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Abstract. We compute the automorphism group of the complex 3-

dimensional Heisenberg Lie algebra and study its action (by isometries) on
the set of inner products of R6. As consequence we give a description of the

moduli space of invariant metrics on the Iwasawa manifold. We also show that

the action mentioned above is not polar and have a minimal orbit.

1. Introduction

The Iwasawa manifold M is a complex 3-dimensional nilmanifold. It is defined
as a compact quotient of the 3−dimensional complex Heisenberg group. It is well-
known that M carries no Kähler metric even though it admits symplectic structures
[6], [9]. The Hermitian geometry of the Iwasawa manifold was studied in [1] and
[11]. In [5] was studied the topology of the quotient of the set of 2-step nilpotent
Lie brackets of Rn under the natural action of the orthogonal group O(n).

LetM be the set of invariant metrics on the Iwasawa manifold M . Any invariant
metric on the Iwasawa manifold comes from an inner product on the Lie algebra
of the Heisenberg group. Thus, the space M can be identified with the symmetric
space of inner products on R6.

The goal of this paper is to determine and further describe the moduli space
M/ ∼ of invariant metrics up to isometries. That is to say, [g] ∈M/ ∼ is the class
of all invariant metrics which are isometric to g.

Let D be the set of symmetric positive definite 2 × 2 matrices and let σ be the

conjugation σ :
(
E F
F G

)
→
(

E −F
−F G

)
. Let D/σ be the quotient of D by

the action of σ.

Here is our main result:

Theorem 1.1. The moduli space M/ ∼ is homeomorphic to the product

∆×D/σ .
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where ∆ is the triangle ∆ := {(r, s) : 1 ≥ r ≥ s > 0}.
Moreover, any left invariant metric on M is isometric to a metric of the form

e1 ⊗ e1 + re2 ⊗ e2 + e3 ⊗ e3 + se4 ⊗ e4 + Ee5 ⊗ e5 + 2Fe5 ⊗ e6 +Ge6 ⊗ e6 .

where ω1 = e1 + ie2, ω2 = e3 + ie4, ω3 = e5 + ie6 are the standard left invariant
forms such that dω3 = ω2 ∧ ω1.

2. Preliminaries

Let

H =

g =

 1 z1 z3

0 1 z2

0 0 1

 : z1, z2, z3 ∈ C


denote the complex Heisenberg group and h its Lie algebra. The Iwasawa man-

ifold is the compact quotient space M = Γ \ H formed from the right cosets of
the discrete subgroup Γ given by the matrices whose entries z1, z2, z3 are Gaussian
integers.

The forms ω1 = dz1, ω
2 = dz2, ω

3 = dz3 − z1dz2 are left invariant since they are
the entries of the matrix g−1dg, that is to say

g−1dg =

 1 −z1 z1z2 − z3

0 1 −z2

0 0 1

 0 dz1 dz3

0 0 dz2

0 0 0

 =

 0 dz1 dz3 − z1dz2

0 0 dz2

0 0 0

 .

The real forms ei defined by

ω1 = e1 + ie2 , ω2 = e3 + ie4 , ω3 = e5 + ie6

give rise to a real basis of the dual h∗ of the Heisenberg Lie algebra h.

The group Aut(h) is the set of all invertible linear maps such that
f [X,Y ] = [fX, fY ] for all X,Y ∈ h. Observe that f ∈ Aut(h) if and only if
df∗θ = f∗dθ for all one forms θ ∈ h∗, where d is defined as dθ(X,Y ) := −θ([X,Y ]).
Recall that f acts on θ as (f∗θ)(X) := θ(fX) for all X ∈ h.

The following lemma will be useful for the computation of Aut(h).

Lemma 2.1. Let V be a real vector space and let J ∈ End(V ) be a complex
structure. Let V ∗C = Λ1,0 ⊕ Λ0,1 be the splitting according the eigenspaces of J .
Let f ∈ GL(V ) be an invertible endomorphism of V . The following conditions are
equivalent:

(i) f is either holomorphic f∗Λ1,0 ⊂ Λ1,0 or antiholomorphic f∗Λ1,0 ⊂ Λ0,1;
(ii) f∗Λ2,0 ⊂ Λ2,0 ⊕ Λ0,2.

Proof. (i) ⇒ (ii) is obvious. Let α, β ∈ Λ1,0 be two independent forms, i.e.
α ∧ β 6= 0. Then f∗(α ∧ β) = f∗α ∧ f∗β 6= 0 because f is invertible. Write
f∗α = A+B and f∗β = C +D, where A,B,C,D ∈ Λ1,0. Then

f∗α ∧ f∗β = (A+B) ∧ (C +D) = A ∧ C +A ∧D +B ∧ C +B ∧D

and (ii) implies
A ∧D +B ∧ C = 0 .
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Assume A 6= 0. Then wedging with B we get A∧D∧B = 0 which implies D∧B = 0.
Then if B 6= 0 we get D = λB and inserting this in A ∧D +B ∧ C = 0 we get

A ∧ λB +B ∧ C = 0.

which implies Aλ = C but then λf∗α = f∗β which contradicts f∗α ∧ f∗β 6= 0.
Then B = 0 and so D = 0. This shows that if A 6= 0 then f∗α, f∗β ∈ Λ1,0 so we
get (i). If A = 0 and B 6= 0 then the same argument with f at the place of f shows
that f

∗
Λ1,0 ⊂ Λ1,0 and so f∗Λ1,0 ⊂ Λ0,1 . 2

3. Computation of Aut(h) by using differential forms.

Following [12, pag.15] notice that ω1, ω2, ω3 span the (1,0) space of the standard
complex structure J0. That is to say, the forms ω1, ω2, ω3 belong to the complexi-
fication of h∗ and

J0ωj = iωj
for j = 1, 2, 3.

Let f : h→ h be an automorphism of h. Then f has a natural extension to the
complexification hC. Recall that an endomorphism f : hC → hC comes from a real
endomorphism of h if and only if f(Z) = f(Z) for all Z ∈ hC.

The following theorem gives Aut(h) acting on the complexification h∗C with re-
spect to a particular basis.

Theorem 3.1. With respect to the basis B = (ω1, ω2, ω1, ω2, ω3, ω3) an automor-
phism f ∈ Aut(h) has one of the followings forms:

(3.1) f =



a b 0 0 p q
c d 0 0 r s

0 0 a b q p

0 0 c d s r
0 0 0 0 ad− bc 0
0 0 0 0 0 ad− bc


or

(3.2) f =


0 0 a b p q

0 0 c d r s
a b 0 0 q p
c d 0 0 s r

0 0 0 0 0 ad− bc
0 0 0 0 ad− bc 0


with ad− bc 6= 0.

Proof. Recall that f ∈ Aut(h) if and only if df∗θ = f∗dθ for all one forms θ.
Then f ∈ Aut(h) preserves the image and the kernel of the operator d. Notice that
Im(d) = 〈dω3,dω3〉 and ker(d) = 〈ω1, ω2, ω1, ω2〉. Observe that dω3 generates the
Λ2,0 space of the restriction to ker(d) of the standard complex structure J0 . Then
by using Lemma 2.1 and the fact that f comes from a real endomorphism of h we
get that the first 4 columns of the matrix of f are as in equations (3.1) or (3.2).
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Assume that f∗〈ω1, ω2〉 = 〈ω1, ω2〉 and write f∗ω3 = pω1 + rω2 + qω1 + sω2 +
mω3 + nω3. Then

df∗ω3 = d(pω1 + rω2 + qω1 + sω2 +mω3 + nω3) =

= mdω3 + ndω3 =

= −mω1 ∧ ω2 − nω1 ∧ ω2 =

= f∗dω3 = f∗(−ω1 ∧ ω2) =

= −f∗ω1 ∧ f∗ω2 = −(a ω1 + c ω2) ∧ (b ω1 + d ω2) =

= −(ad− bc) ω1 ∧ ω2.

So m = ad − bc and n = 0 which gives the last two columns of (3.1). If
f∗〈ω1, ω2〉 = 〈ω1, ω2〉 then a similar computation gives the last two columns of
(3.2). In the opposite direction it is not difficult to check that any invertible ma-
trix as in (3.1) or (3.2) is the extension to h∗C of a map f : h → h which satisfies
df∗ωj = f∗dωj , (j = 1, 2, 3) and so f ∈ Aut(h). 2

3.1. Connected components. Then Aut(h) has two connected components. The
set of matrices (3.1) are the connected component of the identity and is denoted
Aut0(h). Notice that the matrices (3.2) are obtained from the matrices (3.1) by
composition with the conjugation automorphism C of (h, J0) whose matrix with
respect to the basis of Theorem 3.1 is

(3.3) C :=


0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0


Thus, Aut(h) = Aut0(h)

⋃
C(Aut0(h)).

Observe that

(3.4) CXC = X

for X ∈ Aut(h). Indeed,

(CXC)ωj = CXωj ,

= CXωj ,

= Xωj ,

= Xωj .

Remark 3.2. The conjugation C should be not confused with the conjugation of
complexification X of h∗C. Such a confusion induces the wrong claim that C must
be in the center of Aut(h) which is wrong as showed by equation (3.4). Actually,
the conjugation C is a complex linear map whilst the complexification X of h∗C is
anti-complex linear map from its very definition.
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3.2. The real description of Aut(h). Here are the matrices of Aut(h) with re-
spect to the basis (e1, e2, e3, e4, e5, e6):

(3.5) f =


a1 a2 b1 b2 x11 x12

−a2ε a1ε −b2ε b1ε x21 x22

c1 c2 d1 d2 x31 x32

−c2ε c1ε −d2ε d1ε x41 x42

0 0 0 0 u v
0 0 0 0 −vε uε


where ε = ±1, xij are arbitrary real numbers and a = a1 + ia2, b = b1 + ib2, c =

c1 + ic2, d = d1 + id2 are complex such that ad − bc = u + iv 6= 0. Indeed, this
follows by taking the real and imaginary parts of the forms f∗ωi = f∗e2i−1 +if∗e2i,
i = 1, 2, 3. The matrices with ε = 1 corresponds to Aut0(h).

Here is the Lie algebra of Aut(h):

(3.6) f =


a1 a2 b1 b2 x11 x12

−a2 a1 −b2 b1 x21 x22

c1 c2 d1 d2 x31 x32

−c2 c1 −d2 d1 x41 x42

0 0 0 0 u v
0 0 0 0 −v u


where xij are arbitrary real numbers and a = a1+ia2, b = b1+ib2, c = c1+ic2, d =

d1 + id2 are complex such that a+ d = u+ iv.

3.3. Twisted semidirect product. Notice that Aut0(h) looks like the semidirect
product GL(2,C) n C2,2. Indeed, a matrix f as in (3.1) can be written as A 0 P

0 A P ′

0 0 ∆(A)


where A ∈ GL(2,C), P ∈ C2,2, ∆(A) =

(
det(A) 0

0 det(A)

)
and P ′ is the matrix

obtained from P after conjugation and swapping the columns.
Then there is a one-one correspondence between Aut0(h) and GL(2,C)×C2,2. Here
is the product rule in terms of pairs (A,P ), (B,Q) ∈ GL(2,C)× C2,2:

(3.7) (A,P )(B,Q) = (AB,AQ+ P∆(B)) .

Thus Aut0(h) looks like the semidirect product GL(2,C) n C2,2 but it is not ex-
actly this semidirect product. Notice, for example, that the center of the semidirect
product GL(2,C) n C2,2 is not trivial.

3.4. The center is trivial.

Proposition 3.3. The center of Aut0(h) is trivial.

Proof. If (A0, P0) is in the center of Aut0(h) then

(A0, P0)(B,Q) = (A0B,A0Q+ P0∆(B)) =

(B,Q)(A0, P0) = (BA0, BP0 +Q∆(A0)).



6 ANTONIO J. DI SCALA

So A0 is in the center of GL(2,C), that is to say A0 = λId. Taking Q = 0 we get

P0∆(B) = BP0 .

This implies P0 = 0 since the above equation means that the columns of P0 are
eigenvectors of B. Finally, λQ = Q∆(λId) implies λ2 = λ, and so λ = 1. 2

Corollary 3.4. The center of Aut(h) is trivial.

Proof. Let A 6= Id ∈ Aut(h) be a non trivial element in the center. Since Aut(h)
has two connected components we have A = CA0 with A0 ∈ Aut0(h). Then

CA0CX = A0X = XA0 .

This implies that A0 commutes with all the real matrices in Aut0(h). Now the
same argument as in previous proposition shows that A0 = Id. Since C is not in
the center we conclude that A = Id. 2

3.5. Inner automorphisms. An inner automorphism is given by exp(adX) where
X ∈ h.

Proposition 3.5. The inner automorphisms in Aut(h) are given by

(Id,
(
a 0
b 0

)
)

where a, b ∈ C. So the subgroup of inner automorphisms is isomorphic to C2.

4. GL(k,C) equivalents inner products on R2k

It is well-known that a symmetric positive definite matrix can be diagonalized
by using an orthogonal transformation. Here we show that also by using a trans-
formation in GL(k,C) it is possible to diagonalize a symmetric positive definite
matrix.

Let J be the complex structure of R2k given by the identification with Ck.

Theorem 4.1. Let g be any inner product on R2k. Then there exist k g-orthogonal
complex lines. That is to say, there exist g-unitary vectors e1, e2, · · · , ek ∈ R2k such
that

R2k = Ce1 ⊕ Ce2 ⊕ · · · ⊕ Cek
where Cej is g-orthogonal to Cei for i 6= j. Moreover, we can assume g(ei, Jei) = 0
for i = 1, · · · , k.

Proof. By induction it is enough to show that there exists a 2-dimensional
complex subspace whose g-orthogonal complement is also complex. Let J = S +A
be the decomposition of J into self-adjoint part S and skew part A with respect to
g. The identity J2 = −Id implies:{

i)SA = −AS,
ii)S2 +A2 = −I.

Indeed, SA + AS is skew and −I = J2 = S2 + A2 + SA + AS imply SA + AS
is self-adjoint. Then SA+AS must vanish.

Let v be an eigenvector of S. Then i) and ii) imply that the span(v,Av)
is a J-invariant, 2-dimensional subspace whose orthogonal complement is also
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J-invariant.2

Here is another proof due to Simon Salamon.

Proof. Let K be the g-transpose of J . Then KJ is a self-adjoint map with
respect to g. If v is an eigenvector of KJ with eigenvalue λ then Jv is also an
eigenvector of KJ with eigenvalue 1

λ . Thus we can group the eigenvectors into
pairs to get the required orthogonal decomposition.2

4.1. The action of GL(2,C) on the inner products of R4. Let M4 be the set
of inner products of R4. By fixing a basis (e1, e2, e3, e4) we identify M4 with the
symmetric space GL(4,R)/O(4). We also identify R4 with C2 by

(z, w) = (z1 + iz2, w1 + iw2) ∼= z1e1 + z2e2 + w1e3 + w2e4 .

Denote with J the complex structure on R4 due the above identification.
The subgroup GL(2,C) ⊂ GL(4,R) acts naturally on M4 and Theorem 4.1 can

be interpreted by saying that the submanifold

Σ =




1 0 0 0
0 r 0 0
0 0 1 0
0 0 0 s

 : r, s ∈ R+

 .

meets all GL(2,C)-orbits. When r = s = 1 we get the standard Hermitian metric
g0.

Let us identify Σ with the first quadrant

{(r, s) ∈ R2 : r, s > 0}
and let Γ ⊂ Diff(Σ) be the finite group with 8 elements generated by the following
diffeomorphisms 

r(x, y) := (y, x),
i(x, y) := ( 1

x , y),
j(x, y) = (x, 1

y ) .

By swapping the order of the complex lines Ce1 and Ce3 and by re-scaling the
generators we get the following result.

Proposition 4.2. The quotient space M4/GL(2,C) is homeomorphic to the quo-
tient Σ/Γ.

Proof. Let g ∈M4 be an inner product and let (r, s) ∈ Σ be a pair corresponding
to g. As we observed in the second proof of Theorem 4.1 the positive numbers r, s
are eigenvalues of the g-self-adjoint map KJ . Then the group Γ acts on such
pairs because the set of eigenvalues of KJ is {r, 1

r , s,
1
s}. Reciprocally, any of the

generators of Γ acts as an element of GL(2,C). Indeed, the map r corresponds to
swapping the complex lines and the maps i, j are the respective re-scalings in each
complex line.2

Notice that Σ/Γ is homeomorphic to the triangle

∆ := {(r, s) : 1 ≥ r ≥ s > 0} .
The symmetric spaceM4 carries a Riemannian metric with respect to GL(4,R)

acts by isometries. Then GL(2,C) acts by isometries onM4. It is well-known that
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any isolated orbit of an isometry group is a minimal submanifold. Thus, we get the
following corollary.

Corollary 4.3. The GL(2,C)-orbit through the canonical Hermitian metric g0 is
a minimal submanifold of M. Moreover, by using the identification Σ/Γ ∼= ∆, the
principal orbits correspond to the open triangle

{(r, s) : 1 > r > s > 0} .

5. Inner products on the Heisenberg algebra

Theorem 4.1 implies that any inner product g on the Heisenberg algebra is
conjugated by the group of automorphism to a metric whose matrix with respect
to the basis B = (ω1, ω2, ω1, ω2, ω3, ω3) is

(5.1) g =



1− r 0 1 + r 0 A B
0 1− s 0 1 + s C D

1 + r 0 1− r 0 B A
0 1 + s 0 1− s D C
A C B D M t
B D A C t M


where r, s ∈ R+, t ∈ R, A,B,C,D ∈ C.

Now an straightforward computation shows that there exists an unique P ∈ C2,2

such that the automorphism f = (Id, P ) (see 3.7) which sends g to the matrix

(5.2) g′ =


1− r 0 1 + r 0 0 0

0 1− s 0 1 + s 0 0
1 + r 0 1− r 0 0 0

0 1 + s 0 1− s 0 0
0 0 0 0 M t
0 0 0 0 t M


Let M be the set of inner products on the Heisenberg algebra. By taking real

and imaginary parts we have the following result.

Theorem 5.1. Let g ∈M be any inner product on the Heisenberg algebra h. Then
g is equivalent by an automorphism of Aut0(h) to

e1 ⊗ e1 + re2 ⊗ e2 + e3 ⊗ e3 + se4 ⊗ e4 + Ee5 ⊗ e5 + 2Fe5 ⊗ e6 +Ge6 ⊗ e6 .

Moreover, the moduli space M/Aut(h) is homeomorphic to the product

∆× (M2/σ) ,

where ∆ := {(r, s) : 1 ≥ r ≥ s > 0}, M2 is the set of inner products of R2, σ is
the conjugation σ : (x, y) → (x,−y) and M2/σ denotes the quotient by the action
of σ.

6. Proof of Theorem 1.1

In [13] E. Wilson showed that two left invariant metrics g1, g2 on a nilmanifold
M are isometric if and only if g1, g2 are conjugated under the automorphism group
of the nilpotent Lie algebra associated to M .

Now Theorem 1.1 is a direct application of Theorem 5.1.
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7. The geometry of the action of Aut(h).

Here we study the action of Aut(h) on M. We refer to the book [4] for details
about Submanifold Geometry.

As we explain in the introductionM can be identified with the set of 6×6 positive
definite matrices. More precisely, by fixing the basis e1, e2, e3, e4, e5, e6 we identify
M with the set of left cosets GL(6,R)/O(6). The canonical metric g0 =

∑
i(e

i)2 is
identified with the identity matrix I6. The tangent space Tg0M is identified with
the set of 6 × 6 symmetric matrices S6 and the symmetric Riemannian metric 〈, 〉
at Tg0M is given by

〈A,B〉 := trace(AB) .

Since Aut(h) ⊂ GL(6,R) it follows that Aut(h) acts by isometries on M.
Here is the tangent space to the orbit Aut(h)I6 at I6:

(7.1) TI6Aut(h)I6 =




2a1 0 c1 −c2 x11 x12

0 2a1 c2 c1 x21 x22

c1 c2 2d1 0 x31 x32

−c2 c1 0 2d1 x41 x42

x11 x21 x31 x41 2a1 + 2d1 0
x12 x22 x32 x42 0 2a1 + 2d1




.

Indeed, this follows from the description of the Lie algebra of Aut(h) given in
equation (3.6) and the fact that the Killing vector field X ∈ gl(6,R) is represented
by Xt +X as a vector at Tg0M.

The isotropy group Aut(h)I6 at I6 is isomorphic to U(2). Here is its Lie algebra:

(7.2) f =


0 a2 b1 b2 0 0
−a2 0 −b2 b1 0 0
−b1 b2 0 d2 0 0
−b2 −b1 −d2 0 0 0

0 0 0 0 0 a2 + d2

0 0 0 0 −a2 − d2 0

 .

Here is the normal space νI6(Aut(h)I6):

(7.3)

νI6(Aut(h)I6) =




n1 n2 m1 m2 0 0
n2 n3 m2 −m1 0 0
m1 m2 p1 p2 0 0
m2 −m1 p2 −p1 + n1 + n3 0 0
0 0 0 0 x y
0 0 0 0 y −x− n1 − n3




.

The normal space νI6(Aut(h)I6) is invariant under the action of the isotropy
group Aut(h)I6 and splits into irreducible invariant subspaces as:

(7.4) νI6(Aut(h)I6) = R⊕ R2 ⊕ R6

where
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R = R.


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1



R2 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 x y
0 0 0 0 y −x





R6 =




n1 n2 m1 m2 0 0
n2 −n1 m2 −m1 0 0
m1 m2 p1 p2 0 0
m2 −m1 p2 −p1 0 0
0 0 0 0 0 0
0 0 0 0 0 0




7.1. Non Polar action. Let M be a connected complete Riemannian manifold
and G a closed subgroup of isometries of M . A complete, embedded and closed
submanifold Σ of M is called section if Σ intersects each orbit of G and is perpen-
dicular to orbits at the intersection points. If there exists a section in M , then the
action is called polar.

Theorem 7.1. The action of Aut(h) on GL(6,R)/O(6) is not polar.

Proof. By contradiction assume that the action of Aut(h) on GL(6,R)/O(6) is
polar. Then by [4, Page 43, Proposition 3.2.2] the representation of the isotropy
group Aut(h)I6 at I6 on the normal space is polar. That is to say, the U(2)-action
on R⊕R2⊕R6 described above is polar. Then [7, Theorem 4] imply that the U(2)-
action in R6 is also polar. Observe that the U(2)-action in R6 is irreducible. Indeed,
this representation can be regarded as a complex representation of SU(2) on C3.
Since the SU(2)-action has not fixed point it follows that it is irreducible. Thus,
the U(2)-action in R6 is irreducible. Now by Dadok’s Theorem [7, Proposition 6]
it follows that U(2)-action in R6 is orbit equivalent to a irreducible representation
of a Riemannian symmetric space. Since U(2) has dimension 4 the only possibility
is that the Riemannian symmetric space is of rank 2. Indeed, by the classification
of irreducible Riemannian symmetric spaces it follows that in dimension 6 they are
either of rank 1 or rank 2. Then the principal U(2)-orbits in R6 are 4-dimensional.
Since the U(2)-action on the R2-factor is non trivial it follows from [7, Theorem 4,
(ii)] that the principal orbits of the polar U(2)-action on R2 ⊕R6 are of dimension
greater than 4 which is a contradiction with the fact that U(2) has dimension 4.2

7.2. Orbit types. The goal of this subsection is to compute the isotropy group
(up to conjugation) of each orbit of the action of Aut(h) on GL(6,R)/O(6).
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As proved in Theorem 1.1 any Aut(h)-orbit has a representative of the form

g =


1 0 0 0 0 0
0 r 0 0 0 0
0 0 1 0 0 0
0 0 0 s 0 0
0 0 0 0 E F
0 0 0 0 F G

 .

In order to compute the Lie algebra of the isotropy group at g we will write

g =
(
D 0
0 m

)
where D =


1 0 0 0
0 r 0 0
0 0 1 0
0 0 0 s

 and m =
(
E F
F G

)
.

Let K =
(
A B
0 z

)
be vector in the Lie algebra of Aut(h) as in equation (3.6).

Then K is in the Lie algebra of the isotropy group at g if and only if the following
conditions hold:

(7.5)


AtD +DA = 0 ,
DB = 0
ztm+mz = 0

A direct computation shows that the above conditions are equivalent to the
following system

(7.6)



B = 0 ,
F (a2 + d2) = 0 ,
(E −G)(a2 + d2) = 0 ,
a1 = 0 ,
a2(1− r) = 0 ,
b1 + c1 = 0 ,
b2 − c2s = 0 ,
c2 − b2r = 0 ,
b1r + c1s = 0 ,
d1 = 0 ,
d2(1− s) = 0

By using Theorem 1.1 we get the following classification of isotropy types:

(7.7)



r = s = 1⇒

{
F = 0, E = G⇒ U(2) ,
F 6= 0 or E 6= 0⇒ SU(2) ,

,

rs 6= 1⇒

{
r = s⇒ SO(2) ,
r 6= s⇒ {Id} ,
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7.3. A minimal orbit. A submanifold N ⊂M of a Riemannian manifold is called
minimal if its mean curvature vector H vanishes. The mean curvature vector is the
trace of the second fundamental form α of the submanifold.

Here we show that the Aut(h)-orbit through I6 is a minimal submanifold of
GL(6,R)/O(6).

Let X ∈ TI6Aut(h)I6 be a tangent vector and and ξ ∈ νI6(Aut(h)I6) be a normal
vector. Then [3, Proposition 2.2.] implies

(7.8) 〈α(X,X), ξ〉 = 〈[ξ,X]∗, X∗〉

where X∗ indicates the Killing vector field induced by the vector X in the Lie
algebra. In our case X∗ = Xt +X.

Notice that I6 represents the metric g used in [1, 2] so the following proposition
shows that the metric g has also an interesting property inside the space of left-
invariant metrics.

Proposition 7.2. The orbit through I6 of the action of Aut(h) on GL(6,R)/O(6)
is a minimal submanifold of GL(6,R)/O(6).

Proof. Let H0 be the mean curvature vector of the orbit Aut(h).I6 at I6. We are

going to show that 〈H0, ξ
∗〉 = 0 where ξ =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


As follows from equation (7.1) the following 12 vectors are a (non orthonormal)

basis of TI6Aut(h)I6:

A∗1 =



1
2 0 0 0 0 0
0 1

2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1

2 0
0 0 0 0 0 1

2

 , D∗1 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 1

2 0 0 0
0 0 0 1

2 0 0
0 0 0 0 1

2 0
0 0 0 0 0 1

2



C∗1 =


0 0 1

2 0 0 0
0 0 0 1

2 0 0
1
2 0 0 0 0 0
0 1

2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , C∗2 =


0 0 0 − 1

2 0 0
0 0 1

2 0 0 0
0 1

2 0 0 0 0
− 1

2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



X∗11 =


0 0 0 0

√
2

2 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0√
2

2 0 0 0 0 0
0 0 0 0 0 0

 , · · · , X∗42 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0

√
2

2
0 0 0 0 0 0
0 0 0

√
2

2 0 0


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An straightforward computation shows that

[ξ, A1] = [ξ,D1] = [ξ, C1] = [ξ, C2] = 0 .

So by using equation (7.8) we get
〈α(A1, A1), ξ∗〉 = 0 ,
〈α(D1, D1), ξ∗〉 = 0 ,
〈α(C1, C1), ξ∗〉 = 0 ,
〈α(C2, C2), ξ∗〉 = 0 ,

Another simple computation shows that the matrices

[ξ,X11], · · · , [ξ,X42]

are skew-symmetric. So by using equation (7.8) we get that the mean curvature
vector H0 has no component in the ξ∗ direction.

Since the mean curvature vector H0 of a orbit is invariant by the isotropy rep-
resentation we get, according to the decomposition (7.4) of the normal space, that
H0 must be a multiple of ξ∗. Thus, H0 = 0 and this completes the proof. 2

Remark 7.3. It is well-known that an ’isolated’ orbit G.p (i.e. there is not orbit
of the same type around it [10]) of an isometry action is a minimal submanifold.
Notice that the orbit Aut(h).I6 through I6 of the action of Aut(h) on GL(6,R)/O(6)
is not isolated.

8. Appendix: Polar irreducible representations of U(n)

As a direct consequence of [8] we get the following result.

Proposition 8.1. Let ρ be an irreducible representation of U(n). Assume that ρ
is a polar representation.

If ρ is faithful then ρ is one of the following representations of U(n):
(i) U(n) ∼= S(U(n)× U(1)) acting naturally on Cn ⊗ C,
(ii) U(n) acting naturally on Λ2(Cn),

(iii) U(n) acting naturally on S2(Cn).
If ρ is not faithful and ρ restricts to an irreducible representation of SU(n) then

ρ is one of the following representations of SU(n):
(i) SU(n) ∼= SU(n)× SU(1)) acting naturally on Cn ⊗ C,
(ii) SU(n) acting naturally on Λ2(Cn),
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ments and remarks. The author would like to thank the anonymous referee for the
careful screening of the manuscript and for many useful suggestions.

References

[1] Abbena, E.; Garbiero, S. and Salamon, S.: Hermitian geometry on the Iwasawa man-
ifold. Boll. Un. Mat. Ital. B (7) 11 (1997), no. 2, suppl., 231–249.

[2] Abbena, E.; Garbiero, S. and Salamon, S.: Almost Hermitian geometry on Six Di-
mensional Nilmanifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Vol. XXX (2001), pp.
147–170.



14 ANTONIO J. DI SCALA

[3] Alekseevsky, D.V. and Di Scala, A.J.: Minimal homogeneous submanifolds of sym-

metric spaces. Amer. Math. Soc. Transl. Ser. Lie groups and symmetric spaces, 11–25, 2,

210, Amer. Math. Soc., Providence, RI, 2003.
[4] Berndt, J; Console, S. and Olmos, C.: Submanifolds and holonomy. Chapman &

Hall/CRC Research Notes in Mathematics, 434. Chapman & Hall/CRC, Boca Raton,

FL, 2003.
[5] Console, S.; Fino, A. and Samiou, E.: The moduli space of six-dimensional two-step

nilpotent Lie algebras. arXiv:math/0311024 Ann. Global Anal. Geom. 27 (2005), no. 1,

1732.
[6] Cordero, L.A.; Fernandez, M. and Gray, A.: Symplectic manifolds with no Kähler

structure. Topology 25 (1986), no. 3, 375–380.

[7] Dadok, J.: Polar coordinates induced by actions of compact Lie groups. Trans. Amer.
Math. Soc. 288 (1985), no. 1, 125–137.

[8] Eschenburg, J.-H. and Heintze, E.: On the classification of polar representations. Math.
Z. 232 (1999), no. 3, 391398.

[9] Fernandez, M. and Gray, A.: The Iwasawa manifold. Differential geometry, Peniscola

1985, 157–159, Lecture Notes in Math., 1209, Springer, Berlin, 1986.
[10] Hsiang, Wu-yi: On the compact homogeneous minimal submanifolds. Proc. Nat. Acad.

Sci. U.S.A. 56 1966 5–6.

[11] Ketsetzis, G. and Salamon, S.: Complex structures on the Iwasawa manifold. Adv.
Geom. 4 (2004), no. 2, 165–179.

[12] Salamon, S.: Complex structures on nilpotent Lie algebras. arXiv:math/9808025. J. Pure

Appl. Algebra 157 (2001), no. 2-3, 311–333.
[13] Wilson, E. N.: Isometry groups on homogeneous nilmanifolds. Geom. Dedicata 12

(1982), no. 3, 337–346.

Dipartimento di Scienze Matematiche, Politecnico di Torino, Torino, Italy.
E-mail address: antonio.discala@polito.it


	1. Introduction
	2. Preliminaries
	3. Computation of Aut(h) by using differential forms.
	3.1. Connected components.
	3.2. The real description of Aut(h)
	3.3. Twisted semidirect product.
	3.4. The center is trivial.
	3.5. Inner automorphisms.

	4. GL(k,C) equivalents inner products on R2k
	4.1. The action of GL(2,C) on the inner products of R4

	5. Inner products on the Heisenberg algebra
	6. Proof of Theorem 1.1
	7. The geometry of the action of Aut(h).
	7.1. Non Polar action
	7.2. Orbit types
	7.3. A minimal orbit

	8. Appendix: Polar irreducible representations of U(n)
	References

