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Phonon-induced dephasing of localized optical excitations

D. Brinkmann, F. Rossi, S. W. Koch, and P. Thomas
Fachbereich Physik und Zentrun fiMaterialwissenschaften, Philipps-Universitislarburg, Renthof 5, 35032 Marburg,
Federal Republic of Germany
(Received 21 December 1905

The dynamics of strongly localized optical excitations in semiconductors is studied including electron-
phonon interaction. The coupled microscopic equations of motion for the interband polarization and the carrier
distribution functions contain coherent and incoherent contributions. While the coherent part is solved through
direct numerical integration, the incoherent one is treated by means of a generalized Monte Carlo simulation.
The approach is illustrated for a simple model system. The temperature and excitation energy dependence of
the optical dephasing rate is analyzed and the results are compared to those of alternative approaches.
[S0163-182696)02328-4

[. INTRODUCTION dephasing rate has been determined as a function of tempera-
ture and excitation energy within the inhomogeneous Jine.
Many semiconductors possess a certain degree of struc- The description of photon echoes requires the solution of
tural disorder. Examples include amorphous and microcrysthe SBE in third order in the external laser field. For a tight-
talline bulk semiconductors, mixed crystalline semiconduc-binding model of a disordered semiconductor, this has been
tors, semiconductor heterostructures, and also polymers. Fdone for arbitrary degree of disorder, however, ignoring the
real systems, the detailed nature of this static disorder isany-particle Coulomb interaction and the phonon
usually not precisely known. However, since disorder has @oupling® Hence, these studies concentrate only on the in-
pronounced influence on the electronic properties of thesiuence of purely static disorder on optical phase coherence.
materials, it is highly desirable to characterize the relevantater excitonic excitations in disordered semiconductors
disorder parameters by applying suitable experimental techwith a weak long-range fluctuating disorder potential have
niques. been considerefand the relation between phonon-induced
Generally, transport experiments yield only quite globaltransport(hopping and optical dephasing has been investi-
information, and the transport theory of interacting disor-gated for a model without Coulomb interacti®n.
dered many-particle systems is far from being sufficiently Existing theoretical approaches to analyze the temperature
well established. A more sensitive probe for the differentdependence of the dephasing rate usually rely on the assump-
interaction processes is the optical polarization. Its dynamicgjon that the dephasing processes are related either to
and, in particular, its phase coherence properties reflect thghonon-assisted transitions of excitations between the local-
various interaction processes on an ultrashort time scale. lized centergsiteg or to detrapping events above a mobility
order to study the combined influence of disorder, manyedge® These approaches are based on the idea that there
particle Coulomb interactions and electron-phonon couplingexists a “typical” hop, which is responsible for breaking the
on the optical polarization, one has to solve the semicondughase, although in reality there is an extremely wide distri-
tor Bloch equationgSBE)* for a disordered semiconductor, bution of hopping rates in many disordered systems. The
where the electron-phonon interaction has to be included extypical” hop is then determined by some fitting or optimi-
plicitly. zation proceduré®!!In this respect, there is a close resem-
It is evident that this program presents a formidable taskblance to hopping transport theories. Their prototype, Mott's
As a first step towards such a theory in this paper we confamous variable range hoppifgrests on such an optimiza-
centrate on situations, where the optical excitations arédion procedure and works perfectly well for some simple
strongly localized due to disorder. The optical spectrum issituations. In more general cases, i.e., for complicated
then dominated by an inhomogeneously broadened line, ardkensity-of-states distributions, a numerical analysis of the
experimentally the phase coherence cannot be deduced frotmansport process by, e.g., a Monte Carlo simulation has to be
the linear spectrum. However, applying the transient fourperformed.
wave-mixing (FWM) technique, the phase coherence time A more general approach, not relying on “typical” hops,
(or the dephasing ratean be measured easily. In the time- does not yet exist. The solution of a rate equation describing
resolved detection mode of the two-beam degenerate FWNhe incoherent hopping processes alone is insufficient, since
experiment the inhomogeneous line leads to a photon echthe dynamics of the optical polarization has to be included in
In the time-integrated detection modé&l), the echo decay the analysis. In order to analyze the decay of coherence in
for increasing pump-probe pulse separation is monitéred. this paper we present an approach which extends working
The measured echo-decay rate is then identified with the logbeories for the case of perfect crystalline, i.e., ordered
of phase coherence. For example, photon echo experimersemiconductors.In our numerical evaluation, we follow the
on CdSSe _, mixed crystals yield extraordinary long phase proceduré®!* where the coherent evolution of the polariza-
lifetimes, exceeding 1 &> Furthermore, in this system the tion is calculated by solving the SBE, while the incoherent
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scattering processes are treated within a Boltzmann formal- N
ism, which is numerically modeled using a generalized Ho=2 X €.+ hogala+3). (4)
Monte Carlo technique. 1=1a=cp q

While for ordered semiconductors the inclusion of thengte that we do not include Coulomb interaction in our

Coulomb interaction is mandatory, in disordered systems, ifnodel Hamiltonian. If we are dealing with strongly localized
particular, if the excitations are sufficiently localized, the ne-gxcitations, these interactions can be assumed to be negli-
glection of this interaction is not completely unreasonablegiple. On the other hand, for some situations, we can inter-
Our present approach is, therefore, based on a model exCIuaret our excitations as excitons, so that Coulomb effects are
ing the Coulomb interaction, while disorder and phonon couincluded to some extent.

pling are included. We assume that the relevant optical ex- A canonical transformation eliminates the explicit
citations are localized by the disorder potential and that th%lectron-phonon coupling from the Hamiltoni#hThen the
dephasing interactions are related to phonon-assisted hogansition energies are renormalized and dheverlaps be-

ping processes. In a real-space formulation, we derive thgome phonon operators. The Hamiltonian is given by
coherent part of the equation of motion, which resembles the

Bloch equations as presented previousSlgnd also the equa- ~ R ooy A

tions governing the incoherent dynamics, which are the well ~ H :2 fi,anﬁ+2 Z ‘]i(}esijc;r,acj,a+2 fiwg
known multiphonon rate equatiof&This set of equations is e 1 amew 4

then solved simultaneously, making use of a Monte Carlo atx 1 At At o

simulation for the rate equation. The approach is illustrated ><(aqaq+5)—2i miEi(Ci ,Ci ot Ci Ciy) 5
for a simple model of a disordered semiconductor structure.

We calculate the temperature dependence of the dephasiméhere we use the abbreviations:

rate and its dependence on excitation energy.

The paper is organized as follows. In Sec. Il, we present
the model Hamiltonian and evaluate the equations of motion.
These equations are applied for a FWM situation in Sec. IIl.
In Sec. IV, we show how the Monte Carlo technigue is used YN N (6)
to simulate the incoherent dynamics of both the distribution nas e A
functions and the polarization. Finally, in Sec. V, we intro- Note that the renormalization of the energies, due to the
duce a simple model and present the results. Technical d@honons [€;= €~ y(1/iwy)|A; 4°~€] has been ne-
tails are presented in the Appendixes. glected, assuming that disorder dominates the single site en-

ergies. The optical transitions becoma%;enormalized as well,
leading to Urbach tails in the spectrtfrand an initial fast
Il. BASIC EQUATIONS but incomplete phase relaxatis we are interested in the
A. The model Hamiltonian phase coherence on time scales comparable to intersite hops,

Since we want to analvze a stronalv disordered materialwe neglect the renormalization of the optical transitions and
y gy ¢concentrate on the long-time behavior.

we choose the site representation in a tight-binding descrip-
tion. We assume diagonal disorder in the following sense:
Each site consists of a two-level absorber with the energies
€ and €/ for the higher and lower state, respectively. The For simplicity of notation we present, in this subsection,
levels in the upperlower) band are mutually coupled by only the derivation of the equations of motion for single-
Jij (@=v,c) forming the conductiorfvalence band. Thus, phonon processes. The results for the multiphonon case can
the total electron Hamiltonian can be written as be obtained by direct generalization. As far as the density
dynamics is concerned, the result is the well known rate
equation used in hopping transport theories. The derivation
Ho=2 €N+ Jﬁéf,af:j,a. (1)  for multiphonon processes is described in the appendix and,
he 17 to the best of our knowledge, constitutes a new derivation of
the multiphonon rate equation of hopping transport
theoriest® The equation of motion for the density operators

1
@ _ a At ax 2
Sij _% ﬁwq(Aij,qaq_Aiijaq)’

B. The equations of motion

Neglecting recoil, the electron-phonon couplidg is as-
sumed to be site diagonal:

is given by
A A a A ax 3 J ~ I ~ A
Hel-ph:i;a CiJr,ozCi,a(Ai,qag+Ai,zqc ag). ) Enﬁ :ggi [JRingi(1+S5) — J5nf (1+ S5 ]
The interaction with the light field is treated in the dipole _ '_ E(at o
approximation: 7 LEi(Pii = Pii), (7)
N and similar forn; .
R — Efe +ete ). 3 Taking the expectation values and factorizing them into a
dipol izl MBI (G Ciot CicCi) @ phonon and an electron part shows that the lowest order

terms, which contain just a single-phonon operator, always
We define vanish. The first nonvanishing contributions are obtained in
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next higher order, which requires that we evaluate theThis result is inserted into the equations of moti@h and
Heisenberg equations for three-point operators. We obtain then the expectation values are taken, again by decoupling
them into an electron and a phonon part. In a next step then
Aan « A the electronic four-point operators are evaluated by making a
nij a (0] + wg) A2 q+ 2 ‘]k'nkj(lJrSki)ag Hartree-Fock apprgximatign. Y ’
The purely coherent part in the resulting equations de-
scribeintraband coherence, which can be neglected in our
model problem, since only hopping processes play a signifi-
cant role, due to the assumed strong localizati€wor a si-
multaneous treatment of both coherent and incoherent intra-
z Jk|ﬁ Akl q f (8)  band processes see Refs. 19 and 20.
hits This way we finally obtain the well known Miller-
and similar for{4,. For consistency, we neglect here termsAbrahams rate equatishfor the incoherent part of the dy-
describing the simultaneous excitation by phonons and phdiamics:
tons, since effects of this nature have already been neglected )
in the Hamiltonian. e|,nc_2 2 2 138 |2 k||
The formal solution of the inhomogeneous differential ki
equations is given by

%I%

E J]knlk(1+sk)a

X{nl1- ”?][5(wﬁi+wq)Nq

na At _na At i(wio-urw ) (t—tg)
nij(H)aq(t) =njj(to)ag(te)e" “ii™ “a § 80— wg)(Ng+ 1)1

t .
+ [ dvetef oot — 1= I8 wfy+ wg) (Ng-+1)
to
+ 8(wg;— wq)Ngl} (10
ana i1 @ s 1\1AT 47
X l;. Jinig(1)[1+Sq(t) Jag(t’) (The second index of the densities is suppressed, since only

diagonal terms appear in these equatiphate that we now
use an electron-hole representation, i.@;=n; and
n; h=1— n{ . The corresponding equation for the holes is ob-
talned by replacingny with 1— n . The full equations of

-3 Jklh ﬁ*qA.J(t )A (t’) _ motion for the densities are given by
kT,

2 JnRg(tH[1+St)1akt)

These equations are evaluated in the adiabatic limit using the £n$=l—,uE(pi* -pi)+ iniel"‘c,
Markov approximation(see Appendix B Furthermore, all Jt h at
terms which are nondiagonal in the site indices are neglected
[the last terms in Eq(9) will have site-diagonal contribu- 2=l B —pys 2 h|,nc (11)
tions after evaluating the expectation values within Hartree- ot =g HERT =P+ T
Fock approximatioh In our model, these terms are assumed
to be small compared to the site-diagonal densities. In thié\ similar procedure as described above can be performed for
way only one term from each of the sums4j) contributes.  the polarization. Here we give only the final result:
We thus obtain

a L2

Epd'“——E 2 2 {(Ng+ 1= m9| A *D( wi
|J q(t) 775((” +wq) k#i

+wg)+(Ng+ nk)|Aik D(wj—0g)}p;

x| IR (1+S5)al— IR (1+Sha] 1382
2 {(Ng+1=nP)|AF*D(0f— )
1 Wq
—J“—A“,*I I), o\ [ AE (2790 .0
i oy ali +(Ng+np)|AL°D(wii + @) } pj

A i ‘]k|‘J|hk h* h
ni‘]-‘aq(t)=7r5(w wq)g + —r{(N +1—- n )A ik D(wik—wq)

+(Ng+ N ARAT D( )+ wg) } Pk

Jk|‘]|hk

x| JEAL(1+SH)ag— N1+ S5)a,

_Ja Aa a Dt) q
"hw I, q i l'

) + (Ng+N)AFAL D(wf— )} Pr - (12
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The  Dirac-distribution D(X)=[1/(ix+ n)]=—i(P/X)

+8(X) has been introduced since, in contrast to the densi- ﬁpi

ties, the polarization is not a real quantity.
The full equation of motion for the polarization is then
given by

W. KOCH, AND P. THOMAS

d i e
(—12)_ _ %[wipi(—1\2)+MEg(t)el(kzvr—th)(nie(—1\1)

d oy
+nih(_1ll))]_ﬁpi( 1\2)||nc_ (19)

The superscript rlm) indicates the directionk=nk;

J J
—D =wD: + En.e-|—n.h—]_ + —p.|"MC. 13 Iy : i
gt Pim @ibiTa (n+ni=1) at Pl (13 +mk,. For the incoherent part, we obtain
The coupled equationfd0)—(13) are the full set of equations 9 |A;3k|2
describing the dynamics of the densities and polarization in = Pi|™=7>, | — ——c—|JI%|2NVEp;
- Y : .ot kZi (hwiy)
our system with single-phonon processes being the only in-
coherent scattering mechanisms. For multiphonon processes, A,ekAhk
one has to use the equations derived in Appendix A. + ﬁJﬁiJf‘kNﬁpk
Wik
Ill. FOUR-WAVE MIXING |AR|? ol Al AS -
. . _— T el)? Jik| “Nipi + Fom)? 2 IRIRNEPK |
Here, we restrict ourselves to the experimental situation (i) (h oy
of two-pulse degenerate four-wave mixing, where two pulses (20)
with wave vectorsk; andk, hit the sample at time 0 and
. . e|2
TH resp'ectll\?gl?/d _both hawt?g the same frequengy. Hence, ine(’l‘l)|i”°=2w2 |AG| |Je_|2{/\/e.n9<*1\l>
the optical field is given by gt = —(hwﬁ()z ki ki''k
E(t)=E(t)(e/Ku et itk mou) 4 (1) —NGNEHY, (21)
X(ei(IZ2~F—mLt)+e—i(I22~F—mLt))_ (14) 9 |Ah-|2
7 o h(=1|1)jinc_ ki h (27 A/h nh(—1]1)
L i | 2772:1 (h_wh_2|‘]k|| {Mang
The envelope functiong; of the pulses are chosen to be ik
Gaussian in the numeric calculations, which is close to real- _ AN nh<71\1)} 22)
[ .

ity.

In order to derive the equations of motion for the four- Note that Eq(20) is valid both for the first orderp(,-(l‘o) and
wave-mixing geometry, we use a spatial Fourier seriesbi(o\l)) and for the third order signabé‘”z)). We have ap-
expansiorf” We are interested in the equation of motion for pyoximated the D distributions by their real parts,
the polarization function in the directionkg—k;. Further-  [D(x)~ 7 d(x)]. As the wave functions of our model are real
more, we restrict ourselves to the contributions obtained ijuantities, we thus only neglect a slight rotation of the quan-
the lowest order of the applied field. In this way, we only tities, which means a small shift of the resonance energies.

need to consider the following quantities:

i, [ P d )
O o _ L @0 =0y wi (kg T—w )7 2 (1]0)]inc
(15
i - 0 4
0]1) _ 0|1 0 Kp-T— 0|1
Epi( | )__%[wipi( V- uEY(t)el ke Lt)]—ﬁpi( I)]inc,
(16)
J e(—-1|1) i 0 i(Ky T — o ) ~(1]0)%
prall =7 HlEa()et= e p;

L J )
_ E(l)(t)el(kl~r—w|_t)pi(0\1)]_ Enie(—l\l)rnc'

17)

d i e -
h(— _ 0 Ko r— 1/0
i 1|1)—gM[Ez(t)e'( 21O

L J .
_ Eg(t)el(krrfw,_t)pi(o\l)]_ Enih(—lll)rnc,

(18

This approximation allows us to evaluate the sums ayer
using theé function. Furthermore, we introduced the follow-
ing abbreviation for the phonon occupation number:

N N +1 E>Ey
Tl Ng Ei<Ex, @3
i L -1
N .= ex%(wll(—.rwk))_l (24)

The equation$15)—(22) form a closed set, which we evalu-
ate in the following.

IV. THE MONTE CARLO APPROACH

Our task is to solve Eq$15)—(22). Since this is a coupled
system of equations, we introduce a time discretization in
terms of a fixed time ste@t. Over such a time step, the
coherent dynamics is decoupled from the incoherent one.
The coherent part of our equations is solved by means of a
direct numerical integration from to t+ 6t evaluating all
nonlinear quantities at the beginning of the time step. On the
contrary, the incoherent part of our SBE is “sampled” by
means of a generalized Monte CatMC) simulation.

Now we give a short introduction to the Monte Carlo
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simulations used in the framework of hopping transport theo{ii) The relative weight of a particle starting at siténcludes
ries. Unfortunately, we are forced to modify this MC tech- the phase of the site:
nique, since our kinetic variables are, in general, complex
guantities, e.g., the optical polarization. For perfectly ordered _Ej|fj(to)| fulto) 2j[fi(to)] . 30
semiconductors, an anall??%ous approach has been developed K" Ns  |fu(to)]  Ns exidh). (30
previously by Rosset al.= . . : . . :

The conventional Monte Carlo method used for the studya‘ det_a_lled_ d'S.CUSS'On of a MC S|_mulat|onl}\éwth complex
of transport phenomena can be regarded from a more genel%lljam't'es is given by Haas, Rossi, and Kdhms men-

point of view as a stochastic approach for the solution of th%mned ab_ove_, this kind of MC S|mulat|o_n has to be don_e for
Boltzmann transport equation: he polarizations, as well as for the distribution functions.

Finally, we want to stress that the MC solution of the polar-
9 ization dynamics has to be done extremely carefully as the
— "= [Tyife—Ticfil- (250 rate for the in and out scattering can be very different, so that
o K numerical instabilities are likely to occur.

At first glance, one recognizes the out-scattering proportional

to f; and the in-scattering proportional tp with " being the V. THE MODEL SYSTEM
corresponding scattering rates. Introducing the Boltzmann
propagatorGy j(t,ty), which describes the time evolution
during the interva[t,ty], the equation can be rewritten:

At this point, we have now derived a closed set of equa-
tions describing the phonon-induced dephasing of strongly
localized optical excitations. These equations are valid for a
relatively large class of three-dimensional systems. In the
fi(t)=>, Gy.i(t,to)Ni(to)wy . (26)  remainder of this paper, we will now illustrate our approach
k on the example of a simple model system. For this system,
With N, we denote the number of particles starting at siteV® @nalyze the time evolution of the intensity of the FWM
k, which is given by signal, i.e., the de_phasmg rate, and we study the temperature
dependence of this rate. Next, we then assume excitation by
fi(to) spectrally narrow laser pulses focused to different spectral
Ni(tg) = T(t) S- (27 regions of the inhomogeneous optical line, in order to study
Hikto the dependence of the dephasing rate on excitation energy.
Here, Ng is the number of simulated particles, whilg is Finally, we compare the results with approaches where the
the relative weight of the sitk being equal for all sites in dephasing rate has been identified with a “typical” hopping

this kind of simulation: rate.
As a model system, we take a multiple quantum-well sys-
>ifi(tg) tem. The width of each quantum well is chosen randomly,
W=W= Ng (28 sych that the density of states for the lowest confinement

energies has a Gaussian shape. We only consider the ener-

The Monte Carlo evaluation of the sum H@6) is done by  getically lowest confined states. In this way, each quantum
generating a given numbeéls of simulative particles and by well is modeled as a two-level absorber where, however,
assigning to each of them an initial site. During the timephonon-assisted tunneling between the wells is included.
interval [t,ty] scattering due to the corresponding raies Furthermore, our model also describes situations where ex-
takes place. A scattering process means that the particle &tons are strongly localized in quantum wells and are able to
taken away from its site and put into the destination site. Irperform phonon-assisted tunneling from well to well. In this

this way, we get the densitidg(t) as functions of the initial sense, the linear part of the attractive interband Coulomb

distributionsf,(to) and of the scattering ratd§ ;. interaction is included.
We want to stress that the situation in our case is differ-
ent: Here the coherence of the system has not yet been A. The numerical approach

damped out, i.e., the interplay between the coherent and in- W h Il Kk ficle-i b del t |
coherent dynamics may be important. Consequently, we  ''€ US€ the Well known particie-in-a-box model to evaiu-

have to include the polarization dynamics, in particular theAte the lowest confined statesf for electrons and holes in each
incoherent evolution of the polarization. In addition, the in-duantum well. The —effective masses are taken as

traband quantities that we are dealing with are not necessafefte = 0-063n and Meg ,=0.450m,. Due to the different

ily real quantities in a FWM experiment. Thus, we have toeffective masses and the different confinement potentials, we
extend the method given above in order to describe the sca btain a Gaussian density of states with the width of 30 meV
tering of complex quantities within the Monte Carlo ap- " electrons and 3 meV for holes. The transfer matrix ele-

proach. mentsJjj between wells andj depend exponentially on the

This is done as follows: We use the same description agistancer;; :
above with two differencesli) The initial number of par- o N i B
ticles at sitek is given according to the modulus of the now Jij = (il Hl gy~ cexp —min{ic,, ko)) (31)
complex quantityf: The decay parameterg are given by

_ |fk(t0)| e_ \/2meff,e e
Nk(to)—m’\ls- (29 6=\ 7z (Egap~ B (32
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FIG. 2. Definition of the dephasing rate for a limited time inter-

FIG. 1. Time-integrated FWM signal as a function of delay time val

for various temperatures.

i.e., the inverse dephasing rate, as a function of the tempera-
ture in Fig. 3. It is evident thal, decreases strongly with
A 2Metn o increasing temperature. The physical reason for this behavior
K= —ﬁz—‘(Ei ). (33) is the increasing likelihood of phonon absorption at higher
temperatures. For low temperatures only phonon emission
for holes. The electron-phonon coupling constéft, is ~ ProCesses contribute which are temperature insensitive.
modeled by introducing the so-called attempt-to-escape fre- Another method to characterize the dephasing process is

quencyw,, which we take as a phenomenological constanti0 fit the decaying signal with a stretched exponential:

for electrons and

=2 |Aicf(xq|2 34 _ 47 B
vo=27 ﬁzwé . (39 I(T)—Ioex;{— T_2 ) (35

We use the value,=1Xx 10 ps 1. The Rabi frequency is If the dephasing exhibits this so-called

_ _ _1 . -
chosen to be =(uEy/7)=1 ps ". We do not limit the  kqnirausch-Williams-Watf* behavior, we get a straight line

spectrum of the phonons at their Debye energy. In this way,,ith slopeg and an intersection poirg In(T,/4) when plot-
we roughly account for multiphonon processes.

B. Results T T T T T
. . . 12 4
For illustration, we first assume extremely short laser

pulses modeled a8 pulses. These pulses excite the whole
density-of-state$DOS) profile, and photon echoes appear in 10 | i
the time-resolved signal. The polarization at each site decays

with its specific rate, but the total polarization, which is a ’g o
sum of all the polarizations at the various sites, does not ~ i T
' ; . o)
decay exponentially. Figure 1 shows the natural logarithm of =
the computed intensity of the time-integrated FWM signal '*'."'N 6L ]
|_

versus the delay for different temperatures. Although the
decay is not exponential, it is useful to describe the dephas-
ing process with only a few parameters. Many authors intro- 4+ -
duce a finite number of decay parameters in order to fit a
nonexponential decay. In this way one gets a few phenom- N
enological dephasing rates, each of them being valid only in 0 20 40 60 80 100 120
a specific time interval. We use this method to extract a

dephasing rate, which is valid in the time interval 0.8 ps — Temperature (K)

1.2 ps. In Fig. 2, we demonstrate for three temperatures how FIG. 3. Dephasing time$,, determined according to Fig. 2, as
this dephasing rate is obtained. We plot the resulliptime,  a function of temperature.
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FIG. 4. Time-integrated FWM signal as a function of delay time
for excitation in the low-energy region of the density-of-states pro-
file, showing strong temperature dependence.

rate increases with rising temperature, there is no activated
behavior, as can be seen in Fig. 6. This observation can be
interpreted on the basis of the so-called transport engry,
which separates those regions in the DOS, where hopping is
ting In(—In(1/1y)) versus In). However, this description also predominantly activated upwards, from regions where hops
turns out to be only very roughly valid for the model consid- occur mainly downwards. This transport energy itself de-
ered here. pends on temperature, thus producing the nonactivated be-
In order to study the dependence of dephasing on excitehavior.
tion energy, we assume laser pulses with a duration of 100 The situation is completely different for high-energy ex-
fs, which excite only a small part of the DOS. If we excite at citation, as shown in Fig. 7. Here we investigate two differ-
1.27 eV, i.e., at the high-energy side of the DOS, almost alkent situations, as indicated by the insets to Fig. 7. The tem-
neighbors of excited sites have a lower energy. Thus downperature was chosen toebl K in order to have only
ward hops dominate the dephasing and no temperature ddewnward hops. The dots in Fig. 7 show the computed TI-
pendence of the dephasing can be seen. FWM signal and the solid line is a linear regression showing
On the other hand, there is a strong temperature depethat the dephasing is now exponential. This is easily under-
dence if the excition occurs in the low-energy part of the
DOS(1.15 eV (cf. Fig. 4). Again, we can estimate a dephas-

ing ratel” for the time interva[0.8 ps—1.2 ps The tempera- 2 - - - - - =2
ture dependence of the rates is shown in Fig. 5. Although the * *
Q o}
= 1 ° = H1
0.10 T T T T T T T T T T T £ / )
1. B . . 1 B B B K
I T Energy (eV) Energy (eV)
—~ 0.08| i 2
D =
8 =
~ L
~ 006} - = -1
Q 5
o] .
o E e
o 0041 . .*g + computation™. )
-§ g ------ approximation |
_qg)_ 002 L 1t g fallstesttratcta
Co ] e slowestrate |
o —%.0 04 0.8 12 0.0 0.4 0.8 1.2 8
0.00 P TRV EE U T U N Time (ps) Time (ps)
0 20 40 60 80 100 120

Temperature (K) FIG. 7. Time-integrated FWM signal as a function of delay time
for two different excitation energies in the high-energy region of the
FIG. 5. Temperature dependence of the dephasing rate detetlensity-of-states profiledots. The “typical hop” approximation is
mined from Fig. 4, according to the procedure illustrated in Fig. 2.given by the dashed-dotted line.
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stood if we note that for excitation high in the DOS nearly all _ . o e
hops are terminated at a site with lower energy, and there is! =2 €0t > Jﬁes'iCiT,aCj,a+2 hw(alagt3)
no large dispersion of hopping rates. To be more specific, we 17 azow a

note that the electronlike out scattering is the main contribu- . e

tion for the parameters that we used for Fig. 7, so that the =2 wEE & o+l &) (A1)
other three contributionglectronlike in-scattering, holelike '

in-scattering, and out-scatteringan be neglected. We can ¢ equations of motion fon? is (upper sign ford? and
. . . . 1] 1
then make a simple approximation of the dephasing(sxte lower for A¢)
ij

Ref. 25:
d [ [
v 2R(E N =iwiN 4+ — n..eSki— — - n.LeSik
Vl(EL):Z?OeX4 _ fl L))' (36) ot n” Ia)”n,] ﬁgl Jklnkje ﬁgj ijn,ke 1
[
where we introduce a typical downward hop to a site at the i%,u,E(ﬁ)iTj —Dij)- (A2)

mean distanc®(E,). This distance can be obtained by in-
tegrating the one-dimensinal DORE) up to the laser en-

R(EL)=

eray: For the rest of this appendix, we suppress the inglegince
) only one band is involved. Because of terms likgeSik and
£ 1 ny;e> this set of equations is not closed. A procedure analo-
f g(x)dx (37)  9ous to that used in Sec. Il B consists of evaluting the equa-
—o tions of motion for these quantities. However, the resulting
_ _ equations turn out not to be closed either. After applying the
The factor 2 in Eq(36) reflects the fact that for weak disor- \arkov and adiabatic limit, the resulting differential equa-
der, both the left- and right-hand neighbors have to be takefions can unfortunately not be solved without neglecting im-
into account. The localization lengta is approximated by portant processes.
that of a site with the energf, . This approximation is  Thus, a different approach is needed. The idea is to ex-
plotted in Fig. 7 as dash-dotted lines. For comparision, Weyand the exponential containing the phonon operators and
also plotted the fastest and the slowest rates corresponding §g|ve the equation of motion for each of these coefficients
the smallest and largest distances to the next neighlbes separately. In this way, no problems arise when solving the
member that only the spatial disorder influences these)ratesjifferential equations. The resulting equations are then
Clearly the approximation is nearly perfect for excitation atsymmed up and the well known multiphonon rate equation is
the top of the DOSleft graph), while it deviates strongly for  optained. We expand the exponential,
lower excitation energyright graph. The description of

dephasing using just the “typical” hop can, therefore, be “ * 1 1 v
highly misleading in general. eSii = Vgo —(Sy)"= ZO — % ﬁ—%(Aij,qég—Ai’],qéq)
VI. CONCLUSIONS S | 1
We have developed a set of equations describing the dy- - »=0 qu...qu ﬁwa e -ﬁqu
namics _of Iocal_ized optical excitations including electror_1-
oo e sopied o e s 1 n geom e A AW )

have shown how the Monte Carlo technique can be used in
order to calculate the incoherent part of the equations ofhebinomsum is a sum over all the’inomial terms of the
motion. As an illustration, we considered a simple disordered-fold product §;)”. W” is an abbreviation foéqol- . -é(?,
one-dimensional model system. The temperature and exCitgghere3? can be either a creation or a destruction operator.
tion dependence of the dephasing rate has been studied apd n

e v i
limitations of previous approximate approaches have bee ote that the operatan,]yv contams_v phonon operat.ors,
demonstrated. each of which can be either a creation or a destruction op-

erator. Nevertheless, it is possible to evaluate the Heisenberg
equation for this very general operator. By neglecting, as
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APPENDIX A: MULTIPHONON RATE EQUATION

aSin.. —n:. YWV
We give a derivation of the multiphonon rate equation by * h Jjie (g = i)W
applying the procedure presented in the body of this paper .
: i O " ,
for single-phonon processes. The Hamiltonian containing +—inni-nji[esii,W”]. (Ad)

multiphonon processes reads h !
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In the sum, the plus sign has to be taken if Ntb operator g  |incoh

of W” is a creation operator, and the minus is valid if it is a Enn
destruction operator.
Here we introduced the operatdf"=": The commutation % o
of W” with the phonon part of the Hamiltonian reproduces _nii(l_nkk)J dt’e” it Qki}- (A8)
W and an additional ternfwhich we denote withW™<") if -
at least two-phonon operators have the sgmalue. How- The expectation values for the phonon operators can be
ever, this additional term has less phonon operators thafound in the literaturé?
W (therefore the nam&/"="). Furthermore, it is an inho-

|Jikl? L ient!
:gi 7;2_ nkk(l_nii)j7 dt’e” kit Qy

mogeneity in the differential equation EGA4) and, in addi- Qik(t) =(eSKVeSi(~t)y |

tion, it is nondiagonal with respect to the electronic indices. A |2

Henc_e, it W|II_be neglected !|k¢ a[l other quantities that are —ex _E ’ h.k,q {(Nq+1)(1—e*“”qt)
nondiagonal in the electronic indices. Solving the equation q wq

Eq. (A4) and performing the Markov and adiabatic limit

yields +Ng(1— eiwqt)}} . (A9)
i
nij (HW*(t) = %in[n”(t)—n“(t)] Equation (A8) is the well known multiphonon rate
equation'® Usually, it is written in the form
Xdet’ei(‘”ijJrztwq )t'eSji(t')WV(tr) J incoh |‘J'k|2 - o i ,
0 ' Al =2 ? N(1—n;)e 28fﬂcdt e okt g#t)

i o _ . ,
+F3 0 (0) | dreltonseq

—n;i(1- nkk)e*ZSf dt’e @ikt @)

X [Si ) Wr(t')]. (A5) (A10)

Summing up all the solutions according to E43) gives the  with the definitions
time evolution ofn;;(t)e%i(t):
2S5= 2 ’ M
fiwg

q

2
{(2Ng+1)},

i *® H ’ !
nij(t)edi(t)= ngi[nij(t)—nii(t)]Jo dt’e'it St eSi(®

2
{(Ng+1)(e ") + Ngy(e'@a)}.

Ai
i - I alojit! ¢(t’):2 ﬁ_:;(]
+ 230500, (0) [ “aveen T | hog

(A11)
Sji(t") aSij(0)
x[e &7 (AB) APPENDIX B: MARKQOYV LIMIT AND ADIABATIC LIMIT

Thus, the incoherent part of the equation of motionrfpris When solving the equations of motion for the dynamical
given by variables, one often obtains differential equations of the form
J incoh i J
pradll :gk;i Jii(Niie>i—nyeSik) ﬁx(t)ziwx(t)er(t). (BY)

|Jik|? 0 o The solution of this differential equation is

= _gi 7 [nii('[)—nkk(t)]de'['(f'wkit

t
x(t)=x(to)eiw<t—fo>+f eetytHdt'.  (B2)
X eSik(t) gSi(0) to
0 This exact solution can be simplified by introducing a num-
+nki(t)nik(t)f dt’ e~ ent' [eSik(t") eSi(0)] ber of approximations.
- The first one is the Markov limit. Assuming that the tem-
0 poral variation of the functiog(t) is very slow compared to
—[nkk(t)—n”(t)]f dt’ e @ikt @it gSik(0) the exponential, it can be treated as a constant within the
- interval[ty,t] and thus be taken out of the integral,

0
-n. ) ' a—iopt' T aSki(t") aSik(0) ) to ,
nlk(t)nk|(t)f_wdt e K [e ,eT 1. X(t)mx(to)elw(t—to)_}_y(t)J't glot=t)qyr (B3)
0

A7 . o )
(A7) Then the adiabatic limit is performed. The frequengyis
The last step is now to take the expectations values. Aftesubstituted byw+i#. Furthermore, the lower limit; goes
rearranging the resulting terms, the final result is to —«. Thus, performing the adiabatic limit means that the
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influence of any initial contribution has died out: Integrating and using the Dirac identity yields

x(t)mx(—oc)ei(‘“+i’7)°°+y(t)ft gll@rint-thgy x(t)=(—i§+w5(w))y(t). (B4)

If x is a real quantity, this can be simplified further:

t
~ i(w+in)(t—t") 4
y(t)f_xe T X(t) = 78(w)y(t). (B5)
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