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A systematic analysis of the linear and nonlinear optical properties of realistic quantum wires is presented.
The proposed theoretical approach, based on a set of generalized semiconductor Bloch equations, provides a
full three-dimensional multisubband description of carrier-carrier correlation for any profile of the confinement
potential, thus allowing a direct comparison with experiments on available structures. In agreement with
previous investigations based on simplified one-dimensional models, our analysis shows that, also for realistic
guantum-wire structures, electron-hole Coulomb correlation completely removes the one-dimensional band-
edge singularities from the linear-absorption spectra. Moreover, we find that this effect is present also at high
densities(corresponding to gain regimeand contributes significantly in suppressing the ideal sharp features
of the free-carrier density of states. The multisubband nature of available state-of-the-art structures is found to
play a dominant role in determining the overall spectral shape in the whole density HBRES3-
182996)05123-5

I. INTRODUCTION confinement has been demonstrated for the lowest
level }6-810yhile excited states gradually approach a 2D-
One-dimensiona(1D) semiconductor structures have re- like behavior. Also, subband separation is still relatively
ceived much interest in recent years, and promising advancesnall in all the available samples, so that coupling between
have been obtained in quantum-wire fabrication and in apdifferent subbands may be important.
plications, e.g., to laser devickshe current research aims  The purpose of the present paper is to introduce a theo-
at achieving structures with improved performance with re—retical scheme allowing a full three-dimensional treatment of
spect to their three-dimensionéD) and two-dimensional Coulomb correlation in multisubband nanostructures with re-
(2D) counterparts, by taking advantage of the 1D singulari-alistic geometries, in a wide range of temperatures and car-
ties that are expected in the density of states and opticaler densities. Our approach is based on a set of generalized
spectra on the basis of single-particle band models. semiconductor Bloch equations, which are solved within the
However, it is now well known that excitonic and corre- Hartree-Fock approximation and provide the modified opti-
lation effects may be very important in low-dimensional cal spectrum for bound and continuum states in the linear
semiconductoré? For 1D systems, such effects were studiedand nonlinear regimes. Moreover, the calculations allow us
mostly within single-subband one-dimensional mod@éts  to understand the ingredients that are responsible of such
cluding electron-hole interaction through modified 1D Cou-modifications.
lomb potential.*® Within these models, the band-edge sin-  Within such scheme, we shall address the key issue,
gularity in the 1D density of statd®0S9) is smoothed when whether electron-hole correlation is still expected to heavily
excitonic effects are taken into account; moreover, Coulomlaffect the optical spectra of quantum wires when their actual
correlation is found to reduce the absorption spectrum abovsize and shape are taken into account. We shall also discuss
the band edge, contrary to the well known results for 2D andn which cases its effects may hinder the possible advantages
3D system$. of the reduced dimensionality in the intervals of temperature
The influence of Coulomb correlation on the optical spec-and carrier density, which may be relevant for device appli-
tra of realistic wires and its implications for device perfor- cations. Apart from its relevance in terms of basic many-
mances has not been fully explored so far. It is, thereforebody Coulomb theory, the answer to these questions is im-
important to extend the above studies to the wires madeortant for the perspectives of quantum-wire physics and
available by state-of-the-art technology, which are still fartechnology.
from an ideal 1D nature owing to the size and shape of their The paper is organized as follows. In Sec. Il, we describe
confinement potential. Indeed, inV-groove®1® or  the proposed theoretical approach, we introduce the physical
T-shaped cleaved-edge structutesjuasi-one-dimensional system as well as the kinetic equations, and discuss the in-
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gredients and the typical quantities obtained as an output of For the ideal case of rectangular wires with infinite poten-
the calculations. Section Ill presents our numerical resultsial barriers, the problem can be again factorized along the
for a typicalV-shaped quantum wire: In Sec. lll A the single- two confinement directiong andy.'? On the contrary, for
particle results are presented, while in Sec. Ill B the varioushe case o¥/-shaped;®~81or T-shaped structurés,we are
many-body effects induced by Coulomb correlation are disforced to consider a truly two-dimensional approach. Our
cussed both in the linear and nonlinear regimes. Finally, imumerical solution of the 2D Schilinger equation(1),
Sec. IV we discuss the implications of our results and drawwvhich is based on a plane-wave expansion with periodic

some conclusions. boundary conditions, is described in Appendix A. Such a
numerical approach can be easily generalized to the case of
Il. THEORETICAL APPROACH an applied magnetic field as described in Ref. 13.

) ) o ~ In terms of the above single-particle representation

The physical system under investigation is a gas of carrifk ;1 [ie., the set of 3D eigenfunctionsbg(r)
ers confined in a quasi-one-dimensional semiconductor ° oy, K.z . z
structure. As usual, the total Hamiltonian of the system can ¢v (x.y)e"=* and the corresponding band structuﬁéﬂ],
be regarded as the sum of two terms: A term describing théhe single-particle Hamiltonian, i.e., the Hamiltonian de-
single-particle properties, i.e., free carriers plus confinemengcribing the free carriers within our 1D structure interacting
potential plus carrier-light interaction, and a term describingwith a classical light field, can be written as
many-body effects, i.e., Coulomb correlation. As usual, the

latter will be treated within some approximation scheme. s e At h o ot
HP= E szveckzveckzve+ I(Evh szvhdkzvhdkzvh
4

kzve
A. Single-particle description

Let us consider the gas of noninteracting carriers, elec- ~ > (M, Eoe i otel, dty
trons €) and holes k) confined within the quasi-one- z:vern
dimensional semiconductor structure. The quantum confine- +Mic 3(t)eletd*kzthkzve]' ®)

ment is described in terms of a potentigl", the height of
which is dictated by the conduction-valence-band discontiwhere the second-quantization operatofs, (d| ,) and

nuities. : . . . ¢k, (dy,.) describe, respectively, the creation and the an-
Since the energy region of interest is relatively close to rz]le _z'h | hol® | K K

the wire band gap, we describe the bulk band structure ifinilation of an electrora holg in statek,ve (k,vn). Here,

terms of the usual effective-mass approximation. In addition,

since the confinement potential®" is a slowly varying M ., :MEu"(f dx dyé™ (x,y) 6" (x,y) ()

function on the scale of the lattice periodicity, we work e z e "

within the “envelope-function approximation.” _ denotes the dipole matrix element for the optical transition
By denoting ‘Z'r:‘h_z the free wire direction, the confine- \ ,, .\, ~ while Eq(t) is the amplitude of the external

ment potentialV¢™ is a function of the two confinement |ignt field with frequencyw, . The carrier-light interaction is

directionsx andy only; Therefore, the system is still trans- yreated within the usual dipole and rotating-wave approxima-
lationally invariant along the wire direction and thiecom-  {jgns.

ponent of the carrier wave vectty is a “good” quantum
number. As a consequence, the carrier wave function can be

factorized in terms of a plane wave along the free direction, B. Many-body description

z, times an envelope functiogi(x,y) over the normal plane; The carriers within the quantum wire interact via the Cou-
the carriers within our wire structure are then described byomb potentialV°(r). Due to such interaction, several corre-
the following 2D Schrdinger equation: lation effects take place. Here, only processes conserving the
total number of carriers are considered, thus Auger recombi-
h? [ 9 2 o/h o/h nation and impact ionization are neglected. Such processes
T omel a2 T Py Ve (Xy)| 4,7 (XY) are known to become important only at very high densities
and at energies high up in the bal{d.
="M (x,y), 1) The many-body Hamiltonian describing carrier-carrier in-
wherem®" denotes the bulk effective mass for electrons Orteractlon within ourk,v representation is given by
holes. Here, the set of eigenvalue‘#h corresponds to the 1
energy levels of the carriers induced by the confinement- Hmb— —Vgl,,l 2,2 13,3 kA
potential profilev®'" ; therefore, the explicit form of the band ot G2 133 A 2 e ate e e

z'e 'z’e € z¢e

h2k2
/h /h z
=€ + SR 2 .\ 1,

_V )
h Kol 1202 13,3 (4,4 2 kv Ky kv
For each of the energy levet§", we thus have a 1D para- z"h*"z"h Tz T2 h
bolic band, named “subband” and characterized by the same

tt
' Xd 1 1d,2 »d.3,3d.4 4
bulk effective massn®". [T T S S
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5 In particular, starting from the above exciton wave function
- V

WL k2,2 13,3 (44 ¢, we can define a 1D electron-hole correlation function vs
k11k22k33k44 z'e'z’h’z"h'"z e . . e h
2Ve KzVh KzVh K7V the relative free coordinate=z°-2z" as
Tt
XC 1 10d_,2 od_3,3C 4,4 (5
kov-" —ksy Yn V! (k! —k
Ve 2Vh z z'e g(z)oc E p;zypkével( z Z)Z. (ll)
where kky v
0 Jh* Jh* The kinetic description introduced in Ed8) and(9) is a
\Y; =[dr| dr' @5 (NP2 (1) o
Kol k202 k303 kv kvl k2y2 generalization to 1D systems of a standard approach for the

study of bulk semiconductot$® recently applied also to
><V°(r—r’)(biérlg(r’)¢>iﬁ:4(r) (6)  quantum well structuré$and superlattice¥’.

‘ ‘ The time evolution of the above kinetic variables is ob-
are the matrix elements of the “bare” Coulomb potential tained by applying the standard “Heisenberg-equation tech-
VO(r) for the generic two-particle transition nique” as described in Refs. 3,15. The total Hamiltonian
kyv* k3P — kvt kZv2. We want to stress the full 3D nature H=HSP+H™, the explicit form of which is given in Eq$3)
of the present approach based on the knowledge of the 3Bnd(5), induces two different contributions to the dynamics
carrier wave functionsb. The explicit evaluation of the of the system:
above matrix elements for a generic 2D confinement-

potential profileVe", i.e., for a generic set of wave func- ﬂfe/h: ﬂfe/h N ifelh
tions d)ﬁiﬂ is described in Appendix B. ot ke gt ke o Ot .
The first two terms on the right-hand side of E§) de-
scribe the repulsive electron-electron and hole-hole interac- i _ i 4 i 12
tions, while the third one describes the attractive interaction ot Pi,p= ot Pk,» o ot Pk, .

between electrons and holes. Due to the multisubband nature
of our approach, all these three terms describe intrasubband@ihe single-particle Hamiltoniaki®" in Eq. (3) leads to the
as well as intersubband interaction processes. following set of kinetic equations:

The presence of free carriers leads to a two-component

screening of the Coulomb potential®. As usual, the i elh =i(U pE —U* Py
screened potential can be schematically written as gt Tk o AN e

V=g 1V, 7

, , , v ip =i(ee +e', P ey (1—fg,—f" )
wheree ! denotes the inverse of the dielectric tensorAs gt Tkzv o I e e S T g kv kgl
for any confined system, we deal with a hondiagonal dielec- P (13)

tric tensor. It is not the aim of the present paper to discuss the
derivation of the dielectric response of a multisubband 1DVhere
system. We will employ the multisubband screening model _ _ Lot
discussed in Ref. 12. Ui,y = =M, BE() = =My, Eo(t)e (14)
o ) is the unperturbed Rabi energgroportional to the applied
C. Kinetic equations external field through the optical matrix elemeridere, the
Starting from the abovék, v} representation, we intro- compact notationMy ,=My_,, has been introduced. The
duce the following kinetic description: We consider as ki- = sign in Eq.(13) refers to electronse) and holes K),
netic variables the various distribution functions of electronsrespectively.

and holedintraband density-matrix elemets The single-particle dynamics is modified by the many-
. : . ; body HamiltonianH™ of Eq. (5). The lowest-order contri-
ko= (Chp Cigre)s T, = (i i) (8)  butions of carrier-carrier interaction, i.e., Hartree-Fock

terms, result in a renormalizatiahU (called internal fielgl
of the Rabi energy, as well as a renormalizatiake of the
carrier band structure:

as well as the corresponding diagonal€ v,= ») polariza-
tion fields (interband density-matrix elemets
kaV: <d—kZVCkZV> . (9)

Such polarizationspkzy describe the phase coherence be-

tween electrons in statk,v, and holes in state-k,vy;
Therefore, they reflect the degree of coherence of our

eh .
AUkZV_ k’zw VkZVx_kéV’;_sz,kéV’pké]}”
v

electron-hole system and, more precisely, they are propor- Afﬁlzgz -> Viir,];'v/;kzv,k'y/fs’:w (15
tional to the 3D exciton wave function in oty represen- kyv' ’ v
tation: Here, v&" and ve?"" denote the matrix elements of the
screened Coulomb potential introduced in E@) for the
lp(re,rh)ocZ P, P V(re)cp*k‘*y(rh)_ (10 electron-hole and for the electron-electron/hole-hole interac-
kpy P 7 z tion, respectively. As we can see, the repulsive electron-
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electron(eg and hole-holghh) interactions lead to a renor-

malization of the corresponding bands, while the attractive

electron-hole(eh) interaction gives rise to an internal field
that is responsible for excitonic effects. Higher-order contri-
butions in H™ give rise to carrier-carrier scattering
processe&? which lead to energy relaxation and dephasing.
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V=W

Such incoherent carrier-carrier contributions, as well as the

corresponding carrier-phonon ones, are expected to play
minor role for most of the physical conditions studied in this
paper and, therefore, they will not be treated explicitly.

Within the above approximation scheme, the full set of
kinetic equationg12) is then given by

e/h

9 1
E f "_'kZV: E(ukzvpkzv_ulﬁzvpkzv)!

d

1 1
E kaV: m(gﬁzv—i_ grlkzv) kaV+ Eukzv(l_ fﬁzv_ frlkzv)’

(16)

wheret/=U+ AU and £= e+ Ae denote, respectively, the
renormalized Rabi energies and subbands. The above set

kinetic equations can be regarded as a generalization to mul-

FIG. 1. Typical cross section of-grooved wires derived from
‘ﬂEM micrographs and used to define the confinement potential
Vﬁ”‘(x,y) entering the single-particle Sclinger equation. The
frame of the figure(about 1340 nm delimits the 2D periodic
cell used in the calculation. The dashed lines identify the smaller
rectangular regior(about 70<25 nm), where single-particle and
excitonic wave functions will be plottetsee Figs. 3, 4, and 6 be-
low). The wire width alongy at the apex of th&/ is about 10 nm.

we derive the optical susceptibility

P(w)
xX(w)= E(w)’ (20
where

of

E(w)=f:dtei“"E(t)=Jxmdtei(“’“"L)tEo(t) (21)

tisubband 1D systems of the well known semiconductor

Bloch equationdSBE) commonly used for the analysis of
coherent phenomena in bulk semiconducfors.

D. Quasiequilibrium optical absorption

In this paper, we focus on the quasiequilibrium regime,

i.e., we assume that the carrier system is not driven out of

equilibrium by the optical excitation. Therefore, Fermi-Dirac
fi, are assumed and the solution of the set of SBE)

simply reduces to the solution of the polarization equation

d

1 1 ~ ~
E kaV: E(E"Ezv—i_ glikzv) kaV+ Eukzv(l_ fﬁzv_ frlkzv)i

(17)
wheref denotes the Fermi-Dirac distribution function. This

is now a linear equation irpkzy, the general solution of

which can be written in terms of its Green’s propagator, i.e.
the solution corresponding to &like laser excitatiorEq(t)

is the Fourier transform of the external laser field.

The optical susceptibility(w) is a complex function; it
provides the absorption spectrum as well as the refractive-
index change. In particular, the desired absorption spectrum
is proportional to its imaginary part:

a(w)<Im x(w)]. (22)

We want to stress that within this approach both quantities,
i.e., refractive index and absorption spectrum, are indepen-
dently obtained with no need of applying a Kramers-Kronig
transformatiort?

As discussed above, we solve the polarization equation
(17) by numerically computing its stationary solutions, i.e.,
polarization eigenvalues and eigenvectors. As described in
Appendix C, these two ingredients allow us to obtain directly
the optical susceptibility () (and, therefore, the absorption
spectrum avoiding any time-dependent analysis.

Ill. NUMERICAL RESULTS

« §(t). The above polarization equation can be solved in two

different ways: (i) Within the so called dynamical
approach?>”*8the full time evolution of the polarization is
obtained by means of a time-step solution of EL?); (ii)

In the following, we apply the above theoretical approach
to a realistic wire geometry. We consider structures obtained
by molecular beam epitaxy overgrowth ov&t-grooved

The second approach consists in finding the stationary solisybstrate§. The typical 2D confinement-potential profile

tions of Eq.(17), i.e., polarization eigenvalues and eigenvec-

tors. In this paper, we employ this last approach, the techn
cal details of which are described in Appendix C.

(Fig. 1) is defined according to the wire cross section as
Iderived from TEM micrographs. The thickness of the
V-shaped region at the apex of theis about 10 nm. The

In order to obtain the optical-absorption spectrum, the t0{arge rectangle in Fig. Tabout 13640 nm delimits the

tal (or macroscopicpolarization

1 *
P(U)=5 2 Mic,Pi,u(D) (18)
is then considered. From its Fourier transform
P(w)=j dtetp(t), (19

periodicity region used in our calculation. The single-particle
wave functions discussed below will instead be plotted in the
smaller rectangular portion delimited by dashed lifedsout
70X 25 nm.

All the results shown in the following refer to typical
GaAs-basedV wires with Al,Ga;_,As barriers; the
Al ,Ga; _,As composition and all the material parameters are
the same as those considered in Ref. n&=0.067m,,
m"=0.34n,; VE=150 meV,V"=50 meV.
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4 T subband 1
= 3} 1
3 ?
£ |
527
\
2 41 |
a - ‘
! A
0 20 40 60 80 100
electron energy (meV)
4 1 ) I
@ (b)
(2]
c 3r |
g SR T e
£ oL
8 2 FIG. 3. Single-particle charge-density contour plat§(x,y)|?
8 1L for electrons in their first two subbands=1 andv=2. The plotted
o region is about 7825 nm(see also Fig. 11
1 1 1
0 hgle ene1r0 (m;\% 20 cussed above will be used as basic ingredients for the many-
4 o body analysis presented in the following section.
T 1 I
a (c)
€ 3 B. Many-body analysis
o : . v -
5 2+ 1. Linear response: excitonic regime
8 1L We now discuss the results for absorption spectra in the
o linear regime, as obtained according to Sec. IIB. The role
0 L L L played by electron-hole correlation is illustrated in Fig. 5 by

15‘:1%t0n ;rifro (m;\t‘;)ZO comparing results that include Coulomb correlati@2C)
P o with those of the free-carrigiFC) model (solid and dashed
lines, respectively All the spectra have been obtained as-
FIG. 2. Single-particle densities of Stat@ for electrons and Suming a Gaussian energy broadening of 2 meV. This rela-
(b) for holes vs excess energies, with respect to the bottom of thﬂvely small broadeningas compared to that of realistic wire
bulk bands;(c) corresponding joint density of states vs optical- ir\cture®) allows a better identification of the effects of

transition energy. electron-hole correlation.
Let us focus first on Fig. @) [Fig. 5(b)], where only the
A. Single-particle analysis first (second wire subband is included. It appears that

The single-particle energy levels for the various wire Sub_electron-ho_le correlat_|on gives rise to two major effect_ts:
) ) ) the excitonic peak arises below the onset of the continuum,
bands, as well as their wave functions, are obtained from a

. . . . with a binding energyg,, of about 12 meV for the lowest
numencgl solution of the 2D Scfuinger equgtloﬁ,as d_e— subband and of about 9 meV for the second one. The differ-
scribed in Sec. IIA. The results are shown in Fig. 2 in the

. ; ) ence ink, reflects the different wave function delocalization

Loorlrgs[olii sz?tla?]- pl?lgltgethEai?fefr%rnte:\e;rﬁrz%rlgi?.sc%a(?g]s ?/Cr?ich along theV sidewalls(see Figs. 3 and)4 as will be dis-
represer?tl exceés energies with respect to the botto’m of tthHUSSEd with more detail bel_ow. These excitonic spli_ttings are
bulk bands. Figure (2) reports the corresponding joint DOS excellent agreement with recent magnetoluminescence
as a function of the optical-transition energy.

Figures 3 and 4 show the charge-density contour plots for subband 1
electrons and holes in their lowest subbands. Here, the stron- RS
ger hole confinement is apparent and, more important, we
notice an increasing charge delocalization with increasing
subband index. 1

We want to stress that, in the present implementation of 1
our method, all the results for holes have been obtained ne- ; S
glecting valence-band mixin¢/BM). While recent calcula- fltionae
tions, performed for wires with rectangular section of com-
parable size, clearly indicate that VBM should not be ‘ O R &
important for the lowest confined statést is known that it ‘ ' |
may affect the higher-index eigenstates and the correspond- | 7 ; |
ing wave functionsthence the selection rulg%+?° We are ) I
currently improving our computational scheme to include FIG. 4. Single-particle charge-density contour plpt8(x,y)|?
VBM, in order to allow a more detailed comparison with for holes in their first two subbands=1 andv=2. The plotted
experiments in that range. The single-particle states disregion is about 7825 nm(see also Fig. 1
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(a)

absorption (arb. units)

absorption (arb. units)

(b)

absorption (arb. units)

1540 1560 1580 1600
photon energy (meV)

FIG. 6. Correlation functiore(x,y) of the ground-state exciton
FIG. 5. Absorption spectra of the-shaped wire obtained by obtained taking into accour#) the first subband onlyb) the sec-
including electron-hole Coulomb correlatig8C model, solid ling ~ 0nd subband only, ane) both (first plus secondsubbands. The
or by assuming free carriet§C model, dashed line(a) Only first ~ Plotted region is about 2025 nm and the origin X=X~ Xxp=0,
subband includedib) only second subband include@) both the ~ Y=Ye—Yn=0) is located at the center of the rectangle. A log scale
two lowest subbands are taken into account. For comparison, thé@s been used and all panels are rescaled to the same maximum
algebraic sum of the CC curves @) and (b) (i.e., coupling-free value.
case is reported in(c) by dash-dotted lines. All spectra were com-
puted assuming a Gaussian energy broadening of 2 meV. X=Xe=Xpy X=(XetXp)/2, Yy=Ye=Yn, Y=(YetYn)/2, and
z=2,—7,. By takingz=0 and averaging the square of the
experiments. (i) The shape of the CC spectrum in the con-exciton wave functiony over the “macroscopic coordi-

tinuum region is drastically modified with respect to the FCnates” X andY, we define an effective exciton correlation
one. In agreement with previous investigations based on sinfunction c(x,y) as

plified 1D models'® we find a strong suppression of the 1D
DOS singularity. 5

Figure 5c) shows spectra obtained by including both c(x,y)=f dX dY]i(x, Xy, Y;z=0)[% (23
(first and secondsubbands. Due to the relatively small in-
tersubband splitting, a significant intersubband coupling is Figures a) and @b) show such correlation function
expected. To clarify this effect, in addition to the full CC and ¢(X,y) (logarithmic scalg obtained by taking into account,
FC results, we also report by dash-dotted line the couplingrespectively, the first and the second subband only. Note that
free CC resulfi.e., the algebraic sum of the CC spectra ofby definition,c(x,y) is always nonzero and large at the ori-
Figs. §a) and §b)]. The main manifestation of the intersub- gin (self-correlation pointr,—r,=0). Moreover, depending
band coupling is an oscillator-strength transfer toward theon the symmetry and on the degree of localization of the
low-energy region, which results in a significant increase ofsingle-particle wave functions entering EqO), it may ex-
the first exciton peak and a corresponding decrease of thabit additional maxima; This is the case of Fighg where
second one. the two lateral peaks reflect the correlation between the

Let us now focus on the excitonic part of the spectrummaxima of the single-particle wave functions localized on
and, in particular, let us examine the properties of our quasithe wire “wings” (see Figs. 3 and)4In Fig. 6(c), we also
one-dimensional exciton. In order to derive quantitative in-show how the ground-state exciton of Figabis modified
formation on the spatial extension of the various excitonsvhen the lowest two subbands are both taken into account:
(corresponding to the different wire subbapdse start by The modified symmetry, due to intersubband coupling, lead-
considering their wave functiogi(r.,r,) introduced in Eq. ing to the presence of additional lateral maxima, is clearly
(10). This is in general a function of six coordinates: visible. On the contrary, due to the different logarithmic
re=(Xe,Ye.Ze) and r,=(Xn,Yn,2n). Through translational scales used in these plots, we are not able to appreciate the
invariance along the free wire direction, these reduce to fivéncrease in the spatial extension of the second exditese
coordinates, which can be conveniently chosen agb)], with respect to the first onease @)].
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08 B
06 [ B

04

02 b~ 08 -

(a) (b)
| L ! I— S |
0 2 4 6 300 -150 0 150 300
excess energy {meV} z (nm)
x (nm) FIG. 9. (a) Solid line: ratio between CC and FC oscillator

strength(O9); dashed line: ratio between the CC and FC absorption
spectra'Sommerfeld factor, Sf-as a function of the excess energy
close to the band edgéb) Electron-hole correlation functiog(z)
vs relative distance=z®—z" for three different values of the ex-
. o . ___ cess energy, identified by the corresponding symbols(an

In order to obtain a more quantitative comparison, in Fig.q(z=0) is the probability of finding the electron and hole at the
7 we plot they=0 cross sections of the three correlation same place and gives directly the oscillator strength for the corre-
functions of Fig. 6. Now we clearly see an increase of thesponding excess energy.

spatial extension of the second-subband excjtase b)]
compared to the first-subband ofzase @)]. Moreover, the
intersubband coupling ifc) leads to a spatial localization of
the ground-state exciton with respect to casg. (This is

FIG. 7. y=0 cross sections of the three correlation functions
c(x,y) of Fig. 6: (a) first subband only(b) second subband only;
(c) both (first plus secondsubbands.

is the resulting ratio between the CC and FC absorption,
commonly named Sommerfeld factd6F. As a conse-

responsible for the enhanced oscillator strength of the corréluénce of the OS behavior, the SF turns out to be less than

sponding first exciton peak in Fig(d, with respect to Fig. UNity over this energy region.
5(a). This behavior is opposite to the known results for 2D and

Let us now focus on the continuum region of the absorp-3D cases, where a SF value greater than unity has been usu-
tion spectra and, in particular, on the dramatic suppression ¢#ly ascribed to the attractive electron-hole interaction. It is,
the band-edge singularity in the CC results of Fig. 5. Fronrtherefore, interesting to elucidate the origin of such behavior
Eq. (C21), the absorption coefficient is proportional to the in our case. To this purpose, we recall that for the case of a
product of the oscillator strengtl®S) times the correspond- Single subband the oscillator strength of Eg23) coincides
ing excitonic DOSp of Eq. (C20): We, therefore, study these With the value az=0 of the correlation functiory(z) de-
two quantities separately. In Fig. 8, we compare the QOS fined in Eq.(11), i.e., the probability of_fmdmg the electron
obtained within the CC and the FC modéslid and dashed and hole at the same pla¢eorresponding to the square of
lines, respectively The difference is hardly visible and the the exciton wave function in a 1D modgl
pronounced peak in the DO®roadened 1D singularityis In Fig. Ab), we plotg(z)_ for three different values of the
not reduced by electron-hole correlation. Figute)Shows excess energy. Note that its valuezat0 correspond to the
that the quantity, which is mainly modified by CC, is the 0S. Values of the OS ratio at the same energfig. a) solid
Here, the ratio between the CC and FC OS is plotted as #nel. Moreover, an “electron-hole correlation hole” is
function of excess energy with respect to the band edgélearly visible, the spatial extension of which strongly in-
(solid line). In agreement with previous results for simplified creases when approaching the band edge. Therefore, our
1D models! such a ratio is always smaller than 1 and van-analysis of the electron-hole correlation functig(z) con-
ishes at the band edge. Such vanishing behavior is found #ms that the vanishing behavior of the OS in Figajore-
dominate the 1D DOS singularity and, as a result, the abflects a sort of electron-hole “effective repulsion.”
sorption spectrum at the band edge exhibits the regular be- TO summarize this section, we can conclude that also for

havior of Fig. §a) (solid line). The dashed line in Fig.(®  our realistic quantum-wire geometries electron-hole correla-
tion leads to a strong suppression of the 1D band-edge sin-

gularity in the linear-absorption spectrum. This is definitely
due to the strong reduction of oscillator strength which, in
turn, originates from an “effective electron-hole repulsion”
typical of 1D systems.

2. Nonlinear response: gain regime

DOS (arb. units)

The results discussed so far were all obtained within the
1570 1572 1574 1576 1578 1580 Imear—.response regime, i.e., in the I|m|§ of very low carrier
photon energy (meV) densities. However, most of the potential quantum-wire ap-
plications, i.e., 1D lasers and modulators, operate in strongly
FIG. 8. Electron-hole DO$ of the V-shaped wire close to the Nonlinear regime$.In general, for such conditions additional
band edge, obtained within the C@olid line and FC model ~aspects become important: screening effects, band renormal-
(dashed ling Both curves were computed assuming a Gaussiarization, and phase-space filling. Since all these effects are
energy broadening of 0.2 meV. The difference is hardly visible onalready accounted for in the formulation of our generalized
this scale(see text SBE (Sec. |1 B), our approach can be directly applied also to
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FIG. 11. Electron-hole correlation functia{z) of the ground-
state exciton at densities corresponding to the CC spectra of Fig.

absorption (arb. units) absorption (arb. units)
w

1 1 1 ! i 10(b). For the cas® (gain regimg, the result obtained neglecting
1540 1560 1580 1600 the Pauli factor in Eq(C6) is also showr(curve marked with dia-
photon energy (meV) monds, see text

FIG. 10. Nonlinear absorption spectra of ffleshaped wire at further increase in the density leads to the gain regime: The
room temperature calculated including only the lowest wire subPauli factor becomes negative and, as a consequence, the
band for increasing carrier densitiest: n=10° cm™!; B: attractive electron-hole interaction transforms into a repul-
n=5x10°cm % C:n=10°F cm 1 D: n=4x1Pf cm L. (a) Free-  Sive one. In such conditions we have a fully continuum en-
carrier model, andb) Coulomb-correlated model. In cags, the  ergy spectrum, the ground state of which is characterized by
system is already in the gain regime. a very small oscillator strength. The corresponding correla-

, , ) i , o ) tion function (caseD without diamonds shows a typical
the high-carrier-density regime. We bgheve this is an IMpPOryepulsion hole around=0, where its value is strongly re-
tant advantage of the present theoretical approach. — §yced with respect to that &, B, andC (note that curve

In_ the foIIowmg., we show the f|rst. quantitative gnaly5|s of b has been magnified by a factoxk&.(P in Fig. 11). In order
nonlinear absorption spectra of realisdeshaped wire struc- 14 petter understand the role played by the Pauli factor, we
tures f(_)r different carrier densities at room temperature. The ave also reported in Fig. 11 the resDlobtained neglecting
screening model used in the calculation is described in Ref[he Pauli factocurve marked with diamongisin this case,

12. the electron-hole interaction is screened but still attractive,

_ Once more, we start by analyzing the simplified case of gy, 5 resulting in a correlation functiag(z) similar to that of
single subband: In Fig. 10, only the lowest wire subband ig. qesn_C.

included[as in Fig. %a)]; The free-carriefFig. 10a)] and

Coulomb-co_rrelated spectréFig_._ 10b)] are separately in Fig. 10b). By comparison with Fig. 1@), we notice that
shawn for different carrier densities. . . . the typical shape of the band-edge singularity in the ideal FC

In the CC case, we clearly recogmzielthe exciton peak inyain"spectrum is strongly modified by electron-hole correla-
the low-density limit(caseA: n=10* cm ™). With increas-  on The reason is again understood by analyzing the Pauli-
ing carrier density, the strength of the excitonic absorptiony.oa oscillator strengttPFOS (Ref. 22 plotted in Fig. 12a)

decreases, due to phase-space filling and screening of th& e same carrier densities of Fig.(&Dtogether with the
attractive electron-hole interaction, and moreover the band

renormalization leads to a redshift of the continuum. Above
the Mott density(here about & 10° cm™ 1), the exciton
completely disappears. At a density ok40° cm™! (case ‘
D) the spectrum already exhibits a negative region corre- | e i
sponding to stimulated emission, i.e., the gain regime. ’
As for the case of the linear-response regime, let us dis-
cuss first the excitonic properties. Figure 11 shows the cor- . . L
relation functiong(z) corresponding to the ground-state ex- 0 2 4 6 300 -150 0 150 300
citon for the four densities of Fig. 10. In the low-density excess energy (meV) z (om)

“.mlt (caseA, SOlld. ling), we see the typ-l(:E-il C_orrelatlon func- FIG. 12. (a) Ratio between CC and FC Pauli-free oscillator
tion of an attractive electron-hole pair in its ground state.Stren th(PFOS (Ref. 22 corresponding to the absorption spectra
With increasing carrier density, we approach the Mott tran- g ' b 9 b P

s . . . of Fig. 10. Here, for the casb (gain regimg, the result obtained
sition: After an initial delocalization, which reflects the neglecting the Pauli factor in EGC6) (curve marked with dia-

electron-electr_on and_ hole-hole screening of the attr_aCt'V?nonds) is also showr{see text (b) Electron-hole correlation func-
electron-hole interactioicaseB), the ground-state exciton ions 9(2) corresponding to the CC spectra of Fig.(0for an
level enters the continuum and the electron-hole localizatioRycess energy of 2 meV. Agaig(z=0) is the probability of find-
aroundz=0 tends to vanislicaseC). This is due, in addi- ing the electron and hole at the same place and reflects the Pauli-
tion to the screening, also to the Pauli factor-(f°—f") in free oscillator strength corresponding to this excess erjemgy Fig.

Eq. (C6), which for such carrier density tends to vanish. A 12(a)].

Let us now focus on the continuum region of the spectra
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13(a)] and the CC mode]Fig. 13b)] extend over a much
larger range than in the single-subband céSg. 10. The
intersubband-coupling effects and the Coulomb-induced sup-
pression of the 1D singularities both contribute together to
the smearing of the structures in the high-carrier-density ab-
sorption spectra and in the gain profile.

Our analysis indicates that, for the typical structure con-
sidered heréwhere we have assumed negligible disorder and
scattering-induced broadeninghe shape of the absorption
spectra over the whole density range greatly differs from the
sharp 1D spectrum predicted by any free-carrier model.

IV. SUMMARY AND CONCLUSIONS

We have presented a theoretical analysis of the linear and
nonlinear optical properties of realistic quantum wires. Our
' approach is based on a numerical solution of the semicon-
1540 1560 1580 1600 ductor Bloch equations describing the multisubband 1D sys-
photon energy (meV) tem. In spite of its accuracy, the method is very flexible and
allows us to study realistic wires of arbitrary geometry. We
FIG. 13. Nonlinear absorption spectra of tileshaped wire at have applied such approach to a typi¥ashaped structure,
room temperature calculated including the lowest 12 subbands fathe parameters of which reflect the current state-of-the-art in
increasing carrier densitieg:: n=10* cm™%; B: n=10° cm™ %, the quantum-wire fabrication.
C:n=4x10° cm™%; D: n=2Xx10" cm™1. (a) Free-carrier model, The role of electron-hole Coulomb correlation has been
and (b) Coulomb-correlated model. discussed by a systematic comparison with the correspond-
ing free-carrier spectra at various carrier concentrations. In
corresponding correlation functiorg(z) reported in Fig. addition to the strong excitonic features typical of the low-
12(b). Also, for relatively high carrier densitigsases<C and  density limit, we have found, in general, a suppression of the
D), the OS corresponding to the CC model goes to zero atD band-edge singularities, which has been ascribed to a
the band edge as previously seen in the low-density limistrong reduction of oscillator strength, originating in turn
[Fig. 9a)]. As a consequence, the FC peak is strongly supfrom an “effective electron-hole repulsion” typical of 1D
pressed and only its high-energy tail survives. The overalfluantum confinement.
result is a broader and less pronounced gain region in the CC In the high-density regime, the realistic multisubband
case as compared with the FC one. wire spectrum shows an extended gain region with relatively
From a detailed analysis of Fig. (8, we see a qualita- broad structures. By comparing the nonlinear multisubband
tively different behavior of the OS in the gain regirfmase absorption spectra with ideal single-subband spectra, we can
D) as compared to the low-density res(daseA). By con-  conclude that the large gain region is mainly due to the small
sidering the corresponding result obtained neglecting théhtersubband splitting compared to the single-subband gain
Pauli factor(curve marked with diamongiswe clearly see range. This confirms that, in order to obtain sharp gain pro-
that this transition in the OS shape is mainly ascribed to thédiles, one of the basic steps in quantum-wire technology is to
attractive— repulsive transition induced by the Pauli factor. Produce structures with increased subband splitting.
This is also confirmed from the corresponding correlation Finally, we notice that the disorder-induced inhomoge-
functions g(z) reported in Fig. 1t). As for the linear- Nneous broadening, not considered here, is known to increase
absorption regimdFig. 9(b)], the correlation functiongall ~ Significantly the spectral broadenthgnd this effect is ex-
Corresponding to an excess energy of 2 r)']ew‘“bn a sort peCted to increase W|th InCI’eaSIng Subband Spllttlng. Thel’e-
of “hole” around z=0. This is well extended in the low- fore, small but extremely high-quality structuré®., single-
density limit (caseA), it decreases with increasing carrier monolayer contrglseem to be the only possible candidates
densities(casesB and C), and, finally, in the gain regime for successful quantum-wire applications.
(caseD) it is again well pronounced reflecting the attractive
nature of the electron-hole interaction induced by the Pauli

factor in Eq.(C6). o We thank R. Cingolani, R. Enderlein, T. Meier, M. Pas-
Our analysis of the CC spectra seems also to indicate goli, R. Rinaldi, L. Rota, and P.E. Selbmann for stimulating
small redshift of the band gap with increasing carrier densityand fruitful discussions. This work was supported in part by

as previously found for the case of 3D and 2D systéAis. the EC Commission through the ESPRIT NANOPT project
However, we consider this result very preliminary: a moregnd the Network YLTRAFAST.”

refined screening modéincluding nondiagonal terms of the

dielectric tensdP) is required to confirm it and to provide a APPENDIX A: SOLUTION

more detailed analysis of band-gap renormalization. OF THE 2D SCHRODINGER EQUATION
Finally, Fig. 13 shows the full nonlinear spectra for our

realistic V-shaped wire, with the 12 lowest subbands in-

cluded. For the present wire geometry, the multisubband na- 1

ture is found to play an important role in modifying the @2 . (x,y)= —=¢ Ty, (A1)

typical shape of the gain spectra, which for both the[Fi@. Y ViylLy

absorption (arb. units) absorption (arb. units)
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with ky=2mn, /L, k,=2mn,/L,. Here,L, andL, denote,
respectively, thex andy size of the 2D periodicity box. The :2 v f dr q)E/lh*l(r)eiqwq)egh“(r)
solution of the 2D Schidinger equatiorfl) can be expanded g kv kzv

in terms of such plane-wave representation as

/h* —ig-r’ s €h
><J dr'dp2,(r)e 1 d s (1),
4 4

¢5(><,y)=2I Cpr(xy), (A2) (B2)

where the compact notatidr=k,k, has been introduced. As This leads to a factorization of the two space coordinates
a consequence, Eql) is transformed into the eigenvalue andr’, therefore suggesting the introduction of the following

problem: form factors:
2 (Hy—edy)e; =0, (A3) Fiepigria™ f dr oF (NSO (r). (B
II
with In terms of these form factors, the Coulomb matrix elements
can be simply written as
H||':T|5||'+f dx dye™* (x,y)VE"(x,y) ¢ (x.Y). 0 ~ .
e (A4) k%vl,kgvz;kgvig,kgv“: % VqFk;'VlvkgVAt;qugV:g,kfvz;q ' (84)

Here, Q=L,L, denotes the 2D volume, while Therefore, the evaluation of the Coulomb matrix elements in
T =h%(K2+ kf,)/(Zme’h) is the kinetic energy corresponding Eq. (6) reduces to the evaluation of the form factérén Eq.

to the plane-wave state The carrier energy levels, i.e., the (B3).

eigenvalueg and the corresponding eigenfunctigimrsterms If we now insert into Eq(B3) the factorized form of the

of the eigenvectors,) are obtained by direct diagonalization wave functions

of the single-particle Hamiltonian matrkt;, .. This approach

can be easily generalized to the case of an applied magnetic 1
field as described in Ref. 13. ‘Pﬁi?(f):ﬁ/h(X.y)—e'kzz. (BS)
For theV-shaped wires considered in this paper, we have \/L_Z

used a set of about 2000 plane waves within a periodicithe obtain

box of about 1340 nm (see Fig. 1L This allows us to

obtain, with high accuracybetter than 1% the first twelve

electron and hole energy levelsee Fig. 2 used as ingredi- Frvil s :f dxdy¢e/h*(x y)ei(qxx+qyy)¢e/,h(x y)i
ents for the solution of the SBE. However, for a detailed ~ "2"z" 9 ’ ' VL,
analysis of high-energy statéslose to the 3D continuum

convergence problems may arise for two reasons: first, the XJ dz d(k;—ks+a,)z

number of plane waves could be inadequate, and second, a

fictitious interwire coupling due to the finite dimensions of

our periodicity box may play some role. By increasing the =f dx dy¢i’h*(x,y)e‘(qx”qyy)¢i’,h(x,y)
number of plane waves and the size of the box, we have
checked that this is definitely not the case for the “close-to- X 8(k,—K,+0y). (B6)

gap” energy region discussed in this paper.

The remaining 2D integral over they plane can be easily
APPENDIX B: EVALUATION rewritten in terms of the plane-wave representation discussed
OF THE COULOMB MATRIX ELEMENTS in Appendix A. More specifically, by replacing the 2D eigen-
functions with their plane-wave expansion given in ER)
“and using the orthonormality of the plane waves over the 2D
periodicity region, we obtain

In order to evaluate the Coulomb matrix elements intro
duced in Eq(6), we start by replacing the potenti? by its
3D Fourier expansion:

7 i Py — ! — + * ’ ’
VO(I’) = % qulq~r_ (B1) szv,kZV iq S( kz k,+0,) nxny%; ,n;/ Cnxnycnx ny
After this substitution, we obtain X 8(ky—kyt+ay) o(ky—ky+qy).  (B7)

_ Therefore, for any shape of the confinement potential, start-
Vo1 22308 0= qu drf dr’ oS (1) e, ing from the numerically computed eigenvectas, , we
cor e d ‘ ‘ are able to obtain the various form factdtswhich, in turn,
% (F')eiq'(r_r')cbigls(r’)‘biﬁh‘;(r) allow us to numerically compute the desired Coulomb matrix
z 2 elements.
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APPENDIX C: SOLUTION Finally, let us evaluate within our stationary approach the
OF THE POLARIZATION EQUATION optical susceptibilityy(w) introduced in Eq(20). Due to the
linearity of the polarization equatiail 7), the optical suscep-

As discussed in Sec. 11D, the polarization equaiid) is - Lo X I
solved within the so-called stationary approach, i.e., by comyb'“ty’ being its Green's propagator, is independent of the

puting polarization eigenvalues and eigenvectors. This Con[:_)artlcular choice of the external erEO(t).' Therefore, we
sists in finding solutions of the form are allowed to consider as a laser field the convenient

S-like laser excitation,
pkzv(t) = pkzve_i(&/h)' (Cl)

Eo(t) =Ea(b), (&)
By inserting this stationary solution into E(L7) together oo terized by a constafitequency-independenEourier
with the explicit form(15) of the internal fieldAU and by transform y atfteq y P n
treating the external-field tertd as a source term, the cor- '
responding homogeneous equation can be rewritten as E(w)=E. (C9)
(& +E& —Epe,~(1—T " ) With this particular choice of the external laser field, the
z z z z z polarization equatioril7) can be written as
X 2V ikt P =0, (C2) o 1 iE -
g et oS spt M, (€10
|!

By introducing again the compact notatiba k,», the above h
equation can be easily transformed into the following eigenw ere

value prObIem: M 1= M kzvz M kz,vv(l_?ﬁzv_?h— kZV) (Cll)

2 (S —E8)p; =0, (C3) is the optical matrix element weighted by the corresponding

I Pauli factor. If we now apply to EqC10) the unitary trans-
with formationl —\ (free carriers— excitong given in Eq.(C7),

we obtain
Sy =T 6y =Wy (C4 e igmxé .

Here, el (v), (C12

T| = TkZV: E§ZV+ gli kZV (CS) W|th

denotes the renormalized optical-transition energy, while -
e M*=2 p* M. (C13
Wi =Wig 0= (=18 =T IV e iy (CO) '
B The solution of this equation is simply given by
is the screened electron-hole Coulomb matrix element _
weighted by the corresponding Pauli factor. \ iE~, o
From a direct diagonalization of the matx we obtain a pH ()= Mte : (C14
set of polarization eigenvalug® and eigenvectorp™. As
discussed in Sec. IIC, the microscopic poIarizatl’QQV is  Starting from the above result, we can now evaluate within

directly related to the excitonic wave functioh [see Eq. our excitonic picture\ the total polarization introduced in
(10)]. Therefore, the diagonalization of the mat@yprovides ~ Ed- (18):

all the excitonic properties of the system: The set of eigen- 1 1

vf’ilue_sé‘h gives the energy spectrum that reflects all the ex- p(t)zﬁ 2 M p|(t):§ 2 MM pA(t)

citonic properties of the quantum-wire structure, e.g., the ex- ! A
citon binding energies and the DOS of the continuum. For L~
each energy levef* of the interacting electron-hole system = _2 MM Mre~ ifxt/h,

(i.e., for each exciton eigenstatéhe knowledge of the cor- Q=

responding eigenvectg® allows us to compute its exciton (C15
wave functiony according to Eq(10). Moreover, the vari-

ous elementp} of a given eigenvectop*, being the com- Where

ponents of a given exciton eigenstatein the basis of the

free-particle state$, correspond to the scalar product be- M”=E P|“'V|| (C16)
tween excitonic and free-patrticle states: '

denotes the optical matrix element within aurepresenta-
pr=(IIN), P =D, o7/ B, P P
Therefore, they are the matrix elements of the unitary trans- The final step in the derivation of the optical susceptibility
formation, which connects the excitonic to the free electrony consists in evaluating the Fourier transfofd®) of the
hole picture. total polarization:
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. _ 2miE _ where the OS
P(w)zf dte"‘"P(t)sz MM MAS(hw—EN).
— A

17 a(fiw)=(REMM*M oy, (C22

has been introduced. This is defined as the average value of
the quantity REM**M*] over all the stated with energy
2. _ hw. From Eq.(C21), we see that the absorption spectrum
X(w)=ﬁz MM MAS(ho—E). (C18 can be always regarded as the product of the oscillator
A strengtha times the corresponding excitonic DQS

In the low-density limit (linear-response regime the
Pauli factor in Eq.(C11) is equal to unity,M* reduces to
M*, and the oscillator strength is given by

The optical susceptibility is then given by

As discussed in Sec. IID, the absorption spectrufw)
is proportional to the imaginary part of the optical suscepti-
bility and, in our case, is given by

e A a'(ho)=(IMM?)a .. (C23
*
“(“’)“'m[X("’)]“g REMTME]o(Rw—E). (C19 Moreover, for the case of a single-subband system, it can be
) _ easily shown that the above oscillator-strength coincides
If we now consider that the quantity with the value of the correlation functianintroduced in Eq.
(11) for z=0, a well known result for the case of simplified
phw)=>, S(hw—E) (C200 1D systemé.

A As a final remark, we want to stress that within the pro-
is just the excitonic density of states at enefgy, we can Posed approach the quantitiasand p from which the ab-
finally write the absorption spectrum as sorption spectrum originates can be directly computed from

the knowledge of the polarization eigenvalu®sand eigen-
a(hw)>a(fiw)p(hiw), (C2)  vectorsp*, thus avoiding any time-dependent analysis.
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