, Italy
luigi.grimaudo@polito.it

Marco Mellia
Politecnico di Torino, Italy
marco.mellia@polito.it

Elena Baralis
Politecnico di Torino, Italy
elena.baralis@polito.it

Abstract—Traffic classification is still today a challenging prob-
lem given the ever evolving nature of the Internet in which new
protocols and applications arise at a constant pace. In the past,
so called behavioral approaches have been successfully proposed
as valid alternatives to traditional DPI based tools to properly
classify traffic into few and coarse classes. In this paper we push
forward the adoption of behavioral classifiers by engineering a
Hierarchical classifier that allows proper classification of traffic
into more than twenty fine grained classes.
Thorough engineering has been followed which considers both

proper feature selection and testing seven different classification
algorithms. Results obtained over actual and large data sets show
that the proposed Hierarchical classifier outperforms off-the-shelf
non hierarchical classification algorithms by exhibiting average
accuracy higher than 90%, with precision and recall that are
higher than 95% for most popular classes of traffic.

I. INTRODUCTION

The identification and characterization of network traffic is
at the base of network management activities for an operator.
Through the continuous monitoring of the traffic, security
policies can be deployed and tuned, anomalies can be detected,
changes in the users behavior can be identified so that QoS
and traffic engineering policies can be continuously improved.
In the last years, several traffic classification techniques have

been proposed to overcome the limit of original port-based
classifiers. Most popular approaches are coarsely based on
deep packet inspection (DPI) or behavioral techniques. In the
first case, the traffic is classified looking for specific tokens
inside the packet payload. Behavioral techniques try to over-
come the limitations of DPI by exploiting some description of
the application behavior by means of statistical characteristics,
such as the length of the first packets of a flow. See [1] for a
detailed discussion of related work.
Both DPI and behavioral classifiers are supervised tech-

niques. However, in case of DPI, the training is often cumber-
some and complex, since it involves in most cases the manual
identification of the tokens and regular expressions that define
a class. In case of behavioral classifiers instead, the adoption
of classification algorithms allows to automatically define the
rules to label flows, provided a good training set is available.
Behavioral approaches bring other advantages with respect to
DPI: i) They do not inspect the packet payload, thus preserving
privacy, and can then be used for lighter monitoring such
as the one offered by, e.g., netflow; ii) They can be easily

extended by going through a quicker retraining phase; iii)
The decision process can be computationally lightweight since
feature computation is typically much simpler than regular
expression parsing.
However, behavioral classifiers suffer from some drawback

too [2]: i) A proper training set must be available, including
a training set for the “unknown” class, i.e., flows that do
not belong to any of the targeted classes; ii) Training must
be customized to the monitored network, i.e., training is not
portable; iii) And they are known to provide good accuracy
when considering few and coarse traffic classes, like HTTP
vs Peer-to-Peer (P2P) vs email. The last issue is particularly
critical given the current trend to have a convergence of most
applications going over the same protocol, namely HTTP.
Therefore one natural question arises: is it possible to push
further behavioral classifiers to correctly identify a large and
granular set of classes? For instance, could it be possible
to identify application specific traffic that runs over HTTP,
like distinguishing Facebook, YouTube, or Google Maps traf-
fic? How to handle the unknown class? In this paper we
address this latter problem by engineering and evaluating
the performance of a novel Hierarchical behavioral classifier.
The intuition is to split the classification process of flows
into several stages. At the beginning, coarser classes are
used, while in following stages finer grained classification
is performed. Classifiers are organized in a tree-based struc-
ture, defined according to our domain knowledge. Each node
is an independent classifier which operates on a subset of
flow features specifically selected to maximize its accuracy,
precision and recall. The root node simply separates flows
into “unknown” or “known” protocols. The latter set is then
classified into 7 classes, with P2P and HTTP appearing as
generic classes to be further refined at the next step. For
instance, 10 possible subclasses are possible for HTTP traffic.
We consider a benchmark in which 23 different classes are

provided by an “oracle”. We use Tstat [3], our DPI-based tool
as ground truth generator. Extensive and thorough experiments
are run considering 22 different data set collected from a large
ISP network and 3 additional data sets collected from our
campus network. Results show that the proposed approach
outperforms classical machine-learning based classification
algorithms, which fail in handling flows of the “unknown”
class, and when the number of samples in the training set is

TABLE I
SET OF PROTOCOLS IDENTIFIED BY TSTAT THAT HAVE MORE THAN 50

SAMPLES IN ONE OF THE DATA SETS USED FOR TRAINING SET.

ID Class Byte Flow Application protocol
1 Unknown/other 1.2G 355k Unclassified or belonging to discarded classes
2 SMTP 394M 44k Simple Mail Transfer Protocol - RFC 5321
3 POP3 182M 6k Post Office Protocol - RFC 1939
4 IMAP4 55M 419 Internet Message Access Protocol - RFC 3501
5 SSL/TLS 968M 25k Transport Layer Security protocol - RFC 5246
6 MSN 4M 137 Microsoft Messanger MSN Protocol
7 MSN HTTP 12M 162 Microsoft Messanger MSN

Protocol tunneled over HTTP
8 Flickr 105M 2k Flickr Photo download over HTTP
9 ADV 159M 11k Advertisement content download over HTTP
10 MegaUpload 2.1G 225 Megaupload file download over HTTP
11 Gmaps 218M 2k Google Maps images download over HTTP
12 Wiki 28M 661 Wikipedia content download over HTTP
13 Facebook 1.6G 40k Facebook web page content download over HTTP
14 OpenSocial 6M 241 OpenSocial based social networks over HTTP
15 YouTube Video 4.9G 796 YouTube flash video streams over HTTP
16 YouTube Site 4G 4k YouTube web page static content

download over HTTP
17 Flash Video 848M 560 Generic flash video streams over HTTP
18 RTMP 72M 56 Generic flash video streams over

Real Time Messaging Protocol
19 Other Video 200M 60 Generic video content over HTTP
20 ED2K Obf 23.6G 28k Obfuscated Emule Protocol
21 ED2K 59G 17k Plain Emule Protocol
22 BT 3G 14k BitTorrent Peer Wire Protocol
23 BT MSE/PE 3G 16k Encrypted BitTorrent Peer Wire Protocol

heavily unbalanced, as typical in real scenarios. The hierarchi-
cal classifier instead achieves better results thanks to splitting
the decision process into several stages, each involving fewer
classes.

II. DATA SET AND CLASSES

For the experiments carried out in this paper we rely
on the traffic monitoring and classification capabilities of
Tstat [3], the passive sniffer developed at Politecnico di Torino
since 2000 which is freely available from [4]. Tstat passively
monitors network traffic carried on a link. It is capable to
rebuild each TCP flow, computing a number of statistics.
A complex DPI classifier is able to identify more than 50
different protocols. Its accuracy has proved to be very reliable
in the past [5]. Among all possible traffic classes that Tstat
is able to classify, we selected those for which at least 50
flows are present in each data set. Table I details the list of
applications we target, showing also their predominance in one
of the data sets used for training. Protocols and application are
coarsely grouped to easy readability. As it is possible to see,
we consider both simple and well known application protocols
(SMPT/POP3/SSL/etc.), and finer grained classification. For
example, we would like to distinguish among plain and
obfuscated P2P protocols; for HTTP traffic, we would like to
identify Facebook separately from social network platforms
based on Google OpenSocial protocol. In total we consider
23 different classes.
To run performance evaluation on actual traffic, packet

traces have been collected from two real networks: a nation-
wide ISP in Italy that offers us three different vantage points,
and our Campus network. ISP vantage points expose traffic
of three different Points-of-Presence (POP) in different cities
in Italy; each PoP aggregates traffic from more then 10,000

 200

 300

 400

 500

 600

 700

 800

12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9

N
um

be
r o

f F
lo

w
s

[x
10

00
]

Training dataset

Fig. 1. Number of flows in each ISP data set of 1 hour.

ISP customers, which range from home users to Small Office
Home Office (SOHO) accessing the Internet via ADSL or
Fiber-To-The-Home technology. It represents therefore a very
heterogeneous and challenging scenario. We define a data set
as the set of all flows observed from a vantage point during
a one-hour long time interval. In this paper we focus our
attention to one of the three ISP vantage points from which
we have collected 22 different data sets, i.e., 22h long trace.
Fig. 1 shows the number of flows that are present in each
ISP data set. As expected, the number of flows grows during
the day when web traffic is predominant. During the night,
fewer flows are present, most of them due to P2P traffic. At
17:00, traffic reaches the peak. We consider this particular
data set as “training data set” in the following. Other data sets
are used for testing and validation purposes. Table I details
the breakdown of the h.17 data set among different classes
for Bytes and flows. Notice that some classes have several
thousands of flows, while others count no more than few tens
of flows.
Finally, 3 completely different data sets have been collected

from our campus network and will complete our analysis. This
represent a different scenario, in which traffic generated by
more than 20,000 students, professors and staff members is
present. In this scenario, there is little P2P traffic, since a
firewall blocks plain P2P protocols.

A. Performance metrics
Performance of a classifier are typically assessed consider-

ing the overall accuracy, recall, precision and F-measure [6].
Accuracy, is the ratio of the sum of all True Positives

(prediction and ground truth are in agreement) to the sum of
all tests, for all classes. Accuracy however is biased toward
the most predominant class in a data set.
Precision, for a given class, is the ratio of True Positives

and the sum of True Positives and False Positive (a sample
of another class that has been labeled as of this class). It
determines the fraction of samples that actually turns out to be
positive in the group the classifier has declared as a positive
class. The higher the precision is, the lower the number of
false positive errors committed by the classifier.
Recall, for a given class, is the ratio of the True Positives

and the sum of True Positives and False Negatives (a sample of
the class is labeled as not). It measures the fraction of positive

ROOT

GENERAL UNKNOWN

P2P SMTP POP3 SSL/TLS IMAP4 MSN HTTP

BITTORRENT BITTORRENT
MSE/PE

ED2K
OBF ED2K FLICKR OPEN

SOCIAL
MSN
HTTP ADV FACEBOOK VIDEO WIKIPEDIA GMAPS MEGAUPLOAD RTMPT

YOUTUBE
SITE

FLASH
VIDEO

YOUTUBE
VIDEO

OTHER
VIDEO

Fig. 2. Tree structure for the Hierarchical classifier.

samples correctly predicted by the classifier. Classifier with
large recall have very few positive example misclassified as
the negative class.
F-Measure, a widely used metric in classification, weights

both precision and recall in a single metric by taking the
harmonic mean: 2 × Recall× Precision / (Recall + Precision).
In this paper we report Recall and F-Measure metrics to

assess per-class performance, while Accuracy will be provided
when comparing overall results. The complete set of results
can be found in [1]. All experiments have been carried out
using RapidMiner [7] on a 8-cores Intel Xeon E5450 based
server PC equipped with 32GB of ram. Computational costs
will be reported considering this setup.

III. HIERARCHICAL CLASSIFICATION
All classification algorithms share the same idea: given a

description of the object to classify in terms of “features”,
find the most likely class according to a model that has been
derived from a set of objects properly labeled, i.e., the “training
set”. Which algorithm and which features to use are key
points to address in the design of the classifier. Our proposal
has been designed by performing a thorough selection among
different alternatives. The key and novel idea we leverage is
to build a classification scheme which is based on a hierarchy
of classifiers. This allows each classifier to work on a limited
subset of classes and on a specialized subset of features, i.e.,
the features that are most suitable to distinguish among the
considered classes. In the following we describe the overall
process.

A. Hierarchy Definition
All classification algorithms are known to suffer when the

number of classes they have to choose among increases.
For example, it can be easy to split P2P traffic from HTTP
traffic. How to however correctly classify the single application
running over HTTP may be trickier. Moreover, for example
the features that allow to separate P2P traffic from HTTP
traffic may be useless when trying to separate YouTube from
Facebook flows.
The key idea we leverage in this paper is to design a

classification scheme based on a hierarchy of classifiers. At

first, the flow will be classified into few coarse classes. At
the following stages, finer and finer grained classification is
achieved. To define the hierarchy, we rely on our domain
knowledge. Fig. 2 shows the Hierarchical classifier we propose
in this paper. Gray nodes are sub-classifiers and white nodes
represent the final classes. We use five classifiers. At the root,
flows are split among the “known” and “unknown” classes.
Then, a general classifier decides among protocols that we
know it is easy to distinguish: P2P, HTTP, SMTP, etc., are
well defined classes that have been already shown to be easily
identified using behavioral algorithms [2]. At the next step,
some classes can be further split into subclasses. For example,
P2P traffic is split into BitTorrent versus eMule, while HTTP
traffic is split into finer grained applications. Finally, video
streams over HTTP will be further classified among YouTube
streams, YouTube web site objects, generic Flash Video, or
other Video streams.
In the following, for comparison purposes, we consider

a classical classifier based on a single stage, in which the
classification decision has to be taken at the root node directly.
We refer to this case as “Flat” classifier.

B. Feature Selection
For each classifier, the proper set of features must be

selected. In the context of traffic classification, most of the
proposals so far relies on a set of features that have been
chosen based on authors’ domain knowledge. For example,
[8] uses a list of features that the authors think to be good to
distinguish P2P traffic from client-server traffic. Similarly, [9]
uses the size of the first packets as features given the focus
on the “early traffic classification”. While the choice of the
features can be intuitive when dealing with few classes of
traffic, it becomes suddenly difficult to properly select the most
prominent features that allow to distinguish between a large
list of applications. For example, how to distinguish YouTube
video streams from other flash video streams?
In machine learning field, well-known algorithms have been

proposed to solve the problem of feature selection, i.e., tech-
niques for selecting a subset of relevant features for building
robust learning models [10]. Among the different algorithms,
the “minimum-Redundancy-Maximum-Relevance” (mRMR)

TABLE II
SELECTED FEATURE ON THE SERVER TO CLIENT TRAFFIC.

Features

Classifier TC
P
po
rt

RS
T
se
nt

PU
RE

A
CK

se
nt

un
iq
ue
by
te
s

da
ta
pk
ts

da
ta
by
te
s

RF
C1
32
3
w
s

RF
C1
32
3
ts

W
N
D
SC
A
LE

fa
ct
or

Se
rv
er
SA
CK

re
q.

M
SS

m
ax
se
gm
en
ts
iz
e

m
in
se
gm
en
ts
iz
e

RW
N
D
m
ax

RW
N
D
m
in

CW
N
D
m
ax

CW
N
D
m
in

in
iti
al
CW

N
D

std
ev
RT
T

m
in
TT
L

m
ax
TT
L

la
st
se
gm
en
tt
im
e

m
sg
1
siz
e

m
sg
2
siz
e

m
sg
5
siz
e

m
sg
7
siz
e

m
sg
8
siz
e

m
sg
10
siz
e

#
se
gm
en
ts

se
g
1
siz
e

se
g
2
siz
e

se
g
3
siz
e

se
g
4
siz
e

se
g
5
siz
e

se
g
6
siz
e

se
g
7
siz
e

se
g
8
siz
e

se
g
9
siz
e

se
g
10
siz
e

se
g
7
IP
G

#
fe
at
ur
es

Flat x 26
ROOT x x x x x x x x x x 10
General x x x x x x x x x x 10

P2P x x x x x x x x 8
HTTP x 22
Video x x x x x x x x x x x 11

algorithm is considered as the state-of-the-art [11]. mRMR
is an approximation of the theoretically optimal maximum-
dependency feature selection that maximizes the mutual infor-
mation between the joint distribution of the selected features
and the classification variable. The input of the feature selec-
tion algorithm is a “training” data set, in which all possible
flow features are provided and flows are correctly labeled. The
algorithm selects then the subset of most relevant features to
properly assign the correct class. As initial set of features,
we use all behavioral layer-4 features that are provided by
Tstat. The overall list includes more than 200 features, most
of which have been proposed in the past literature. For the
sake of brevity we do not report the complete list.
Feature selection can be run independently for each classi-

fier. This allows us to actually select a different set of features
for each sub-classifier, a key and desirable property. The
results of the feature selection are reported in Table II which
report the subset of features selected for each classifier consid-
ering server to client flow features ([1] details the whole sets).
Three considerations hold: First, the list of selected features
includes some intuitive choices, but also some unexpected
selections. For example, the server RWND scale factor have
been found to be useful by the ROOT and HTTP classifier
only. Second, different classifiers use different features. Third,
the Flat classifier has to consider 45 (26+19) features entailing
a larger complexity; at most 35 (22+13) features have been
selected for any hierarchical stage.

C. Classification Algorithm Selection

The proper classification algorithm has to be selected among
the large number of approaches discussed in the literature:
Naive Bayes, Bayesian Kernel Estimation, Rule Based, Deci-
sion Trees, Neural Networks, Support Vector Machine (SVM),
K-Nearest Neighbor (K-NN) are popular techniques, each
leveraging some different idea [10]. Most of these have also
been used in the context of traffic classification [2], [12] with
good results when dealing with few classes.
We run a preliminary set of experiments to see which is the

classifier that would guarantee the best performance. For each
algorithm, we consider the training data set. We apply the ten-
fold cross-validation methodology to estimate the accuracy of
each classifier.

Figure 3 reports the average among classes of the F-
Measure and the Recall, on top and bottom plot, respectively.
Performance of the Flat classifier (black) and the Hierarchical
classifier (gray) are reported for each classification algorithm.
First, notice that we were not able to complete the test of
the SVM and the K-NN Flat classifiers, that were not able
to complete the experiment after three days. As well known,
dealing with a large number of classes and features poses
computational issues for some algorithms. The Hierarchical
solution scales better, since each classifier has to deal with
a smaller number of classes and features. More details are
provided in Sec. IV-C.
Second, the Hierarchical classifier outperforms the Flat

classifier considering any classification algorithm. Average F-
Measure and Recall are both smaller than 80% for the Flat
classifier. On the contrary, the Hierarchical classifier achieves
performance higher than 95% for both metrics when a Deci-
sion tree is used. This suggests that the problem in designing
a Flat classifier is not in the choice of the classification
algorithm; rather, any algorithm performs poorly with a large
number of traffic classes. Therefore some ingenuity has to
be used to improve performance, justifying the need for a
hierarchical solution.
For the Hierarchical classifier, the Decision Tree is the only

classifier that achieves excellent results for all sub-classifiers in
the hierarchy. Other algorithms exhibit more variable results.
For example, the SVM performs very well for P2P classifica-
tion, but it performs poorly for Video classification. Note that
the Hierarchical classifier allows also the selection of different
classification algorithms for each internal sub-classifier. In
the following we restrict our attention to the Decision Tree
classifier only.

IV. APPLICATION TO REAL TRACES

We now provide a more extensive and thorough perfor-
mance evaluation. We start by considering the performance
of the Hierarchical versus Flat classifier considering each
subclass. We consider as training data set the ISP trace
collected at h.17, and the h.18 trace for testing. Figure 4 details
the results. Top plots compare the absolute F-Measure for each
class; while plots on the bottom quantify the improvement
guaranteed by the Hierarchical classifier for F-measure and
Recall, respectively. Classes appear in the same order as in

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Bayes
KernelBayes

RuleBased

DecisionTree

NeuralNet

SVM
K-NN

F-
m

ea
su

re
 [%

]

Flat Hier

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Bayes
KernelBayes

RuleBased

DecisionTree

NeuralNet

SVM
k-NN

R
ec

al
l [

%
]

Flat Hier

Fig. 3. Comparison of different classification algorithms. Average F-measure
and Recall considering ten-fold cross-validation test on a 1h long trace from
ISP.

Table I. Results allow to appreciate the benefit of the Hierar-
chical approach. F-Measure improves for all classes by 28%
on average. Notably, some classes are basically ignored by
the Flat classifier, e.g., MSN. On the contrary, the Hierarchical
classifier deals with MSN flows at the Generic sub-level, where
only 7 classes have to be identified. The F-Measure for MSN
class then tops to 98%.
Recall improves by about 10% overall, since for some

classes the Flat classifier is already achieving good results. In
some cases, the Recall decreases by some percentage points.
Notice that these are border cases in which the Flat classifier
reaches good Recall, but bad F-Measure, i.e., bad Precision.
For instance, consider the You-Tube Video class. In this case,
the number of False Negatives is small, but the number
of False Positives is very high. The Hierarchical classifier
improves the F-Measure (thus lowering the False Positive) and
overall it performs much better also in this case (F-measure
grows by 80%).
Notice that also popular classes are misclassified by the

Flat classifier. For example, the Unknown class has very poor
performance. Since the Recall is only 15%, the number of
False Negative is very large. This is clearly critical, making
it impractical to use the Flat classifier given that most of the
unknown flows will be classified as one of the known classes.
The Hierarchical classifier on the contrary is able to achieve
excellent performance, with Recall and F-Measure higher than
95%.

A. Robustness versus time
One interesting question to answer is how the performance

of a classifier change over time. Assume to train the classifier

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

SMTP

POP3

IMAP4

SSL/TLS

MSN
MSN_HTTP

Flickr
ADV

MegaUpload

GMaps

Wiki
Facebook

OpenSocial

YouTube-Video

YouTube-Site

Flash-Video

RTMPT

Other-Video

ED2K

ED2K-Obf

BitTorrent

BitTorrent-MSE/PE

Unknown

F-
m

ea
su

re
 [%

]

Flat Hier

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

SMTP

POP3

IMAP4

SSL/TLS

MSN
MSN_HTTP

Flickr
ADV

MegaUpload

GMaps

Wiki
Facebook

OpenSocial

YouTube-Video

YouTube-Site

Flash-Video

RTMPT

Other-Video

ED2K

ED2K-Obf

BitTorrent

BitTorrent-MSE/PE

Unknown

Im
pr

ov
em

en
t [

%
]

F-measure Improvement

-20
-10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

SMTP

POP3

IMAP4

SSL/TLS

MSN
MSN_HTTP

Flickr
ADV

MegaUpload

GMaps

Wiki
Facebook

OpenSocial

YouTube-Video

YouTube-Site

Flash-Video

RTMPT

Other-Video

ED2K

ED2K-Obf

BitTorrent

BitTorrent-MSE/PE

Unknown

Im
pr

ov
em

en
t [

%
]

Recall Improvement

Fig. 4. F-Measure and Recall for each class for the Hierarchical and Flat
classifiers. Training on h.17 data set and testing on h.18 data set. ISP trace.

with a given data set collected at a given time. What happens
if the classifier is used later? To answer this question we
consider the whole ISP data set, which is 22h long. Training
of the classifier is done considering the usual h.17 data set.
Then performance is evaluated on the other 21 different data
sets. To validate the statistical significance of the performance
improvements, we used the paired t-test [13] at 95% of
significance level for each data set. The overall Accuracy is
reported in Figure 5. It shows that the Hierarchical classi-
fier significantly outperforms the Flat classifier. The former
guarantees an overall accuracy always higher than 88%, while
the latter achieves reasonable performance only during night
time when the traffic is dominated by P2P traffic and thus few
classes are “active”. During the day it barely reaches 70% of
overall Accuracy.

B. Experiment considering other data sets
We have repeated the experiment considering other data

sets. For the sake of brevity, we report only one experiment
considering two 1-hour long traces collected from our campus
LAN at h.15 and h.19 on a normal working day. As previously,

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9

Ac
cu

ra
cy

 [%
]

Hour of the day

Training dataset

Flat classifier
Hierchical

Fig. 5. Accuracy of the Hierarchical classifier when used in real time. One
day long data set from ISP.

-20
-10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

SMTP
POP3

IMAP4
SSL/TLS

MSN
MSN_HTTP

Flickr
ADV

MegaUpload

GMaps

Wiki
Facebook

OpenSocial

YouTube-Video

YouTube-Site

Flash-Video

RTMPT

Other-Video

ED2K
ED2K-Obf

BitTorrent

BitTorrent-MSE/PE

Unknown

Im
pr

ov
em

en
t [

%
]

Recall Improvement

Fig. 6. Improvement for each class for the Hierarchical and Flat classifiers.
Testing on Campus data set.

training has been done considering the h.15 trace and testing
is done on the h.19 trace. The Recall improvement is reported
in Figure 6. Also in this case the Flat classifier provides good
results for some classes, while it completely misses others,
while the hierarchical classifier improves results especially for
less popular classes.

C. Computational Complexity
To gauge the overall computational costs of the classifiers,

we were able to completely classify a 1h long data set in less
than 1 second and using a very limited amount of memory; i.e.,
classification cost are very light. The Flat classifier can classify
89,750 flows per second, while the hierarchical classifiers tops
to more than 368,400 decision per second. This results are
mainly due to the adoption of a Decision Tree classifier at
each node. Memory cost is also negligible. Notice that the
Hierarchical classifier can be naturally implemented using
parallel processes organized in a pipeline. These results show
that it is possible to actually use the classifier in on-line
system.
Considering training cost, Table III reports the overall time

need to perform a training on a 1h long trace. The campus
network data set is considered, in which a total of 1.6M flows
is present. Both total CPU execution time and total memory
usage are reported considering the training phase. As it can be
seen, the adoption of a hierarchy of classifiers allows to greatly
reduce the computational cost and the maximum memory
required at any given time. Each sub-classifier indeed benefits
from the reduced number of classes and features. Moreover,

TABLE III
COMPUTATIONAL AND MEMORY COST FOR DIFFERENT CLASSIFIERS TO

EXECUTE A TRAINING PHASE ON A 1H LONG CAMPUS DATA SET.

Flat Root General HTTP P2P Video Total
CPU time [s] 7849 1207 389 589 48 74 2307
Memory [GB] 29 17 11 13 3.4 2.5 46.9

fewer flows have to be considered to build the model and only
those flows that belong to the subset of considered classes have
to be taken into account. Note that the training phase cost is
relatively important since it has to be seldomly performed off-
line.

V. CONCLUSION
In this paper we presented a novel Hierarchical classifier,

based on classification algorithms, that achieves excellent
results even when considering fine grained classification of In-
ternet TCP flows. We implemented a proper feature selection,
selected the best approach among 7 different classification
algorithms, tested the approach by ten-fold cross validation
and t-test to check the significance of the experiments.
Considering real traffic traces captured from operative net-

works, we have shown the benefit of using a hierarchical
approach: i) classification performance is boosted, ii) compu-
tational complexity is reduced, iii) robustness to the training
set is achieved. Results demonstrate that behavioral classifiers
can be finally considered a reliable means for fine grained
traffic classification in the real world.

ACKNOWLEDGMENT
This work was supported by Narus, Inc. Authors are deeply

thankful to Dr. Ram Keralapura and Dr. Antonio Nucci for
their support and fruitful discussions.

REFERENCES
[1] L. Grimaudo, et al., “Hierarchical Learning for Fine Grained Internet

Traffic Classification”, available from http://www.tlc-networks.polito.it/
mellia/papers/TR31012012.pdf

[2] H. Kim, et al., “Internet Traffic Classification Demystified: Myths,
Caveats, and the Best Practices”, ACM CoNEXT, Madrid, SP, December
2008.

[3] A. Finamore, et al., “Experiences of Internet traffic monitoring with
Tstat”, Network, IEEE, Vol.25, N.3, pp.8-14, May 2011.

[4] http://tstat.polito.it, Tstat home page.
[5] M. Pietrzyk, et al., “Challenging Statistical Classification for Operational

Usage : the ADSL Case”, ACM IMC, Chicago, IL, November 2009.
[6] P.N. Tan, et al., “Introduction to data mining,” Pearson Addison Wesley

Boston, 2006
[7] I. Mierswa, et al., “YALE: Rapid Prototyping for Complex Data Mining

Tasks,” 12th ACM SIGKDD - KDD-06, Philadelphy, PA, August 2006.
[8] T. Karagiannis, et al., “Blinc: Multilevel traffic classification in the dark”,

ACM SIGCOMM, Philadelphia, PA, August 2005.
[9] L. Bernaille, et al., “Early application identification”, ACM CoNEXT,

Lisboa, PT, December 2006.
[10] D. J. Hand, et al., “Principles of Data Mining”, MIT press, 2001.
[11] H.C. Peng., et al., “Feature selection based on mutual information:

criteria of max-dependency, max-relevance, and min-redundancy”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No.
8, pp. 1226-1238, 2005.

[12] T. Nguyen, et al., “A Survey of Techniques for Internet Traffic Classi-
fication using Machine Learning” IEEE Communications Surveys and
Tutorials, vol. 10 no. 4, 2008.

[13] T.G. Dietterich, “Approximate Statistical Tests for Comparing Super-
vised Classification Learning Algorithms”, Neural Computation, V.10,
N.7, pp.1895-1923, MIT press, 1998.

