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Phonon-induced dephasing of localized optical excitations

D. Brinkmann, F. Rossi, S. W. Koch, and P. Thomas
Fachbereich Physik und Zentrum fu¨r Materialwissenschaften, Philipps-Universita¨t Marburg, Renthof 5, 35032 Marburg,

Federal Republic of Germany
~Received 21 December 1995!

The dynamics of strongly localized optical excitations in semiconductors is studied including electron-
phonon interaction. The coupled microscopic equations of motion for the interband polarization and the carrier
distribution functions contain coherent and incoherent contributions. While the coherent part is solved through
direct numerical integration, the incoherent one is treated by means of a generalized Monte Carlo simulation.
The approach is illustrated for a simple model system. The temperature and excitation energy dependence of
the optical dephasing rate is analyzed and the results are compared to those of alternative approaches.
@S0163-1829~96!02328-4#

I. INTRODUCTION

Many semiconductors possess a certain degree of struc-
tural disorder. Examples include amorphous and microcrys-
talline bulk semiconductors, mixed crystalline semiconduc-
tors, semiconductor heterostructures, and also polymers. For
real systems, the detailed nature of this static disorder is
usually not precisely known. However, since disorder has a
pronounced influence on the electronic properties of these
materials, it is highly desirable to characterize the relevant
disorder parameters by applying suitable experimental tech-
niques.

Generally, transport experiments yield only quite global
information, and the transport theory of interacting disor-
dered many-particle systems is far from being sufficiently
well established. A more sensitive probe for the different
interaction processes is the optical polarization. Its dynamics,
and, in particular, its phase coherence properties reflect the
various interaction processes on an ultrashort time scale. In
order to study the combined influence of disorder, many-
particle Coulomb interactions and electron-phonon coupling
on the optical polarization, one has to solve the semiconduc-
tor Bloch equations~SBE!1 for a disordered semiconductor,
where the electron-phonon interaction has to be included ex-
plicitly.

It is evident that this program presents a formidable task.
As a first step towards such a theory in this paper we con-
centrate on situations, where the optical excitations are
strongly localized due to disorder. The optical spectrum is
then dominated by an inhomogeneously broadened line, and
experimentally the phase coherence cannot be deduced from
the linear spectrum. However, applying the transient four-
wave-mixing ~FWM! technique, the phase coherence time
~or the dephasing rate! can be measured easily. In the time-
resolved detection mode of the two-beam degenerate FWM
experiment the inhomogeneous line leads to a photon echo.
In the time-integrated detection mode~TI!, the echo decay
for increasing pump-probe pulse separation is monitored.2,3

The measured echo-decay rate is then identified with the loss
of phase coherence. For example, photon echo experiments
on CdSxSe12x mixed crystals yield extraordinary long phase
lifetimes, exceeding 1 ns.4,5 Furthermore, in this system the

dephasing rate has been determined as a function of tempera-
ture and excitation energy within the inhomogeneous line.5

The description of photon echoes requires the solution of
the SBE in third order in the external laser field. For a tight-
binding model of a disordered semiconductor, this has been
done for arbitrary degree of disorder, however, ignoring the
many-particle Coulomb interaction and the phonon
coupling.6 Hence, these studies concentrate only on the in-
fluence of purely static disorder on optical phase coherence.
Later excitonic excitations in disordered semiconductors
with a weak long-range fluctuating disorder potential have
been considered,7 and the relation between phonon-induced
transport~hopping! and optical dephasing has been investi-
gated for a model without Coulomb interaction.8

Existing theoretical approaches to analyze the temperature
dependence of the dephasing rate usually rely on the assump-
tion that the dephasing processes are related either to
phonon-assisted transitions of excitations between the local-
ized centers~sites! or to detrapping events above a mobility
edge.9 These approaches are based on the idea that there
exists a ‘‘typical’’ hop, which is responsible for breaking the
phase, although in reality there is an extremely wide distri-
bution of hopping rates in many disordered systems. The
‘‘typical’’ hop is then determined by some fitting or optimi-
zation procedure.10,11 In this respect, there is a close resem-
blance to hopping transport theories. Their prototype, Mott’s
famous variable range hopping,12 rests on such an optimiza-
tion procedure and works perfectly well for some simple
situations. In more general cases, i.e., for complicated
density-of-states distributions, a numerical analysis of the
transport process by, e.g., a Monte Carlo simulation has to be
performed.

A more general approach, not relying on ‘‘typical’’ hops,
does not yet exist. The solution of a rate equation describing
the incoherent hopping processes alone is insufficient, since
the dynamics of the optical polarization has to be included in
the analysis. In order to analyze the decay of coherence in
this paper we present an approach which extends working
theories for the case of perfect crystalline, i.e., ordered
semiconductors.1 In our numerical evaluation, we follow the
procedure13,14 where the coherent evolution of the polariza-
tion is calculated by solving the SBE, while the incoherent
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scattering processes are treated within a Boltzmann formal-
ism, which is numerically modeled using a generalized
Monte Carlo technique.

While for ordered semiconductors the inclusion of the
Coulomb interaction is mandatory, in disordered systems, in
particular, if the excitations are sufficiently localized, the ne-
glection of this interaction is not completely unreasonable.
Our present approach is, therefore, based on a model exclud-
ing the Coulomb interaction, while disorder and phonon cou-
pling are included. We assume that the relevant optical ex-
citations are localized by the disorder potential and that the
dephasing interactions are related to phonon-assisted hop-
ping processes. In a real-space formulation, we derive the
coherent part of the equation of motion, which resembles the
Bloch equations as presented previously,15 and also the equa-
tions governing the incoherent dynamics, which are the well
known multiphonon rate equations.16 This set of equations is
then solved simultaneously, making use of a Monte Carlo
simulation for the rate equation. The approach is illustrated
for a simple model of a disordered semiconductor structure.
We calculate the temperature dependence of the dephasing
rate and its dependence on excitation energy.

The paper is organized as follows. In Sec. II, we present
the model Hamiltonian and evaluate the equations of motion.
These equations are applied for a FWM situation in Sec. III.
In Sec. IV, we show how the Monte Carlo technique is used
to simulate the incoherent dynamics of both the distribution
functions and the polarization. Finally, in Sec. V, we intro-
duce a simple model and present the results. Technical de-
tails are presented in the Appendixes.

II. BASIC EQUATIONS

A. The model Hamiltonian

Since we want to analyze a strongly disordered material,
we choose the site representation in a tight-binding descrip-
tion. We assume diagonal disorder in the following sense:
Each sitei consists of a two-level absorber with the energies
e i
c and e i

v for the higher and lower state, respectively. The
levels in the upper~lower! band are mutually coupled by
Ji j

a (a5v,c) forming the conduction~valence! band. Thus,
the total electron Hamiltonian can be written as

Hel5(
i ,a

e i ,an̂i i
a1 (

iÞ j ,a
Ji j

a ĉi ,a
† ĉ j ,a . ~1!

Neglecting recoil, the electron-phonon couplingA is as-
sumed to be site diagonal:

Hel-ph5 (
i ,q,a

ĉi ,a
† ĉi ,a~Ai ,q

a âq
†1Ai ,q

a* âq!. ~2!

The interaction with the light field is treated in the dipole
approximation:

Hdipol52(
i51

N

m iEi~ ĉi ,v
† ĉi ,c1 ĉi ,c

† ĉi ,v!. ~3!

We define

H05(
i51

N

(
a5c,v

e i ,an̂i i
a1(

q
\vq~ âq

†âq1
1
2 !. ~4!

Note that we do not include Coulomb interaction in our
model Hamiltonian. If we are dealing with strongly localized
excitations, these interactions can be assumed to be negli-
gible. On the other hand, for some situations, we can inter-
pret our excitations as excitons, so that Coulomb effects are
included to some extent.

A canonical transformation eliminates the explicit
electron-phonon coupling from the Hamiltonian.17 Then the
transition energies are renormalized and theJ overlaps be-
come phonon operators. The Hamiltonian is given by

H̃5(
i ,a

e i ,an̂i i
a1(

iÞ j
(

a5c,v
Ji j

aeSi j
a
ĉi ,a
† ĉ j ,a1(

q
\vq

3~ âq
†âq1

1
2 !2(

i
m iEi~ ĉi ,v

† ĉi ,c1 ĉi ,c
† ĉi ,v!, ~5!

where we use the abbreviations:

Si j
a 5(

q

1

\vq
~Ai j ,q

a âq
†2Ai j ,q

a* âq!,

Ai j ,q
a 5Ai ,q

a 2Aj ,q
a . ~6!

Note that the renormalization of the energies, due to the
phonons @ ẽ i5e i2(q(1/\vq)uAi ,qu2'e i# has been ne-
glected, assuming that disorder dominates the single site en-
ergies. The optical transitions become renormalized as well,
leading to Urbach tails in the spectrum18 and an initial fast
but incomplete phase relaxation.8 As we are interested in the
phase coherence on time scales comparable to intersite hops,
we neglect the renormalization of the optical transitions and
concentrate on the long-time behavior.

B. The equations of motion

For simplicity of notation we present, in this subsection,
only the derivation of the equations of motion for single-
phonon processes. The results for the multiphonon case can
be obtained by direct generalization. As far as the density
dynamics is concerned, the result is the well known rate
equation used in hopping transport theories. The derivation
for multiphonon processes is described in the appendix and,
to the best of our knowledge, constitutes a new derivation of
the multiphonon rate equation of hopping transport
theories.16 The equation of motion for the density operators
is given by

]

]t
n̂i i
c5

i

\(
kÞ i

@Jki
c n̂ki

c ~11Ski
c !2Jik

c n̂ik
c ~11Sik

c !#

2
i

\
m iEi~ p̂i i

†2 p̂i i !, ~7!

and similar forn̂i i
v .

Taking the expectation values and factorizing them into a
phonon and an electron part shows that the lowest order
terms, which contain just a single-phonon operator, always
vanish. The first nonvanishing contributions are obtained in
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next higher order, which requires that we evaluate the
Heisenberg equations for three-point operators. We obtain

]

]t
n̂i j

a âq
†5 i ~v i j

a 1vq!n̂i j
a âq

†1
i

\(
kÞ i

Jki
a n̂k j

a ~11Ski
a !âq

†

2
i

\(
kÞ j

Jjk
a n̂ik

a ~11Sjk
a !âq

†

2
i

\(
kl,b

Jkl
b 1

\vq
Akl,q

b* n̂i j
a n̂kl

b , ~8!

and similar forn̂i j
a âq . For consistency, we neglect here terms

describing the simultaneous excitation by phonons and pho-
tons, since effects of this nature have already been neglected
in the Hamiltonian.

The formal solution of the inhomogeneous differential
equations is given by

n̂i j
a~ t !âq

†~ t !5n̂i j
a~ t0!âq

†~ t0!e
i ~v i j

a
1vq!~ t2t0!

1E
t0

t

dt8ei ~v i j
a

1vq!~ t2t8!
i

\

3S (
kÞ i

Jki
a n̂k j

a ~ t8!@11Ski
a ~ t8!#âq

†~ t8!

2(
kÞ j

Jjk
a n̂ik

a ~ t8!@11Sjk
a ~ t8!#âq

†~ t8!

2(
kl,b

Jkl
b 1

\vq
Akl,q

b* n̂i j
a~ t8!n̂kl

b ~ t8! D .
These equations are evaluated in the adiabatic limit using the
Markov approximation~see Appendix B!. Furthermore, all
terms which are nondiagonal in the site indices are neglected
@the last terms in Eq.~9! will have site-diagonal contribu-
tions after evaluating the expectation values within Hartree-
Fock approximation#. In our model, these terms are assumed
to be small compared to the site-diagonal densities. In this
way only one term from each of the sums (kÞ j ) contributes.
We thus obtain

n̂i j
a âq

†~ t !5pd~v i j
a 1vq!

i

\

3S Jjia n̂ j ja ~11Sji
a !âq

†2Jji
a n̂i i

a~11Sji
a !âq

†

2Jji
a 1

\vq
Aji ,q

a* n̂i j
a n̂ j i

a D ,
n̂i j

a âq~ t !5pd~v i j
a 2vq!

i

\

3S Jjia n̂ j ja ~11Sji
a !âq2Jji

a n̂i i
a~11Sji

a !âq

2Jji
a 1

\vq
Aji ,q

a n̂i j
a n̂ j i

a D .
~9!

This result is inserted into the equations of motion~7! and
then the expectation values are taken, again by decoupling
them into an electron and a phonon part. In a next step then
the electronic four-point operators are evaluated by making a
Hartree-Fock approximation.

The purely coherent part in the resulting equations de-
scribe intraband coherence, which can be neglected in our
model problem, since only hopping processes play a signifi-
cant role, due to the assumed strong localization.~For a si-
multaneous treatment of both coherent and incoherent intra-
band processes see Refs. 19 and 20.!

This way we finally obtain the well known Miller-
Abrahams rate equation21 for the incoherent part of the dy-
namics:

]

]t
ni
eu inc52p(

kÞ i
(
q

uJki
e u2

uAki
e u2

\2vq
2

3$nk
e@12ni

e#@d~vki
e 1vq!Nq

1d~vki
e 2vq!~Nq11!#

2ni
e@12nk

e#@d~vki
e 1vq!~Nq11!

1d~vki
e 2vq!Nq#%. ~10!

~The second index of the densities is suppressed, since only
diagonal terms appear in these equations.! Note that we now
use an electron-hole representation, i.e.,ni

e5ni
c and

ni
h512ni

v . The corresponding equation for the holes is ob-
tained by replacingni

e with 12ni
h . The full equations of

motion for the densities are given by

]

]t
ni
e5

i

\
mE~pi*2pi !1

]

]t
ni
eu inc,

]

]t
ni
h5

i

\
mE~pi*2pi !1

]

]t
ni
hu inc. ~11!

A similar procedure as described above can be performed for
the polarization. Here we give only the final result:

]

]t
pi u inc5

1

\2(
kÞ i

(
q

H 2
uJik

h u2

vq
2 $~Nq112nk

h!uAik
h u2D~v ik

h

1vq!1~Nq1nk
h!uAik

h u2D~v ik
h 2vq!%pi

2
uJik

e u2

vq
2 $~Nq112nk

e!uAik
e u2D~v ik

e 2vq!

1~Nq1nk
e!uAik

e u2D~v ik
e 1vq!%pi

1
Jki
e Jik

h

vq
2 $~Nq112ni

h!Aik
e Aik

h*D~v ik
h 2vq!

1~Nq1ni
h!Aik

h Aik
e*D~v ik

h 1vq!%pk

1
Jki
e Jik

h

vq
2 $~Nq112ni

e!Aik
h Aik

e*D~v ik
e 1vq!

1~Nq1ni
e!Aik

e Aik
h*D~v ik

e 2vq!%pkJ . ~12!
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The Dirac-distribution D(x)5@1/(ix1h)#52 i (P/x)
1pd(x) has been introduced since, in contrast to the densi-
ties, the polarization is not a real quantity.

The full equation of motion for the polarization is then
given by

]

]t
pi5v i pi1mE~ni

e1ni
h21!1

]

]t
pi u inc. ~13!

The coupled equations~10!–~13! are the full set of equations
describing the dynamics of the densities and polarization in
our system with single-phonon processes being the only in-
coherent scattering mechanisms. For multiphonon processes,
one has to use the equations derived in Appendix A.

III. FOUR-WAVE MIXING

Here, we restrict ourselves to the experimental situation
of two-pulse degenerate four-wave mixing, where two pulses
with wave vectorskW1 and kW2 hit the sample at time 0 and
t, respectively, both having the same frequencyvL . Hence,
the optical field is given by

E~ t !5E1
0~ t !~ei ~k

W
1•r

W2vLt !1e2 i ~kW1•r
W2vLt !!1E2

0~ t !

3~ei ~k
W
2•r

W2vLt !1e2 i ~kW2•r
W2vLt !!. ~14!

The envelope functionsEi
0 of the pulses are chosen to be

Gaussian in the numeric calculations, which is close to real-
ity.

In order to derive the equations of motion for the four-
wave-mixing geometry, we use a spatial Fourier series
expansion.22 We are interested in the equation of motion for
the polarization function in the direction 2kW22kW1 . Further-
more, we restrict ourselves to the contributions obtained in
the lowest order of the applied field. In this way, we only
need to consider the following quantities:

]

]t
pi

~1u0!52
i

\
@v i pi

~1u0!2mE1
0~ t !ei ~k

W
1•r

W2vLt !#2
]

]t
pi

~1u0!u inc,

~15!

]

]t
pi

~0u1!52
i

\
@v i pi

~0u1!2mE2
0~ t !ei ~k

W
2•r

W2vLt !#2
]

]t
pi

~0u1!u inc,

~16!

]

]t
ni
e~21u1!5

i

\
m@E2

0~ t !ei ~k
W
2•r

W2vLt !pi
~1u0!*

2E1
0~ t !ei ~k

W
1•r

W2vLt !pi
~0u1!#2

]

]t
ni
e~21u1!u inc,

~17!

]

]t
ni
h~21u1!5

i

\
m@E2

0~ t !ei ~k
W
2•r

W2vLt !pi
~1u0!*

2E1
0~ t !ei ~k

W
1•r

W2vLt !pi
~0u1!#2

]

]t
ni
h~21u1!u inc,

~18!

]

]t
pi

~21u2!52
i

\
@v i pi

~21u2!1mE2
0~ t !ei ~k

W
2•r

W2vLt !~ni
e~21u1!

1ni
h~21u1!!#2

]

]t
pi

~21u2!u inc. ~19!

The superscript (num) indicates the directionkW5nkW1
1mkW2 . For the incoherent part, we obtain

]

]t
pi u inc5p(

kÞ i
H 2

uAik
e u2

~\v ik
e !2

UJike U2Nki
e pi

1
Aik
e Aik

h

~\v ik
e !2

Jki
e Jik

hNik
e pk

2
uAik

h u2

~\v ik
h !2

UJikh U2Nik
h pi1

Aik
h Aik

e

~\v ik
h !2

Jki
e Jik

hNki
h pkJ ,

~20!

]

]t
ni
e~21u1!u inc52p(

kÞ i

uAki
e u2

~\v ik
e !2

uJki
e u2$Nki

e nk
e~21u1!

2Nik
e ni

e~21u1!%, ~21!

]

]t
ni
h~21u1!u inc52p(

kÞ i

uAki
h u2

~\v ik
h !2

uJki
h u2$Nki

h nk
h~21u1!

2Nik
h ni

h~21u1!%. ~22!

Note that Eq.~20! is valid both for the first order (pi
(1u0) and

pi
(0u1)) and for the third order signal (pi

(21u2)). We have ap-
proximated the D distributions by their real parts,
@D(x)'pd(x)#. As the wave functions of our model are real
quantities, we thus only neglect a slight rotation of the quan-
tities, which means a small shift of the resonance energies.
This approximation allows us to evaluate the sums overq
using thed function. Furthermore, we introduced the follow-
ing abbreviation for the phonon occupation number:

Nik5HNik11 : Ei.Ek

Nki : Ei,Ek ,
~23!

Nik5FexpS \~v i2vk!

kT D21G21

. ~24!

The equations~15!–~22! form a closed set, which we evalu-
ate in the following.

IV. THE MONTE CARLO APPROACH

Our task is to solve Eqs.~15!–~22!. Since this is a coupled
system of equations, we introduce a time discretization in
terms of a fixed time stepdt. Over such a time step, the
coherent dynamics is decoupled from the incoherent one.
The coherent part of our equations is solved by means of a
direct numerical integration fromt to t1dt evaluating all
nonlinear quantities at the beginning of the time step. On the
contrary, the incoherent part of our SBE is ‘‘sampled’’ by
means of a generalized Monte Carlo~MC! simulation.

Now we give a short introduction to the Monte Carlo
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simulations used in the framework of hopping transport theo-
ries. Unfortunately, we are forced to modify this MC tech-
nique, since our kinetic variables are, in general, complex
quantities, e.g., the optical polarization. For perfectly ordered
semiconductors, an analogous approach has been developed
previously by Rossiet al.13,14

The conventional Monte Carlo method used for the study
of transport phenomena can be regarded from a more general
point of view as a stochastic approach for the solution of the
Boltzmann transport equation:

]

]t
f i u inc5(

k
@Gki f k2G ik f i #. ~25!

At first glance, one recognizes the out-scattering proportional
to f i and the in-scattering proportional tof k with G being the
corresponding scattering rates. Introducing the Boltzmann
propagatorGk,i(t,t0), which describes the time evolution
during the interval@ t,t0#, the equation can be rewritten:

f i~ t !5(
k
Gk,i~ t,t0!Nk~ t0!wk . ~26!

With Nk we denote the number of particles starting at site
k, which is given by

Nk~ t0!5
f k~ t0!

( i f i~ t0!
NS . ~27!

Here,NS is the number of simulated particles, whilewk is
the relative weight of the sitek being equal for all sites in
this kind of simulation:

w5wk5
( i f i~ t0!

NS
. ~28!

The Monte Carlo evaluation of the sum Eq.~26! is done by
generating a given numberNS of simulative particles and by
assigning to each of them an initial site. During the time
interval @ t,t0# scattering due to the corresponding ratesG
takes place. A scattering process means that the particle is
taken away from its site and put into the destination site. In
this way, we get the densitiesf k(t) as functions of the initial
distributionsf k(t0) and of the scattering ratesG i , j .

We want to stress that the situation in our case is differ-
ent: Here the coherence of the system has not yet been
damped out, i.e., the interplay between the coherent and in-
coherent dynamics may be important. Consequently, we
have to include the polarization dynamics, in particular, the
incoherent evolution of the polarization. In addition, the in-
traband quantities that we are dealing with are not necessar-
ily real quantities in a FWM experiment. Thus, we have to
extend the method given above in order to describe the scat-
tering of complex quantities within the Monte Carlo ap-
proach.

This is done as follows: We use the same description as
above with two differences.~i! The initial number of par-
ticles at sitek is given according to the modulus of the now
complex quantityf k :

Nk~ t0!5
u f k~ t0!u

( j u f j~ t0!u
NS . ~29!

~ii ! The relative weight of a particle starting at sitek includes
the phase of the site:

wk5
( j u f j~ t0!u

NS

f k~ t0!

u f k~ t0!u
5

( j u f j~ t0!u
NS

exp~ ifk!. ~30!

A detailed discussion of a MC simulation with complex
quantities is given by Haas, Rossi, and Kuhn.23 As men-
tioned above, this kind of MC simulation has to be done for
the polarizations, as well as for the distribution functions.
Finally, we want to stress that the MC solution of the polar-
ization dynamics has to be done extremely carefully as the
rate for the in and out scattering can be very different, so that
numerical instabilities are likely to occur.

V. THE MODEL SYSTEM

At this point, we have now derived a closed set of equa-
tions describing the phonon-induced dephasing of strongly
localized optical excitations. These equations are valid for a
relatively large class of three-dimensional systems. In the
remainder of this paper, we will now illustrate our approach
on the example of a simple model system. For this system,
we analyze the time evolution of the intensity of the FWM
signal, i.e., the dephasing rate, and we study the temperature
dependence of this rate. Next, we then assume excitation by
spectrally narrow laser pulses focused to different spectral
regions of the inhomogeneous optical line, in order to study
the dependence of the dephasing rate on excitation energy.
Finally, we compare the results with approaches where the
dephasing rate has been identified with a ‘‘typical’’ hopping
rate.

As a model system, we take a multiple quantum-well sys-
tem. The width of each quantum well is chosen randomly,
such that the density of states for the lowest confinement
energies has a Gaussian shape. We only consider the ener-
getically lowest confined states. In this way, each quantum
well is modeled as a two-level absorber where, however,
phonon-assisted tunneling between the wells is included.
Furthermore, our model also describes situations where ex-
citons are strongly localized in quantum wells and are able to
perform phonon-assisted tunneling from well to well. In this
sense, the linear part of the attractive interband Coulomb
interaction is included.

A. The numerical approach

We use the well known particle-in-a-box model to evalu-
ate the lowest confined states for electrons and holes in each
quantum well. The effective masses are taken as
meff,e50.063m0 andmeff,h50.450m0 . Due to the different
effective masses and the different confinement potentials, we
obtain a Gaussian density of states with the width of 30 meV
for electrons and 3 meV for holes. The transfer matrix ele-
mentsJi j

a between wellsi and j depend exponentially on the
distancer i j :

Ji j5^c i uHuc j&'cexp~2min$k1 ,k2%r i j !. ~31!

The decay parametersk i are given by

k i
e5A2m eff,e

\2 ~Egap2Ei
e! ~32!

54 2565PHONON-INDUCED DEPHASING OF LOCALIZED . . .



for electrons and

k i
h5A2m eff,h

\2 ~Ei
h!. ~33!

for holes. The electron-phonon coupling constantAik,q
a is

modeled by introducing the so-called attempt-to-escape fre-
quencyn0 , which we take as a phenomenological constant:

n052p
uAik,q

a u2

\2vq
2 . ~34!

We use the valuen0513105 ps21. The Rabi frequency is
chosen to beV5(mE0 /\)51 ps21. We do not limit the
spectrum of the phonons at their Debye energy. In this way,
we roughly account for multiphonon processes.

B. Results

For illustration, we first assume extremely short laser
pulses modeled asd pulses. These pulses excite the whole
density-of-states~DOS! profile, and photon echoes appear in
the time-resolved signal. The polarization at each site decays
with its specific rate, but the total polarization, which is a
sum of all the polarizations at the various sites, does not
decay exponentially. Figure 1 shows the natural logarithm of
the computed intensity of the time-integrated FWM signal
versus the delayt for different temperatures. Although the
decay is not exponential, it is useful to describe the dephas-
ing process with only a few parameters. Many authors intro-
duce a finite number of decay parameters in order to fit a
nonexponential decay. In this way one gets a few phenom-
enological dephasing rates, each of them being valid only in
a specific time interval. We use this method to extract a
dephasing rate, which is valid in the time interval 0.8 ps –
1.2 ps. In Fig. 2, we demonstrate for three temperatures how
this dephasing rate is obtained. We plot the resultingT2 time,

i.e., the inverse dephasing rate, as a function of the tempera-
ture in Fig. 3. It is evident thatT2 decreases strongly with
increasing temperature. The physical reason for this behavior
is the increasing likelihood of phonon absorption at higher
temperatures. For low temperatures only phonon emission
processes contribute which are temperature insensitive.

Another method to characterize the dephasing process is
to fit the decaying signal with a stretched exponential:

I ~t!5I 0expS 2F4t

T2
GbD . ~35!

If the dephasing exhibits this so-called
Kohlrausch-Williams-Watt24 behavior, we get a straight line
with slopeb and an intersection pointb ln(T2/4) when plot-

FIG. 1. Time-integrated FWM signal as a function of delay time
for various temperatures.

FIG. 2. Definition of the dephasing rate for a limited time inter-
val.

FIG. 3. Dephasing timesT2 , determined according to Fig. 2, as
a function of temperature.
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ting ln„2 ln(I/I0)… versus ln(t). However, this description also
turns out to be only very roughly valid for the model consid-
ered here.

In order to study the dependence of dephasing on excita-
tion energy, we assume laser pulses with a duration of 100
fs, which excite only a small part of the DOS. If we excite at
1.27 eV, i.e., at the high-energy side of the DOS, almost all
neighbors of excited sites have a lower energy. Thus down-
ward hops dominate the dephasing and no temperature de-
pendence of the dephasing can be seen.

On the other hand, there is a strong temperature depen-
dence if the excition occurs in the low-energy part of the
DOS~1.15 eV! ~cf. Fig. 4!. Again, we can estimate a dephas-
ing rateG for the time interval@0.8 ps–1.2 ps#. The tempera-
ture dependence of the rates is shown in Fig. 5. Although the

rate increases with rising temperature, there is no activated
behavior, as can be seen in Fig. 6. This observation can be
interpreted on the basis of the so-called transport energy,11,25

which separates those regions in the DOS, where hopping is
predominantly activated upwards, from regions where hops
occur mainly downwards. This transport energy itself de-
pends on temperature, thus producing the nonactivated be-
havior.

The situation is completely different for high-energy ex-
citation, as shown in Fig. 7. Here we investigate two differ-
ent situations, as indicated by the insets to Fig. 7. The tem-
perature was chosen to be 1 K in order to have only
downward hops. The dots in Fig. 7 show the computed TI-
FWM signal and the solid line is a linear regression showing
that the dephasing is now exponential. This is easily under-

FIG. 4. Time-integrated FWM signal as a function of delay time
for excitation in the low-energy region of the density-of-states pro-
file, showing strong temperature dependence.

FIG. 5. Temperature dependence of the dephasing rate deter-
mined from Fig. 4, according to the procedure illustrated in Fig. 2.

FIG. 6. Same data as in Fig. 5 plotted againstT21 showing the
strong deviation from an activated behavior.

FIG. 7. Time-integrated FWM signal as a function of delay time
for two different excitation energies in the high-energy region of the
density-of-states profile~dots!. The ‘‘typical hop’’ approximation is
given by the dashed-dotted line.
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stood if we note that for excitation high in the DOS nearly all
hops are terminated at a site with lower energy, and there is
no large dispersion of hopping rates. To be more specific, we
note that the electronlike out scattering is the main contribu-
tion for the parameters that we used for Fig. 7, so that the
other three contributions~electronlike in-scattering, holelike
in-scattering, and out-scattering! can be neglected. We can
then make a simple approximation of the dephasing rate~see
Ref. 25!:

n↓~EL!52
n0
2
expS 2

2R~EL!

a D , ~36!

where we introduce a typical downward hop to a site at the
mean distanceR(EL). This distance can be obtained by in-
tegrating the one-dimensinal DOSg(E) up to the laser en-
ergy:

R~EL!5F E
2`

EL
g~x!dxG21

. ~37!

The factor 2 in Eq.~36! reflects the fact that for weak disor-
der, both the left- and right-hand neighbors have to be taken
into account. The localization lengtha is approximated by
that of a site with the energyEL . This approximation is
plotted in Fig. 7 as dash-dotted lines. For comparision, we
also plotted the fastest and the slowest rates corresponding to
the smallest and largest distances to the next neighbors~re-
member that only the spatial disorder influences these rates!.
Clearly the approximation is nearly perfect for excitation at
the top of the DOS~left graph!, while it deviates strongly for
lower excitation energy~right graph!. The description of
dephasing using just the ‘‘typical’’ hop can, therefore, be
highly misleading in general.

VI. CONCLUSIONS

We have developed a set of equations describing the dy-
namics of localized optical excitations including electron-
phonon interaction. To study the dephasing of these excita-
tions, we applied our method to the FWM geometry. We
have shown how the Monte Carlo technique can be used in
order to calculate the incoherent part of the equations of
motion. As an illustration, we considered a simple disordered
one-dimensional model system. The temperature and excita-
tion dependence of the dephasing rate has been studied and
limitations of previous approximate approaches have been
demonstrated.
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APPENDIX A: MULTIPHONON RATE EQUATION

We give a derivation of the multiphonon rate equation by
applying the procedure presented in the body of this paper
for single-phonon processes. The Hamiltonian containing
multiphonon processes reads

H̃5(
i ,a

e i ,an̂i i
a1(

iÞ j
(

a5c,v
Ji j

aeSi j
a
ĉi ,a
† ĉ j ,a1(

q
\v~ âq

†âq1
1
2 !

2(
i

m iEi~ ĉi ,v
† ĉi ,c1 ĉi ,c

† ĉi ,v!. ~A1!

The equations of motion forn̂i j
a is ~upper sign forn̂i j

v and
lower for n̂i j

c )

]

]t
ni j5 iv i j ni j1

i

\(
kÞ i

Jkink je
Ski2

i

\(
kÞ j

Jjknike
Sjk

6
i

\
mE~ p̂i j

†2 p̂i j !. ~A2!

For the rest of this appendix, we suppress the indexa, since
only one band is involved. Because of terms likenike

Sjk and
nk je

Ski this set of equations is not closed. A procedure analo-
gous to that used in Sec. II B consists of evaluting the equa-
tions of motion for these quantities. However, the resulting
equations turn out not to be closed either. After applying the
Markov and adiabatic limit, the resulting differential equa-
tions can unfortunately not be solved without neglecting im-
portant processes.

Thus, a different approach is needed. The idea is to ex-
pand the exponential containing the phonon operators and
solve the equation of motion for each of these coefficients
separately. In this way, no problems arise when solving the
differential equations. The resulting equations are then
summed up and the well known multiphonon rate equation is
obtained. We expand the exponential,

eSi j5 (
n50

`
1

n!
~Si j !

n5 (
n50

`
1

n! S (q 1

\vq
~Ai j ,qâq

†2Ai j ,q* âq! D n

5 (
n50

`
1

n! (
q1 . . .qn

1

\vq1
. . .\vqn

3 (
binom

~Ai j ,q1
s

•••Ai j ,qn

s !Wn. ~A3!

Thebinomsum is a sum over all the 2n binomial terms of the
n-fold product (Si j )

n. Wn is an abbreviation forâq1
s
•••âqn

s ,

whereâqn
s can be either a creation or a destruction operator.

Note that the operatorni jW
n containsn phonon operators,

each of which can be either a creation or a destruction op-
erator. Nevertheless, it is possible to evaluate the Heisenberg
equation for this very general operator. By neglecting, as
mentioned above, all nondiagonal terms and the interaction
with the light field, we obtain

]

]t
ni jW

n5 iv i j ni jW
n1 i (

l51

n

6vql
ni j ~W

n1Wt,n!

1
i

\
Jji e

Sji ~nj j2nii !W
n

1
i

\
Jji ni j nji @e

Sji ,Wn#. ~A4!

2568 54D. BRINKMANN, F. ROSSI, S. W. KOCH, AND P. THOMAS



In the sum, the plus sign has to be taken if thelth operator
of Wn is a creation operator, and the minus is valid if it is a
destruction operator.

Here we introduced the operatorWt,n: The commutation
of Wn with the phonon part of the Hamiltonian reproduces
Wn and an additional term~which we denote withWt,n) if
at least two-phonon operators have the sameq value. How-
ever, this additional term has less phonon operators than
Wn ~therefore the nameWt,n). Furthermore, it is an inho-
mogeneity in the differential equation Eq.~A4! and, in addi-
tion, it is nondiagonal with respect to the electronic indices.
Hence, it will be neglected like all other quantities that are
nondiagonal in the electronic indices. Solving the equation
Eq. ~A4! and performing the Markov and adiabatic limit
yields

ni j ~ t !W
n~ t !5

i

\
Jji @nj j ~ t !2nii ~ t !#

3E
0

`

dt8ei ~v i j1S6vql
!t8eSji ~ t8!Wn~ t8!

1
i

\
Jji „nji ~ t !ni j ~ t !…E

0

`

dt8ei ~v i j1S6vql
!t8

3@eSji ~ t8!,Wn~ t8!#. ~A5!

Summing up all the solutions according to Eq.~A3! gives the
time evolution ofni j (t)e

Si j (t):

ni j ~ t !e
Si j ~ t !5

i

\
Jji @nj j ~ t !2nii ~ t !#E

0

`

dt8eiv i j t8eSji ~ t8!eSi j ~0!

1
i

\
Jji „nji ~ t !ni j ~ t !…E

0

`

dt8eiv i j t8

3@eSji ~ t8!,eSi j ~0!#. ~A6!

Thus, the incoherent part of the equation of motion fornii is
given by

]

]t
niiU incoh5 i

\(
kÞ i

Jki~nkie
Ski2nike

Sik!

52(
kÞ i

uJiku2

\2 F @nii ~ t !2nkk~ t !#E
2`

0

dt8e2 ivkit8

3eSik~ t8!eSki~0!

1nki~ t !nik~ t !E
2`

0

dt8e2 ivkit8@eSik~ t8!,eSki~0!#

2@nkk~ t !2nii ~ t !#E
2`

0

dt8e2 iv ikt8eSki~ t8!eSik~0!

2nik~ t !nki~ t !E
2`

0

dt8e2 iv ikt8@eSki~ t8!,eSik~0!#G .
~A7!

The last step is now to take the expectations values. After
rearranging the resulting terms, the final result is

]

]t
niiU incoh5(

kÞ i

uJiku2

\2 Fnkk~12nii !E
2`

`

dt8e2 ivkit8Qik

2nii ~12nkk!E
2`

`

dt8e2 iv ikt8QkiG . ~A8!

The expectation values for the phonon operators can be
found in the literature:17

Qik~ t !5^eSik~0!eSki~2t8!&ph

5expF2(
q

U Aik,q

\vq
U2$~Nq11!~12e2 ivqt!

1Nq~12eivqt!%G . ~A9!

Equation ~A8! is the well known multiphonon rate
equation.16 Usually, it is written in the form

]

]t
niiU incoh5(

kÞ i

uJiku2

\2 Fnkk~12nii !e
22SE

2`

`

dt8e2 ivkit8ef~ t8!

2nii ~12nkk!e
22SE

2`

`

dt8e2 iv ikt8ef~ t8!G ,
~A10!

with the definitions

2S5(
q

U Aik,q

\vq
U2$~2Nq11!%,

f~ t8!5(
q

U Aik,q

\vq
U2$~Nq11!~e2 ivqt!1Nq~e

ivqt!%.

~A11!

APPENDIX B: MARKOV LIMIT AND ADIABATIC LIMIT

When solving the equations of motion for the dynamical
variables, one often obtains differential equations of the form

]

]t
x~ t !5 ivx~ t !1y~ t !. ~B1!

The solution of this differential equation is

x~ t !5x~ t0!e
iv~ t2t0!1E

t0

t

eiv~ t2t8!y~ t8!dt8. ~B2!

This exact solution can be simplified by introducing a num-
ber of approximations.

The first one is the Markov limit. Assuming that the tem-
poral variation of the functiony(t) is very slow compared to
the exponential, it can be treated as a constant within the
interval @ t0 ,t# and thus be taken out of the integral,

x~ t !'x~ t0!e
iv~ t2t0!1y~ t !E

t0

t

eiv~ t2t8!dt8. ~B3!

Then the adiabatic limit is performed. The frequencyv is
substituted byv1 ih. Furthermore, the lower limitt0 goes
to 2`. Thus, performing the adiabatic limit means that the
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influence of any initial contribution has died out:

x~ t !'x~2`!ei ~v1 ih!`1y~ t !E
2`

t

ei ~v1 ih!~ t2t8!dt8

'y~ t !E
2`

t

ei ~v1 ih!~ t2t8!dt8.

Integrating and using the Dirac identity yields

x~ t !5S 2 i
P
v

1pd~v! D y~ t !. ~B4!

If x is a real quantity, this can be simplified further:

x~ t !5pd~v!y~ t !. ~B5!
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16H. Böttger and V.V. Bryksin,Hopping Conduction in Solids
~Akademie-Verlag, Berlin, 1985!.

17G.D. Mahan,Many Particle Physics~Plenum Press, New York,
1981!.

18U. Dersch, M. Gru¨newald, H. Overhof, and P. Thomas, J. Phys. C
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