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Abstract—We extend the analysis of the scaling laws of wireless
ad hoc networks to the case of correlated nodes movements, which
are commonly found in real mobility processes. We consider a
simple version of the Reference Point Group Mobility model,
in which nodes belonging to the same group are constrained
to lie in a disc area, whose center moves uniformly across the
network according to the i.i.d. model. We assume fast mobility
conditions, and take as primary goal the maximization of per-
node throughput. We discover that correlated node movements
have huge impact on asymptotic throughput and delay, and can
sometimes lead to better performance than the one achievable
under independent nodes movements.

Index Terms—Ad-hoc networks, asymptotic scaling laws,
delay-throughput performance, correlated mobility

I. I NTRODUCTION AND RELATED WORK

In the last few years thestore-carry-forwardcommunication
paradigm, which allows nodes to physically carry buffered data
as they move around the network area, has opened an entire
new area of research with many promising applications in the
context of delay-tolerant networking [1].

In their seminal work [2], Grossglauser and Tse have
shown that mobile nodes employing thestore-carry-forward
paradigm can achieve constant throughput even when the
number of nodes grows to infinity, in contrast to the severe
throughput decay (like1/

√
n) incurred in fixed networks

[3]. The basic requirement of their 2-hop scheme is that
nodes uniformly visit the entire network space according to
an arbitrary, stationary and ergodic mobility process with
independenttrajectories.

When considering also the delay performance, the specific
details about how nodes move become important. Several
papers have analyzed throughput-delay trade-offs for various
mobility models, ranging from the simple reshuffling model
(also referred to as i.i.d. model) [4], [5], [6], to the Brownian
motion [7], and variants of random walk and random way-
point [8], [9]. In [10] the authors have extended the throughput
and delay scaling results of Grossglauser-Tse to more general
inter-contact time distributions than the exponential distribu-
tion, allowing to account for the correlations existing in the
mobility pattern of individual nodes.

The impact of limited buffers has been considered in [10],
[11]. In [12] it is shown that delay-throughput trade-offs,close
to those achievable in mobile networks under reshuffling mo-
bility models, can be achieved in fixed networks by employing
advanced cooperative (MIMO) transmission schemes.

A preliminary version of this paper has appeared at INFOCOM 2010

In the above-mentioned works, the mobility of the nodes
has always been assumed to be uncorrelated (i.e., independent
from node to node) and uniform over the area.

Some authors have already considered the impact on the
capacity of restricted mobility models (i.e., relaxing the as-
sumption that nodes uniformly visit the network area) [13],
[14], [15], [16], still maintaining the independence assumption
on the nodes mobility processes.

To the best of our knowledge, no work has been done
so far to investigate the impact of correlation among nodes
movements on the asymptotic throughput and delay of large
mobile networks. This is rather surprising in light of the
fact that real mobility processes (of pedestrians, vehicles,
animals) exhibit significant degrees of correlation, as observed
in several traces [17], [18], [19], [20].

The goal of our work is to study, for the first time, the
scaling laws of capacity and delay for large mobile networks
including correlated nodes movements. To this aim, we con-
sider a very simple model of correlated mobility based on
the popular Reference Point Group Mobility (RPGM) model
introduced in [21]. Nodes are organized into several groups,
and the mobility of nodes belonging to the same group is
confined within a disc area. Each group has a logical center,
which moves around the network dragging behind all nodes
belonging to the group. Notice that in the long run each
node uniformly visits the entire network space, however the
trajectories of individual nodes are not independent because
they are constrained to jointly follow their respective groups.
By changing a few parameters, our model allows to explore
various degrees of correlation in the node mobility process.

We propose novel scheduling-routing schemes whose pri-
mary goal is to maximize the per-node throughput. As a
secondary goal, we also seek to minimize the packet de-
livery delay. Our main finding is that node correlation has
a strong impact on both throughput and delay performance.
Interestingly, correlated mobility can lead both to betterand
to worse performance with respect to the case in which node
movements are independent.

Prior to our work, the impact of correlated node movements
on existing and novel routing protocols has been extensively
investigated by simulation. In the context of traditionalstore-
and-forward networks, [22] analyzed the effect of various
mobility models, including correlated movements, on classical
routing protocols (DSR, AODV), while in [23] the authors
have proposed a novel routing protocol, called LANMAR,
which directly exploit group mobility patterns to improve
routing efficiency. Similarly to our scheme, they propose a
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hierarchical approach in which data are first routed at the
group level, and then routed within the group containing
the destination. A similar idea is proposed in [24] for the
store-carry-forwardcommunication paradigm. In particular, a
history-based approach similar to PRoPHET [25] is adopted
at the group level. Like us, the authors of [24] also employ
a replication strategy to improve the delivery delay. We
emphasize that previous work relied entirely on simulations
to evaluate the performance of the proposed schemes, without
analyzing asymptotic scaling laws nor the optimality of the
proposed solutions in terms of system throughput and delay.

The rest of the paper is organized as follows. We first
introduce our system assumptions in Section II. In Section III
we analyze thecluster sparseregime, where nodes belonging
to different groups (clusters) meet sporadically. Thecluster
denseregime, in which nodes belonging to different clusters
meet frequently, is briefly discussed in Section IV. In Section
V we illustrate our main findings. In Section VI we present
several extensions of our scheme considering more realistic
mobility models. We conclude in Section VII.

II. SYSTEM ASSUMPTIONS

A. Mobility Model

We consider an extended network comprisingn nodes
moving over a square regionO of arean with wrap-around
conditions (i.e., a torus), to avoid border effects. Note that,
under this assumption, the node density over the area remains
constant and equal to 1, as we increasen.

We assume that nodes are partitioned intom groups, with1

m = Θ(nν), ν ∈ [0, 1). For simplicity, we assume that each
group comprises an integer numberq = n/m of nodes. Note,
however, that our results would not change, in scaling order,
if the cardinalities of the groups were not exactly the same,
as long as each group containsΘ(n/m) = Θ(n1−ν) nodes.

Time is divided into slots of equal duration, which is
normalized to 1. Nodes belonging to the same group move
over the network area in a correlated fashion. To model this
behavior, we assume that, at any given slot, all nodes of a
group have to reside concurrently within a same portion, of
areao(n), of the total network space. In the following we
will refer to such a portion as thecluster-regionor simply the
cluster, associated to the group.

We assume that each cluster-region has a circular shape of
radiusR. We can explore various degrees of correlation in the
node mobility process by lettingR scale withn as well, as
R = Θ(nβ), with β ∈ [0, 1/2). Notice thatβ = 0 corresponds
to the extreme case in which each group occupies a constant
fraction of the network area (just as if all nodes of a group
were located at a single point), irrespective of the number of
nodes in it.

We have yet to specify how nodes move over the network
area from one slot to another. The mobility process of a given
nodei belonging to groupj is described by the combination

1Given two functions f(n) ≥ 0 and g(n) ≥ 0: f(n) =
o(g(n)) means limn→∞ f(n)/g(n) = 0; f(n) = O(g(n)) means
lim supn→∞

f(n)/g(n) = c < ∞; f(n) = ω(g(n)) is equivalent to
g(n) = o(f(n)); f(n) = Ω(g(n)) is equivalent tog(n) = O(f(n));
f(n) = Θ(g(n)) meansf(n) = O(g(n)) and g(n) = O(f(n)); at last
f(n) ∼ g(n) meanslimn→∞ f(n)/g(n) = 1

of two movements: i) a group movement (i.e., the shift of
the cluster-region associated to groupj during a slot); ii) a
node movement (i.e., the change of position of nodei within
cluster-regionj).

For what concerns the group movement, we start assuming
that each cluster-region has a center point, whose position
is updated at each time slot by choosing a new location
uniformly at random in the network area, independently for
each group. This is similar to the so-called reshuffling model,
or bi-dimensional i.i.d. mobility model, considered in previous
work [4], [5], [6], however note that here we adopt this model
only to update the positions of the cluster centers. The mobility
processes of individual nodes are not independent in our model
because, once the new position of a cluster center has been
selected, all nodes belonging to the corresponding group have
to move to a place close to it (i.e., inside a region of area
o(n) around the cluster center). We observe that the degree of
correlation in the node mobility process increases as we either
i) reduce the area of each cluster-region (smaller values ofβ);
ii) reduce the number of groups (smaller values ofν). Table
I summarizes the notation used throughout the paper.

Later on, in Section VI, we will generalize our analysis
along three directions. First, we will study the case in which
nodes do not change their relative positions with respect tothe
cluster center (we refer to this case as thecrystallizedmodel).
Second, we will consider more realistic mobility patterns than
the simple reshuffling model, assuming that both center-points
and nodes within their cluster region move according to a
general random walk. Third, we will allow the nodes to
migrate from cluster to cluster, instead of being permanently
associated to the same cluster.

B. Communication Model

To account for interference among simultaneous transmis-
sions, we adopt the protocol model introduced in [3] and
widely used in the literature2. According to the protocol model,
nodes employ a common ranger for all transmissions which
occur in the same time slot (r can be different from slot to
slot); equivalently, they employ a common power level in each
slot. A transmission from nodei to nodej using transmission
ranger can be successfully received at nodej if and only if
the following two conditions hold:

1) the distance betweeni andj is smaller than or equal to
r, i.e., dij(t) ≤ r.

2) for every other nodek simultaneously transmitting,
dkj(t) ≥ (1 + ∆) r, being∆ a guard factor.

Transmissions occur at fixed rate which is normalized to 1.
Moreover, we consider fast mobility conditions, accordingto
which data can be transmitted over just one hop during any
slot3.

C. Traffic Model

Similarly to previous work we consider permutation traffic
patterns in which every node is origin and destination of

2Our results would not change under the physical model definedin [3],
provided that the power loss exponent is larger than 2.

3We leave to future work the extension of the analysis to the slow mobility
case, in which multi-hop transmissions can be performed during the same
slot.
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TABLE I
NOTATION

Symbol Definition
n number of nodes
m number of clusters
ν growth exponent ofm: m = Θ(nν), ν ∈ [0, 1)
q number of nodes in each cluster,q = n/m
R cluster radius
β growth exponent ofR: R = Θ(nβ), β ∈ [0, 1/2)
λ per-node (or per-flow) throughput
D end-to-end packet delivery delay

a single traffic flow of rateλ. Hence there aren source-
destination (S-D) pairs in the network.

Messages4 are generated at every source according to inde-
pendent memoryless Bernoullian processes.

We use the following definitions of asymptotic throughput
and delay. LetLi(T ) be the number of packets delivered to
the destination of nodei in the time interval[0, T ]. The delay
of a packet is the time it takes to the packet to reach the
destination after it leaves the source. LetDi(t) be the sum of
the delays experiences by all packets successfully delivered to
the destination of nodei in the time interval[0, T ]. We say that
an asymptotic throughputλ and an asymptotic delayD per
S-D pair are feasible if there is ann0 such that for anyn ≥ n0

there exists a scheduling/routing scheme for which both the

following properties hold:limT→∞ Pr
(

Li[T ]
T

≥ λ, ∀i
)

= 1

and limT→∞ Pr
(

Di[T ]
Li[T ] ≤ D, ∀i

)

= 1. Equivalently, we say

in this case that the network sustains an aggregate throughput
Λ = nλ at the expense of a delayD.

III. T HE CLUSTER SPARSE REGIME

We can distinguish two regimes depending on the values of
β andν. We say that the system is incluster sparseregime if
ν + 2β < 1 (i.e., mR2 = o(n)), and incluster denseregime
if ν + 2β > 15. In this section we consider thecluster sparse
regime, which is more interesting and challenging to analyze.
We briefly analyze thecluster denseregime in Section IV.

In thecluster sparseregime, at any time clusters cover only
a negligible fraction of the entire network area. Actually they
form several small, disconnected and highly dense regions (the
node density within a cluster isn

mR2 = ω(1)) floating over a
huge empty space. Spatial overlaps between different clusters
are sporadic.

In the following we first introduce the scheduling-routing
scheme that we have developed for this case, describing the
routing scheme in Section III-A and the associated scheduling
scheme in Section III-B. Then, in Section III-C we analyze the
performance of the proposed scheme and prove its optimality.

A. Routing scheme

We propose a multi-hop routing scheme that generalizes the
2-hop scheme introduced by Grossglauser and Tse [2].

We focus on a particular traffic streams → d. LetCs denote
the cluster containings (i.e., s ∈ Cs) and Cd the cluster
containingd (i.e., d ∈ Cd). We neglect the particular case

4In this paper the terms message and packet are interchangeable.
5We leave for future investigations the special case in whichν + 2β = 1

Fig. 1. Illustration of the 4-hop routing scheme

in which Cs = Cd, since w.h.p.s and d belong to different
clusters (this is also the most stressful case for the system).

The rationale of our routing scheme is to first reach a node
within the destination clusterCd in the most efficient way,
and then to forward the packets withinCd up to the final
destinationd. We anticipate that the system throughput is
bottlenecked in the first phase of the route, in which data has
to reach the destination cluster: this is due to the fact thatclose
contacts among nodes belonging to different clusters are rare,
since they occur only when two clusters overlap in space.

The same principles that inspired the 2-hop scheme of
Grossglauser and Tse suggest that the most efficient way (in
order to maximize the throughput) to bring a message within
the destination cluster is to adopt a 2-hop relaying scheme
at the cluster level, in which each packet transits through a
random intermediate clusterCr. This allows transmitters to
exploit all contacts with nodes belonging to a different cluster.

Once the packet arrives within the destination cluster, we
can exploit well-known schemes developed for mobile network
with uniform, uncorrelated mobility patterns. Indeed, notice
that, under our mobility model, each cluster can be regardedas
a micro-universe of nodes forming a classical mobile network
in which nodes move uniformly according to the i.i.d. model.
Since the throughput is bottlenecked in the previous part of
the route, it turns out that, within the destination cluster, it
is convenient to adopt a replication strategy, in which the
packet is first broadcasted to all nodes falling within a suitable
transmission range, and then one of the copies is delivered to
the final destination in one more hop. This replication strategy
allows to reduce the packet delivery delay without negatively
impacting the overall system throughput.

Figure 1 graphically illustrates the routing scheme outlined
so far. There are 4 hops and 3 intermediate relays. In the
first hop, source nodes sends the message to a relay node
n1 belonging to an arbitrary clusterCr different fromCs. In
the second hop, noden1 forwards the message to a noden2

belonging toCd. In the third hop, the message is replicated by
n2 through a single transmission to several nodes belonging
to the same clusterCd, exploiting the intrinsic broadcast
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Fig. 2. System representation as an open (acyclic) network of FIFO queues.
Connections among queues are drawn for flows → d.

capability of the wireless channel. In the fourth hop, one of
the nodes holding a copy of the message (let it be noden3)
delivers the message to the final destination.

B. Scheduling scheme

To implement the above described routing scheme, each
node is equipped with (see Figure 2): i) one queue storing
its own generated packets (i.e., packets at hop 1); ii)m − 1
parallel queues, one per cluster, storing packets at hop 2; iii)
one queue for packets at hop 3; iv)q − 1 parallel queues,
one for each possible destination within its own cluster, for
packets at hop4. The service discipline is First Come First
Served (FCFS) at all queues.

The scheduling scheme is in charge of selecting, at any time
slot, a set of transmitter-receiver pairs which can communicate
successfully according to the protocol model. Recall that the
protocol model requires the adoption of the same transmission
range for all communications occurring in the same slot; on the
other hand, it is convenient to employ different transmission
ranges for the various hops of the routing scheme. For this
reason, each slot is devoted only to the transmission of
packets which are at the same hop of the route. This can be
equivalently done in a round-robin or in a probabilistic fashion.
Following a round-robin approach, we identify the slots by a
sequence numbert, and in the generic slott we allow only
the transmission of packets at hopi = |t|4 + 1, where | · |4
denotes the modulus-4 operation.

One simple way to completely eliminate interference among
concurrent transmissions, as required by the protocol model,
is the following. Letri be the transmission range of packets at
hop i (i = 1, . . . , 4). In any slot devoted to hopi, domainO
is divided into squareletsAk

i of areaAi and edge lengthri. A
subset of squarelets, regularly spaced, is selected, and atmost
one node is allowed to transmit in each squarelet belonging to

...

...

...... di

ri

ri

Mi

Ti

(∆+1)ri

Ai

Fig. 3. Illustration of the scheduling scheme in the case of∆ = 2.

the selected subset. Figure 3 illustrates this construction for a
protocol model having∆ = 2. Shaded squarelets represent one
possible subset of regularly spaced squarelets. DomainMi

around one of the squarelet denotes the maximum-size region
where we can find a receiver for an arbitrary transmitter falling
in the squarelet. DomainTi denotes instead the region where
we cannot have any other receiver belonging to a different
communication pair. By spacing the selected squarelets with
stepdi = (∆ + 2)ri we can assure that one transmitter per
squarelet can be enabled to transmit without generating any
conflict, irrespective of the locations of transmitters within
their squarelets.

C. Performance analysis

To evaluate the performance of our scheme, we proceed
in four steps. In Section III-C1 we compute a simple upper
bound to the throughput that any possible scheme can achieve.
The obtained upper bound allows to gather some insight on
the effect of the transmission range on system performance.
In Section III-C2 we move a step forward computing the
maximum theoretical throughput that our scheme can achieve.
At this stage, we assume that all queues are constantly back-
logged with packets, and we compute the maximum saturation
throughput achieved by inter-cluster communications,i.e., the
aggregate service rate of all queues storing packets to be trans-
mitted to nodes in different clusters. This quantity is simpler
to analyze, because it requires only geometric considerations.

In Section III-C3 we take into account traffic and queuing
effects. We show that nodes’ queues can be loaded in such
a way that the actual system throughput is in order sense
the same as the saturation throughput. Given the parameters
that maximize the system throughput, in Section III-C4 we
compute the resulting end-to-end delivery delay. We also
show that any scheduling-routing scheme that achieves the
maximum throughput computed in Section III-C3 cannot incur
a delay smaller than the one derived for our scheme.

1) Throughput upper bound:We start our performance
analysis by establishing an upper bound to the network
throughput. We begin with the following lemma, that char-
acterizes the aggregate amount of data that can be transferred
in one slot among nodes belonging to different clusters.

Lemma 1: Under thecluster sparseregime, the maximum
amount of data that can be exchanged during one slot, in a
single hop, by any feasible set of transmitter-receiver pairs
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employing a common transmission ranger (i.e., tx-rx pairs
which can be enabled to transmit simultaneously according to
the protocol model), such that for each pair the transmitterand
the receiver belong to different clusters, isO(mR2), provided
that r = O(R

√

m/n).
The proof of Lemma 1 is reported in Appendix A.

The above lemma can be used to readily prove the following
fundamental result:

Theorem 1: Under thecluster sparseregime, the network
throughput isO(mR2). Furthermore, every scheme employ-
ing a transmission ranger = ω(R

√

m/n) for inter-cluster
transmissions, necessarily achieves a throughputo(mR2).

Proof: First we observe that, under a permutation traffic
matrix, almost all flows (i.e., Θ(n) flows) are established
between pairs of nodes belonging to different clusters, since
the event that both the source and the destination belong to the
same cluster is negligible. Then, almost all traffic requires to
be exchanged at least once between a pair of nodes belonging
to different clusters. An upper bound to the system throughput
is then obtained assuming that flows established between
different clusters (almost all flows) require just a single-hop
communication between an arbitrary pair of nodes belong-
ing to different clusters. Devoting all slots and all network
resources to such arbitrary inter-cluster communications, and
applying Lemma 1, we immediately conclude that the system
throughput isO(mR2). Moreover, maximal throughput can be
potentially achieved only by scheduling algorithms employing
a transmission ranger = O(R

√

m/n) (as computed in the
proof of Lemma 1) for transmissions between nodes belonging
to different clusters.

2) Saturation throughput analysis:The result reported in
the previous subsection represents only an upper bound to
the maximum throughput achievable by any implementable
scheme in thecluster sparseregime. Now we show that our
4-hop scheduling-routing scheme (described in Sections III-A
and III-B) is able to sustain a throughput (in the first two
hops), which scales withn as the upper bound established in
Theorem 1. This scaling law holds provided that nodes have all
their queues (see Figure 2) constantly backlogged by packets
to send.

Similarly to the derivation of the upper bound, we start with
a useful lemma that characterizes the aggregate amount of
data that can be exchanged, under saturated conditions, among
nodes belonging to different clusters, in one slot.

Lemma 2: Under thecluster sparseregime, assuming sat-
urated conditions at every node, the amount of messages that
can be transferred in one slot among nodes belonging to
different clusters isΘ(mR2), by employing a transmission
rangeΘ(R

√

m/n).
The proof of Lemma 2 is reported in Appendix B.

Now we observe that the network of queues modeling
the system is an acyclic network of FIFO queues, since
every packet traverses the queues sequentially, as illustrated
in Figure 2. The aggregate service-rate obtained by queues
storing messages either at the first or in the second hop can be
interpreted as the amount of messages that can be transferred
in one slot among nodes belonging to different clusters, as
specified in Lemma 2.

As immediate consequence of the above lemma we have:

Corollary 1: By adopting a transmission range
ri = Θ(R

√

m/n) at hops i = 1, 2, our scheduling-routing
scheme provides an aggregate service rateµ = Θ(mR2/n) to
each node, for messages either at the first or the second hop.

Proof: Consider a time slot devoted to the transmission of
packets in the first or second hop. According to Lemma 2, our
scheme allowsΘ(mR2) transmission opportunities (with high
probability) between nodes belonging to different clusters.
By symmetry, these transmission opportunities are uniformly
distributed among the nodes in the network. Considering that
each hop is scheduled once every4 slots, an average number
of transmission opportunities per slot (i.e., a service rate)
µ = Θ(mR2/n) is guaranteed to each node for both the first
and the second hop. Note that, in the case of the second hop,
the service rate of a node corresponds to the sum of the service
rates of them − 1 distinct queues storing packets at hop2.
Furthermore the service rates of thesem − 1 queues are all
equal by symmetry.

3) Maximum achievable throughput:We are now ready to
derive our main result on the maximum throughput achievable
by our scheme:

Theorem 2: The maximum sustainable throughput of our
scheme isΛ = Θ(mR2) by employing a transmission range
ri = Θ(R

√

m/n) for i = 1, 2 and ri = Θ(1) for i = 3, 4.
The corresponding per-node throughput isλ = Θ(mR2/n).

Proof: First observe that, by adopting a transmission
range ri = Θ(R

√

m/n) at hop i = 1, 2, Corollary 1
guarantees that our routing-scheduling scheme can providean
aggregate node service rateµ = Θ(mR2/n) for packets at
either the first or the second hop.

Second, we consider that, by symmetry, our scheme uni-
formly distribute the traffic among all the nodes/queues, sothat
all queues in the network storing packets at hopi are subject
to the same ingress packet arrival rate. As a consequence all
queues storing packets at hopi = 1, 2 are jointly stable under
an arrival rate that is strictly below the service rate (i.e., the
saturation throughput of inter-cluster communications),which
is given in Corollary 1.

Once a packet arrives in its destination cluster, we can
exploit well known schemes developed for networks with
i.i.d. mobility. In principle, we could get an optimal per-node
intra-cluster throughputΘ(1) by employing the 2-hop scheme
of Grossglauser and Tse [2], using the same transmission
rangeri = Θ(R

√

m/n) adopted in previous hops, which is
adapted to the node density within a cluster. However, this
is a bad choice, because by so doing the throughput would
be bottlenecked by the previous hops, and we would pay
excessive intra-cluster delays for nothing. Therefore in the
destination cluster the optimal choice is to exactly match the
throughput achievable in the previous hop, trading off capacity
and delay. Indeed it is possible to enlarge the transmission
range within the destination cluster up tori = Θ(1) without
affecting the overall system throughput. This allows to adopt a
replication scheme according to which the packet is forwarded
in the third hop toΘ( n

mR2 ) nodes (all nodes falling within
transmission ranger3 = Θ(1) of the sender) with a single
broadcast transmission. Then the first node holding a copy of
the message that arrives within transmission ranger4 = Θ(1)
of the destination, eventually delivers the packet in hop 4.By
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so doing, the per-node throughput achievable at hopi = 3, 4

is reduced toΘ(mR2

n
), for effect of the reduced spatial reuse,

however the delay performance of the scheme is greatly
improved thanks to replication (as better explained in the
following delay analysis).

At last, by combining Theorem 1 and Theorem 2, it imme-
diately descends:

Corollary 2: Our proposed scheduling-routing scheme is
in order sense throughput-optimal.

4) Delay Analysis: Turning our attention to the delay
performance of our scheme, we focus on a particular packet
belonging to a generic flows → d (we assume thats
and d belong to different clusters) and evaluate the different
components of its end-to-end delivery delay, denoted byD.
Let Di be the total delay experienced by the packet at hopi.
We haveD =

∑4
i=1 Di.

Our first step is to compute the average service time (i.e.,
the access delay) of the queues associated with the four hops
made by the packet. LetDα

i be the average service time of
hop i. As shown in Appendix C, we have

Dα
1 = Θ

(

n
mR2

)

; Dα
2 = Θ

(

n
R2

)

Dα
3 = Θ

(

1
)

; Dα
4 = Θ

(

mR4

n

) (1)

We observe that, at each queue, the total delay would be
equal to the access delay in the absence of any contention with
other packets in the network (both in the same queue and in
the queues of other nodes competing for the wireless medium
access). Similarly to previous work, we can show that, at any
hop, contention with other packets in the network does not
change the order of magnitude of the total delay with respect
to the access delay. As a result,

Theorem 3: In thecluster sparseregime, the delay perfor-
mance of our scheme satisfies

D = Θ

(

max

{

n

R2
,
mR4

n

})

(2)

Proof: Considering the first two hops, we observe that
contention among different queues (i.e., different transmitter-
receiver pairs) within the same squarelet can be neglected
(in order sense), since by construction only a finite number
of such pairs fall w.h.p. in the squarelet. Hence, both inter-
arrival (for the queue storing second hop packets) and service
times at queues can be bounded by a geometrically distributed
number (with finite average) of cluster inter-meeting times,
which, in turns, are i.i.d geometrically distributed as shown
in Appendix C (due to the memoryless property of cluster
positions).

This implies that both inter-arrival and service times at
queues can be bounded by geometrical distributed variables
and the resulting queuing delay is of the same order of the
access delay, as it immediately follows from the application
of the Pollaczek-Khinchine formula for discrete time queues
[27].

For the analysis of the third and fourth hops, instead, we can
directly apply previous results obtained for networks in which
node movements are i.i.d [6] (recall once again that relative
movements of nodes within a cluster are i.i.d.) and claim that

D3 = Θ(Dα
3 ) andD4 = Θ(Dα

4 ). SinceDi = Θ(Dα
i ) for all

i, we haveD = Θ(
∑4

i=1 D
α
i ), and the result follows applying

the expressions in (1).
We observe that similar arguments have been applied in [7],

[9], [4], [6] in the case of uncorrelated i.i.d. mobility, showing
that the end-to-end delay equals, in order sense, the sum of
the access delays whenever the traffic injected in the network
is strictly less than the saturation throughput.

Moreover we can prove the following result, which shows
that our scheme achieves optimal delay performance among
the class of schemes maximizing the throughput:

Theorem 4: Any scheduling-routing scheme that achieves
an aggregate throughputΛ = Θ(mR2) necessarily incurs a

delayD = Ω
(

max
{

n
R2 ,

mR4

n

})

.

Proof: To achieve throughputΛ = mR2 it is necessary
to employ a transmission rangeΘ(R

√

m/n) for inter-cluster
communications, as a consequence of Theorem 2. Notice that
using this transmission range it is not possible to get any
delay gain (in order sense) by employing packet replication
during inter-cluster communications (onlyΘ(1) nodes can
simultaneously receive the message). Thus necessarily a delay
D = Ω(Dα

2 ) must be suffered by a message to reach the
destination clusterCd, since the last relay node along its
path, that does not belong toCd, must come in contact
with some node inCd before it can transmit the message.
Within the destination cluster we can apply the general trade-
off D = Ω(nλ2) derived in [5], [6] for networks with
i.i.d mobility. Using q = n/m in place ofn in this trade-
off formula, and plugging inλ = mR2/n, we obtain a

delay D = Ω(mR4

n
) due to intra-cluster communications.

Combining the above two constraints onD due to inter- and
intra- cluster communications, we get the assertion.

IV. T HE CLUSTER DENSE REGIME

In thecluster denseregime, which occurs whenν+2β > 1,
clusters are highly overlapped at any point of the network area.
Indeed, applying standard results borrowed from the theoryof
random geometric graphs [28], it can be shown that every
point of the network area is w.h.p covered by a number of
clustersΘ(mR2/n) = Θ(nν+2β−1). This implies that nodes
are almost uniformly distributed over the network domain,
hence the typical distance at which one node finds the node
closest to it isΘ(1). Such closest node, however, belongs
w.h.p. to a different cluster. To see this, note that the density of
nodes within a cluster is q

πR2 = o(1), resulting into a typical
distanceω(1) between nodes belonging to the same cluster.

This fact dramatically limits the degree of freedom that we
have in the design of a scheduling-routing scheme specifically
targeted at maximizing the system throughput. Indeed, any
scheme requiring at some stage that packets are transferred
between nodes belonging to the same cluster must adopt a
transmission rangeω(1) for such intra-cluster communica-
tions, resulting into a per-node throughputλ = o(1).

On the contrary, a simple 2-hop scheme similar to the
one proposed by Grossglauser-Tse [2], according to which
packets are sent from sources to destinationd though a single
relay node that does not belong neither toCs nor toCd, can
effectively employ a transmission range as short asΘ(1) (only
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TABLE II
SUMMARY OF RESULTS

cluster dense cluster sparse
λ Θ(1) Θ(mR2/n)

D Θ(n) Θ
(

max
{

n
R2

, mR4

n

})

inter-cluster communications are required), thus achieving a
per-node throughputλ = Θ(1), at the expense of a delivery
delayD = Θ(n).

V. SUMMARY OF RESULTS

In this section, we summarize and graphically present the
main results derived in the previous section. We recall that
the primary goal of our schemes is to maximize the system
throughput. Only as a secondary goal we seek to minimize
delay. Hence our schemes do not explore the full range of
possible capacity-delay trade-offs.

Table II summarizes throughput and delay results obtained
so far. In the cluster dense regime, since clusters are largely
overlapped and the overall node density is constant in order
sense, we get the same results as the original Grossglauser-
Tse scenario with independent node movements. In the clus-
ter sparse regime, the correlation among node trajectories
may have a significant impact on both throughput and delay
performance. Throughput is reduced for effect of clustering
w.r.t to the original Grossglauser-Tse scenario: the maximum
number of parallel transmissions is reduced fromΘ(n) to
Θ(mR2) (when tx-rx node pairs are required to belong to
different clusters; see Lemma 1 and Theorem 1). On the
other hand, delay performance is improved by the effect of
clustering: nodes belonging to the destination cluster, which
meet the destination at the highest frequency, can be effectively
exploited as last hop relays. Consequently, the overall delay
is reduced, since it is dominated by the last-hop delay in the
original Grossglauser-Tse scenario.

Figure 4 provides a graphical representation of our results
on the throughput-delay plane. Note that the x-axis and y-axis
of the figure report the scaling exponentse(D) = logn(D)
ande(λ) = logn(λ) respectively. The shaded region denotes
all optimal operating points that are obtained as we vary
the parametersβ and ν of our model. The gray scale is
related to the correlation degree in the mobility process:
lower correlation, which results from increasing eitherβ or
ν, corresponds to darker gray.

We have reported on the plot the lineD = nλ2 which
denotes (neglecting logarithmic factors) the best possible
throughput-delay trade-offs that can be obtained under inde-
pendent reshuffling of all nodes (and fast-mobility conditions),
according to [5], [6]. Notice, however, that the above scaling
law is achievable for the i.i.d. reshuffling model only at the
cost of scaling the transmission range (or, equivalently, the
transmission power) to infinite asn increases; instead, the
line D = nλ (neglecting poly-log terms) corresponds to
the best achievable trade-offs when the transmission rangeis
constrained to beO(1).

We observe that there are operating points of our system
above the lineD = nλ2. This means that under our correlated
mobility model it is possible to obtain significant better
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Fig. 5. Throughput and delay scaling exponents versusν andβ (The marks
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performance than that achievable under uncorrelated mobility,
even without scaling up the transmission range.

We have also reported on the plot of Fig. 4 a few trajectories
obtained when we fix one of the parameters of the model
(either β or ν), letting the other one vary. To help the
reader, we separately report the throughput and delay scaling
exponents curves in Fig. 5, considering the same values ofν
andβ for the trajectories shown in Fig. 4.

We observe a quite complex range of possible behavior. For
large values ofβ and/orν, the system operates in thecluster
denseregime, withλ = Θ(1) andD = Θ(n) (point P ′′ in
Fig. 4). As we increase the degree of correlation, by reducing
either β or ν, at some point the system shifts to thecluster
sparseregime.

For example, let us examine in detail the trajectory with
ν = 0.2 in Fig. 4 (and the corresponding curve in the bottom
left plot of Fig. 5). If β > 0.4, the system is incluster dense
regime (pointP ′′); as soon asβ becomes smaller than0.4 the
system switches to thecluster sparseregime, jumping to the
operating pointP ′. Note, indeed, that, while the throughput
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scaling exponent exhibits a continuous behavior w.r.t to the
parametersβ andν, the delay exponent is discontinuous at the
transition between the two regimes (Fig. 5). Asβ decreases
from 0.4 to 0.3, significant better delays are obtained paying
a moderate penalty in terms of throughput. Below0.3, the
introduction of additional correlation (by further reducingβ) in
the mobility model leads to increasing delays (and decreasing
throughput).

The overall best operating point,i.e., the point characterized
by the maximum throughput and minimum delay, can be
approached when bothβ → 1/4 and ν → 1/2 (point P in
Fig. 4).

VI. EXTENSIONS UNDER THE CLUSTER SPARSE REGIME

In this section we present and analyze several variations
of our model, focusing on thecluster sparseregime. In
Section VI-A we discuss what happens when nodes remain
still within their clusters,i.e., when they maintain their relative
positions within the cluster-region indefinitely, starting from
an initial configuration in which they are placed uniformly at
random in the cluster-region. We refer to this extension as the
crystallized model. In Section VI-B we show how results can
be extended to more general mobility models than the simple
i.i.d. reshuffling, for both the mobility of cluster centersand
the mobility of individual nodes within their cluster. Finally,
in Section VI-C we present a variation of the system in which
nodes are allowed to migrate to a different cluster upon contact
between clusters.

A. The crystallized model

We describe our scheduling-routing strategy for thecrys-
tallized model by adapting the scheme proposed in Section
III. In particular, we replace the 2-hop replication technique
previously adopted within the destination cluster (i.e., 3rd and
4th hop in Fig.1) with a multi-hop communication similar
to the one developed for static nodes by Gupta-Kumar [3].
Indeed, notice that in thecrystallizedmodel each cluster can
be regarded as a micro-universe in which nodes are still (the
relative positions of nodes within a cluster region are fixed).

We first analyze the achievable throughput and delay in the
last two hops. LetλM andDM be the throughput and the delay
achievable by the multi-hop communication phase performed
within the destination cluster. Applying standard resultsfor a
random network ofq static nodes ([3], [7]), a maximum per-
node throughput̂λM =

√

1/(q log q) can be sustained within
the destination cluster (as long as sources and destinations
are chosen irrespective of their locations in the cluster area),
using a transmission rangêrM = R

√

log q/q, at the expense

of a delay6 D̂M =
√

q/ log q. Moreover, by increasing the
transmission range it is possible to achieve capacity-delay
trade-offs characterized by the lawDM = Θ(qλM ) [7].

Similarly to the reshuffling model, the optimal choice is
to match the throughput achievable within the destination
cluster with that provided by the inter-cluster communications

6Recently, it has been shown that a throughputλ̂M =
√

1/q and a

delayD̂M =
√
q can be achieved adopting a more sophisticated scheduling-

routing scheme [29]. However, for our scopes we resort to theoriginal scheme
analyzed in [3], [7].

performed in the first two hops (computed in Corollary 1),i.e.,
λM = mR2/n.

Depending on the system parameters, two cases are possi-
ble: 1) the potential per-node throughputλ̂M achievable in the
last multi-hop phase exceeds (in order sense) the maximum
data rate provided by the first two hopsλ = mR2/n. In
this case, as for the reshuffling case, by properly selecting
the transmission range within the destination cluster (i.e.,
increasing it with respect to the minimum value) we reduce
the throughput achievable within the destination cluster so
as to matchλ = mR2/n. This does not affect the overall
throughput, while significantly reducing the packet delay ex-
perienced during the last multi-hop phase; 2) the potentialper-
node throughput̂λM achievable in the last multi-hop phase is
smaller (in order sense) thanλ = mR2/n. In this case the
optimal scheme is a bit trickier, as it requires to modify also the
forwarding strategy of the second hop. Indeed, notice that we
can increase the throughputλM beyondλ̂M by reducing the
distances that messages have to traverse within the destination
cluster (and thus the number of multiple hops to be performed
within the destination cluster). This can be done in such a way
that the resulting intra-cluster throughput perfectly matches the
throughput achievable in the previous hops. To obtain this,we
need to modify the forwarding rule of the second hop, forcing
the relay noden1 to send messages destined tod only to those
nodesn2 ∈ Cd falling within a proper distanceRM = o(R)
from d.

Case 1) occurs forβ ≤ (1 − ν)/4 (condition under which
λ̂M = Ω(mR2/n)). In this case, by properly selecting the
transmission range we reduce the achievable throughput in
the destination cluster so as to achieveλM = mR2/n, and
a corresponding delayDM = Θ(R2) (recall the trade-off
law DM = Θ(qλM )). Since Dα

2 = Θ(n/R2) = ω(R2)
for the considered range of values ofβ, the overall end-
to-end delay is dominated by the second hop, and we have
D = Θ(n/R2) = Θ(m/λ).

Case 2) occurs for(1 − ν)/4 < β < (1− ν)/2 (recall that
we are in thecluster sparseregime, in whichβ < (1− ν)/2).
We achieve a throughputλM = λ = mR2/n, by selecting7

RM = Θ
(
√

q
R2 log q

)

. We observe that this change in the

forwarding rule of the second hop requires to modify also
the internal architecture of the nodes, providing each node
with n − m different FIFO queues, one for each destination
belonging to a different cluster, in which to store packets at
hop 2. Indeed, in this way we can still guarantee (in saturated
traffic conditions) that, in slots devoted to hop 2, whenever
a noden1 ∈ Ca comes in proximity of a noden2 ∈ Cb,
with Ca 6= Cb, it can always find a packet at the head of one
queue devoted to hop 2, whose corresponding destinationd lies
within Cb at a distance not greater thanRM from n2. In this
way nodes can exploit all contacts with other nodes belonging
to a different cluster, hence no throughput reduction occurs at
hop 2 due to the modified forwarding rule.

Turning our attention to the delay of this modified scheme,
the access delay of the second hop is increased toDα

2 =
Θ(n/R2

M ), because a tagged packet can be forwarded only

7To sustain a throughputmR2/n = ω(1/ logn), it is necessary that relay
n1 delivers the packet directly to the final destinationd.
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to those nodes within the destination clusterCd which lie in
a circle of radiusRM centered at the destination8. The delay
component due to the multi-hop phase is instead equal to the
number of hopsRM/r̂M = Θ

(

q/(R2 log q)
)

. In the consid-
ered range of values forβ, the end-to-end delay is always
dominated by the second hop, henceD = Θ(mR2 logn) =
Θ(nλ logn).

At last, we would like to emphasize that using similar
arguments as for the reshuffling model, it can be proved that no
scheme can achieve better delay performance in order sense,
while guaranteeing the optimal throughputλ = mR2/n .

Figure 6 provides a graphical representation of our results
for the crystallized model, analogous to Figure 4 for the
reshuffling model. Again, the shaded region denote all optimal
operating points that are obtained as we vary the parameters
β andν of our model. Differently from the reshuffling model,
we observe that all points in thecrystallizedmodel are below
the lineD = nλ, meaning that in this case it is not possible
to achieve better performance with respect to the case of
uncorrelated mobility.

B. Extension to more general mobility models

In this section we show how results in Section III can
be generalized to the case in which the positions of cluster
centers do not regenerate at each time slot. The analysis can
be similarly extended to the case in which the positions of
nodes within their cluster region do not regenerate at every
slot.

In particular, we consider the following general class of
random walks. LetX(t) be the position of a cluster center (or
the relative position of a node inside a cluster) at time slott;
X(t) is updated according to the lawX(t) = X(t− 1) + Yt,
whereYt is a sequence of i.i.d., rotationally invariant random
vectors describing the individual movements accomplishedby
the moving entity during each slot.Y (t) is often referred to
as flight. Let moreover define the average length of the flights
Lf = E[|Yt|]. Random-walk mobility patterns are important
since they have been widely used to describe human and
vehicular mobility.

8The access delayDα
2 is Θ(n/r̂2

M
) when packets have to be delivered

directly to the final destination at hop 2.

While considering cluster centers trajectories, we further
assume that flights cover distances at least of the order of
the cluster radiusR, i.e., Lf = Ω(R). When we consider the
relative position of a node within its cluster region, we instead
assume that flights cover at least the typical transmission range
employed within a cluster (for intra-cluster transmissions),
i.e., Lf = Ω(1). With these assumptions the movements
accomplished by cluster centers (or individual nodes) during
a single slot become appreciable.

First, we observe that our analysis of the system throughput
does not require that cluster centers positions (or relative
positions of nodes within a cluster area) regenerate at every
slot. Indeed, our analysis only requires that the followingtwo
properties are satisfied at any time slot: 1) positions of clus-
ter centers are independently and uniformly distributed over
the area; 2) positions of individual nodes are independently
and uniformly distributed within their cluster area. Thus the
throughput results obtained in this paper can be immediately
extended to any mobility model, including the considered class
of random walks, that satisfies assumption 1) and 2). This is
not surprising, in light of the fact that all throughput/capacity
results obtained so far in the literature for mobile ad-hoc
networks depend only on the steady-state spatial distribution
of nodes over the area, and not on the specific details about
how nodes move from one slot to another [2], [14], [16].

Instead, when we turn our attention to the delay, things
become more involved and performance comes to depend
on the specific mobility pattern ([4], [5], [6], [7]). However,
following an approach similar to the one proposed in [10], we
can easily evaluate the scaling laws of the delay performance
achievable by our schemes under the considered class of
random walks.

Focusing on thecluster-sparseregime (the analysis in the
cluster-denseregime proceeds along the same lines) first recall
thatDα

2 in (1) (which dominatesDα
1 ) represents the average

time for a nodea belonging to clusterCa to come in contact
with a node belonging to the destination clusterCd 6= Ca;
moreoverDα

2 can be tightly approximated (in order sense) by
the average residual life time until clustersCa andCd meet
(i.e., their cluster regions overlap). This because nodea has a
non-negligible probability of being selected for transmission
every time Ca and Cd meet. Meeting times between two
clusters form a renewal process for a large class of mobility
models including random-walks. Denoting withTad the inter-
meeting time betweenCa andCd, standard renewal arguments

provide the expressionDα
2 =

E[T 2

ad]
2E2[Tad]

.

Our analysis leverages results from [7] and [30]. By Theo-
rem 3 and Proposition 1 in [30], the average inter-meeting time
between clusters is invariant with respect to the considered
mobility model. Hence,E[Tad] = Θ(n/R2). By Theorem 1
and Proposition 2 in [30], the second moment of the inter-
meeting time increases for random walks as we decrease the
flight lengths (i.e., as we increase the degree of time correlation
in the mobility pattern of the mobile). By Lemma 4 in [7], for
random walks with minimum flight lengthLmin

f = Θ(R), we
haveE[T 2

ad] = Θ(n logn/R2). In conclusionDα
2 is jointly

Ω(n/R2) andO(n log n/R2) whenever cluster centers move
according to random walks with flight lengthΩ(R).

Now we analyze the delay incurred by a message at the
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4-th hop. First we focus on the average timeD̃α
4 that it takes

to a node belonging to the destination cluster, and holding
a copy of the message, to hit the destination. QuantityD̃α

4

can be tightly approximated (in order sense) by the average
residual life time until two specific nodes within a cluster meet
(i.e., their distance becomes smaller thanr = Θ(1)), and with
arguments analogous to the ones used in the analysis ofDα

2 we
conclude thatD̃α

4 is jointly Ω(R2) andO(R2 logn), provided
that the flight size of nodes within their cluster isΩ(1).

Now observe that, after the third hop, there arez = Θ( n
mR2 )

different nodes belonging to the destination cluster, thathold
a copy of the tagged message. When the first copy hits the
destination, the message is delivered.

In the ideal case in which the nodes holding different copies
of the message were initially uniformly (and independently)
spread within the destination cluster, the time needed for
the first copy to hit the destination would beO(D̃α

4 /z).
This descends from the fact that the time taken by the first
copy to hit the destination can be modeled as the minimum
of z independent, identically distributed continuous random
variables with meanD̃α

4 (and whose density support starts
from 0). Unfortunately, the copies of the tagged message are
initially not uniformly distributed in the cluster, since they all
lie within the transmission range of the broadcasting noden2.
This reduces the effectiveness of the replication mechanism.

To account for this fact, we need to consider also the
additional delay before the copies spread within the destination

cluster, which isΘ(R
2

L2

f

) (observe thatR
2

L2

f

can also be regarded

as the time taken by one copy to cover a distanceΘ(R), for
which we can apply standard results of random walks in [31]).
As a result we have:

Dα
4 = O

(

R2

L2
f

+
D̃α

4

z

)

= O

(

R2

L2
f

+
mR4 log n

n

)

(3)

At last, when considering the queueing delay, we can resort
to arguments similar to those developed in [7]. Individual
queues at nodes can be modeled as GI/GI/1-FCFS queues
(recall that the whole system is an acyclic network of queues),
in which both inter-arrival and inter-departure time distri-
butions of packets match cluster/nodes inter-meeting time
distributions. Then, applying Kingman’s upper bound9 to the
average delay of a GI/GI/1-FCFS queue we can conclude
that the delay experienced by a packet in thei-th hop is
Di = Θ(Dα

i ). We conclude that the packet delivery delay is
given by the maximum betweenDα

2 andDα
4 (which dominates

bothDα
1 andDα

3 ) and we finally obtain:

D = O

(

max

{

n

R2
,
R2

L2
f

,
mR4 log n

n

})

. (4)

Figure 7 provides a graphical representation of our results
on the throughput-delay plane, for the caseLf = Θ(1). The
shaded region denotes all the operating points of our scheme
that are obtained as we vary the parametersβ and ν of the

9Kingman’s upper bound states that the average delay in a GI/GI/1-FCFS

queue isO(
E[a2]+E[d2]

E[a]
) whereE[a] andE[a2] are, respectively, the first

and second moment of the inter-arrival time, whereasE[d2] is the second
moment of the inter-departure time.
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Fig. 7. Throughput-delay scaling for the extension to the Random walk
mobility model, in the case of flight lengthLf = Θ(1).

model. Comparing with the shaded region in Figure 4, whose
perimeter is shown in Figure 7 by a thick solid line, we observe
that some operating points obtained under the reshuffling
model are no longer feasible under the random walk mobility
model, yet we can still go above the lineD = nλ2 which
characterizes delay-throughput trade-offs in the absenceof
correlated movements.

C. Node migrations among clusters

In the class of networks considered so far, one limitation is
related to the fact that we assume the nodes to remain indefi-
nitely associated with the same cluster. In realistic, correlated
mobility processes, it could happen that nodes decide to follow
different groups of nodes with the passing of time, switching
from one cluster to another.

In this section we present a variation of our model in which
nodes are allowed to migrate from one cluster to another when
two clusters come in contact which each other (i.e., when their
cluster regions overlap). To make the model more general,
we assume that clusters are partitioned intoM = nγ super-
clusters, with0 ≤ γ ≤ ν, each containingK = m/M = nν−γ

clusters analogous to the ones defined in our original model.
When two clusters belonging to the same super-cluster overlap
in space, their nodes independently migrate from one cluster to
the other with some fixed constant probability. Asγ varies, we
obtain a wide gamut of systems, comprising as special cases
our original model without nodes’ migrations (forγ = ν),
and the other extreme case (forγ = 0) in which all nodes can
migrate to any cluster in the network. In the following analysis,
we assume that nodes know the identities of all other nodes
in their super-cluster (such information does not change over
time, thus it can be distributed once and for all at system start
up). Instead, we assume for simplicity that nodes do not know
the identity of the other nodes currently associated to the same
cluster (this information changes over time).

For this more general class of networks, the first goal of
our performance optimization (i.e., throughput maximization)
is very simple to analyze. Indeed, for any0 < γ ≤ ν, the
majority of flows (i.e., all flows established between nodes
belonging to different super-clusters) still require at least
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one inter-cluster communication, hence we can directly apply
Theorem 1 and conclude that in this case the network through-
put is necessarilyO(mR2). The above bound is actually
achievable by a scheduling scheme similar to the one proposed
in the absence of node migrations, still based on a four hop
scheduling/routing strategy. The only algorithmic difference
with respect to the previous case is that now, in the second
hop, we allow a message to be transferred to the first contacted
node belonging to the super-cluster of the destination (we
recall that nodes ignore the identity of the cluster in whichthe
destination is). Observe also that different copies of a message
generated after the third hop, will migrate from one clusterto
another (as nodes holding them migrate) within the destination
super-cluster. The message will be then delivered when the
first copy hits the destination. The throughput analysis of the
above scheme can be easily carried out along the same lines
as before. It turns out that the achievable network throughput
is Θ(mR2), as in the non-migration case.

The special caseγ = 0 leads instead to the condition in
which nodes uniformly come in contact with any other node
in the network, hence in this case we can apply the classic
Grossglauser-Tse 2-hop scheme and conclude that we can
achieve per-node throughput10 λ = Θ(1). Notice that there
is a sharp discontinuity in the throughput when the value of
γ steps away from zero.

As far as the delay performance withγ > 0, the delays
Dα

1 and Dα
3 for the first and third hop of the new scheme

are exactly the same as in the previous scheme. The delay
of the second hop, instead, reduces by a factorK, since now
a message can be transferred into any one of theK clusters
belonging to the super-cluster of the destination, insteadof
just into the cluster of the destination. By the same arguments
in Appendix C, we getDα

2 = Θ
(

n
KR2

)

which dominates both
Dα

1 andDα
3 .

The delay of the fourth hop is slightly more difficult to
analyze. Recall that the message gets replicated in the third
hop, generating a number of copies that are initially confined
within a unique cluster belonging to the super-cluster of the
destination. With the passing of time, these copies distribute
themselves among the clusters of their super-cluster, as inan
epidemic process, as a result of nodes’ migrations. Note that
the average inter-contact time between two clusters belonging
to the same super-cluster equalsDα

2 , the delay of the second
hop. Moreover, it can be shown that the spreading phase of
the copies over the super-cluster of the destination takes at
most a durationΘ(logn · Dα

2 ) before we can assume that
replicas are uniformly distributed in the super-cluster. At this
point, all replicas are equally likely to fall in communication
range of the destination node, thus the additional delay before
the first one of them hits the destination isΘ(mKR4

n
), by

arguments analogous to those in Appendix C. Considering
(pessimistically) that the spreading phase must always be
completed before the message can reach the destination (such
pessimistic assumption introduces at most alogn factor in the

overall delay), we obtain thatDα
4 = O

(

lognDα
2 + mKR4

n

)

.

In conclusion:

10Moreover, it can be shown that in this case the delivery delayis
D = Θ(n) for any β > 0.
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Fig. 8. Throughput-delay scaling for the extension to node migrations among
clusters, forγ = ν/2 (left plot) andγ = ν/10 (right plot).

Proposition 1: In the case of nodes’ migrations among
clusters, restricted to occur amongK = nν−γ clusters, with
0 < γ ≤ ν, it is possible to achieve, under the cluster sparse
regime, a maximum per-node throughputλ = Θ(mR2/n), at
the expense of an end-to-end delay

D = O

(

logn
n

KR2
+

mKR4

n

)

(5)

Fig. 8 shows the scaling exponents of per-node throughput and
delay in the case ofγ = ν/2 (left plot) andγ = ν/10 (right
plot). We observe that, for decreasing values ofγ (i.e., smaller
number of super-clusters), the region of feasible operating
points shrinks, yet we still have points above theD = nλ2

line.

VII. C ONCLUSIONS

Correlated nodes movements have huge impact on the
throughput and delay performance of mobile ad hoc networks.
In this paper we have provided a first characterization of
the scaling laws of networks with correlated node mobility,
devising novel scheduling-routing schemes which maximize
the per-node throughput as primary goal. Being the first
analysis of this kind, we have considered a simplified group
mobility model, yet flexible enough to explore various degrees
of correlation in the nodes mobility process. Our study reveals
the existence of a wide range of correlated node movements
which can lead to significant better performance than the one
achievable under independent nodes movements.
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APPENDIX A
PROOF OFLEMMA 1

Recall that the protocol model requires the adoption of the
same transmission range for all communications occurring in
the same slot. Therefore, letr be the common transmission
range by all transmitters during the considered slot. The
proof consists in showing that the number of simultaneous
transmissions between nodes belonging to different clusters is
necessarilyO(mR2), for any value ofr and under any possible
scheduling policy.

First, we recall a basic result proved in [3], which states
that, according to the protocol model, the distance betweenany
pair of transmitting nodes cannot be smaller than∆r where
r is the transmission range and∆ the guard factor defined

R Rr

Ci Cj

Fig. 9. Geometry used to upper bound the number of simultaneous
transmissions among nodes belonging to different clusters

in Section II-B. This implies that, considering discs of radius
∆r
2 around simultaneously transmitting nodes, all discs are

necessarily disjoint.
Focusing on a particular clusterCi, we observe that any

transmitting node belonging to clusterCi lies within a dis-
tanceR from the cluster center; then all discs associated to
transmitting nodes inCi are constrained to lie within a circle
of radiusR+ r centered at the cluster center.

From the above argument we can obtain an upper bound
H1 to the number of transmitting nodes belonging toCi, by
bounding the maximum number of discs of radius∆r/2 that
can fit within a circle of radiusr+R. A simple upper bound

to this number isπ(R + r)2/
(

π∆2r2

4

)

. By noticing that, in

any case, the number of transmissions originated by nodes in
Ci can not exceed the number of nodesq in Ci, we can refine
the previous upper-bound as:

H1 = min

{

q,
π(R + r)2

π∆2r2

4

}

(6)

Next we observe that any transmission between nodes inCi

and nodes belonging to a different cluster requires that at least
one center of a clusterCj 6= Ci falls within a distance2R+ r
from the center of clusterCi (see Figure 9). This event occurs
with probability

H2 = 1−
(

1− π(2R+ r)2

n

)m−1

(7)

and optimistically we can say that, upon its occurrence, all
potential transmitters inCi can find a receiver belonging to a
different cluster using transmission ranger.

At last, summing over all clusters we obtain an upper bound
H to the number of simultaneous transmissions among nodes
belonging to different clusters that any policy employing a
transmission ranger can achieveH = mH1H2:

H=mmin

{

q,
π(R + r)2

π∆2r2

4

}[

1−
(

1− π(2R+ r)2

n

)m−1
]

It remains to show that the scaling order of the above
quantityH is O(mR2), or equivalently, thatH1H2 = O(R2).
To this purpose, we separately analyze the scaling order ofH1

andH2, whose behavior is qualitatively represented in Figure
10 as function ofr.

We observe thatH1 saturates to its maximum theoretical
value q = n

m
when we select a transmission ranger =
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r

R

H2

H1

R
√

m
n

√

n
m

n
m

1

mR2

n

Fig. 10. The (qualitative) scaling behavior of termsH1 andH2 as function
of r

O
(

R
√

m
n

)

, which allows all nodes in a cluster to (potentially)
transmit concurrently without interfering with each other. For
r = ω

(

R
√

m
n

)

, interference among concurrent transmitters
progressively reduces the number of feasible transmitters
within a cluster, as we further increaser.

On the contrary,H2 is an increasing function ofr. For
r = O(R), we can neglectr with respect toR, hence
the scaling behavior ofH2 is insensitive to the selected
transmission range. Furthermore, since in the cluster sparse
regimemR2

n
= o(1), we obtain:

H2 ∼ 1−
(

1− π(2R)2

n

)m

∼ m
π(2R)2

n
= Θ

(

mR2

n

)

The same approximation can be applied also whenr = ω(R)

andr = O(
√

n
m
), obtaining the scaling orderΘ

(

mr2

n

)

, which

increases withr. For r = ω(
√

n
m
), the scaling behavior ofH2

saturates toΘ(1), since in this case the transmission range is
large enough to cover the typical distance

√

n
m

between cluster
centers, allowing a transmitter in a cluster to find a receiver
belonging to a different cluster with finite probability (atthe
cost of being, typically, the unique transmitter enabled inits
cluster).

At last, it is easy to see that the productH1H2 attains its
maximum whenr = O

(

R
√

m
n

)

, for which H1H2 = Θ(R2).
We conclude that, in thecluster sparseregime, the maximum
amount of data that can be transferred in one slot among nodes
belonging to different clusters isO(mR2).

APPENDIX B
PROOF OFLEMMA 2

Let ri be the transmission range used in a generic sloti,
devoted to inter-cluster communications among arbitrary nodes
belonging to different clusters. Without lack of generality in
light of Theorem 1, we assumeri = O(

√

Rm
n
).

We first observe that, according to the scheduling scheme
illustrated in Figure 3, at most one communication can be
enabled in each square of aread2i . Hence we can express
the average numberE[Ni] of packets that can be transmitted
over the entire network during a slot devoted to inter-cluster
communications as

E[Ni] =
n

d2i
P(active squarelet| i) (8)

where n
d2

i

is the number of squarelets andP(active squarelet|
i) is the probability that for a generic squareletAk

i we can find:

R

√
Ai

Qa

a

ca

R − ri/
√

2

Fig. 11. The shaded disk denotes the region where a cluster center must fall
so that the selected squarelet is completely covered by the cluster containing
transmitting nodea.

i) a transmitting nodea residing in the considered squarelet;
ii) a receiving nodeb at distance at mostri from a (given the
location ofa), and belonging to a different cluster than the one
of a. LetP(a|i) andP(b|a, i) denote the occurrence probability
of the two events above, respectively. Since the positions of
nodes belonging to different clusters are independent, we have
P(active squarelet| i) = P(a|i)P(b|a, i).

ProbabilityP(a|i) can be approximated by the joint occur-
rence of the following two events: i)Ak

i is entirely covered
by one cluster11; ii) given the occurrence of event i), at least
one node belonging to the covering cluster is found inAk

i .
Condition i) above occurs when at least one cluster center
falls within a disk of radiusR − ri/

√
2 around the squarelet

(see diskQa in Figure 11). While, condition ii) above occurs

with probability 1−
(

1− r2i
R2

)q

. It follows,

P(a|i) =
[

1−
(

1− (R− ri/
√
2)2

n

)m]
[

1−
(

1− r2i
R2

)q]

The expression above can be approximated asP(a|i) ∼ qr2i
given that we assumeqr2i = O(R2). Observe thatP(a|i)
increases linearly withr2i and for ri =

√

m
n
R2 it reaches

the saturation valueΘ(1).
Probability P(b|a, i) can be approximated12 by the joint

occurrence of the following two events: i) the disk of radiusri
centered ata is entirely covered by a cluster different from the
one ofa; ii) given the occurrence of event i), at least one node
belonging to the covering cluster is found inAk

i . Condition i)
above occurs when at least one out ofm − 1 cluster centers
falls within a disk of radiusR−ri centered ata (see diskQb in
Figure 12). Instead, condition ii) above occurs with probability

1−
(

1− r2i
R2

)q

. We obtain

P(b|a, i) =
[

1−
(

1− (R − ri)
2

n

)m−1
]

·

·
[

1−
(

1− r2i
R2

)q]

(9)

11A transmitter could be found inAk
i even if the squarelet were partially

covered by a cluster. This approximation does not affect theresults, in order
sense, as one can show by consideringAk

i entirely covered by a cluster even
if just a corner of it is touched by the cluster.

12The approximation does not affect the result, in order sense, for reasons
analogous to our approximation ofP(a|i).
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R − ri

ri

R

Qb

cb

a
b

Fig. 12. The shaded disk denotes the region where a cluster center must fall
so that the disk of radiusri around transmittera is completely covered by
the cluster containing receiverb.

The expression above can be again approximated as
P(b|a, i) ∼ r2i sinceqr2i = O(R2). Observe that alsoP(b|a, i)
increases linearly withr2i and forri =

√

m
n
R2 it reaches the

saturation valueΘ(1). Given thatd2i = Θ(r2i ), putting things
together we obtain:

E[Ni] = nr2i for ri = O(R
√

m/n) (10)

From (10) we conclude that it is possible to achieve
E[Ni] = mR2 by selectingri = R

√

m/n. This corresponds
to using a transmission range which is strictly related to the
density of nodes within clusters, which is equal ton/(mR2).
In particular, with this choiceri is equal to the typical distance
between nodes belonging to the same cluster.

APPENDIX C
COMPUTATION OF THE ACCESS DELAYS

Since we are interested to an order sense evaluation of the
access delay of each hop, we can ignore all factors whose
effect on the access delay can be bounded by a multiplicative
constant, such as: i) the fact that only one slot out of four is
devoted to transmission of packets at a given hop; ii) only a
subset of squarelets can be activated in a given slot.

In the first hop, the tagged packet has to wait until the source
nodes gets in contact with a noden1 belonging to an arbitrary
different clusterCr (Figure 1). In a slot devoted to hop 1, the
probability P(n1|s, 1) that a generic noden1 belonging to a
clusterCr different fromCs gets in contact withs (i.e., lies at
distance at mostr1 from s) is analogous to quantityP(b|a, i)
in (9) (see Figure 12). Since we user1 = R

√

m/n, we have
P(n1|s, 1) ∼ R2m/n.

The packet access delay ats, expressed in number of slots,
follows a geometric distribution Geom(P(n1|s, 1)), since the
positions of all nodes regenerate from slot to slot. Hence the
average access delay at the first hop is:Dα

1 = Θ
(

n
mR2

)

.
The access delay in the second hop is similar to the one

of the first hop, however in this casen1 can transmit the
tagged packet only when it gets in contact with a noden2

belonging to thespecificcluster containing the destination. In
a slot devoted to hop 2, the probabilityP(n2|n1, 2) that n1

gets in contact with a generic noden2 belonging to cluster
Cd can be computed as:

P(n2|n1, 2) =
(R − r2)

2

n

[

1−
(

1− r22
R2

)q]

Since we user2 = R
√

m/n, we haveP(n2|n1, 2) ∼ R2/n.
Again, the packet access delay atn1, expressed in number
of slots, follows a geometric distribution Geom(P(n2|n1, 2)),
thus:Dα

2 = Θ
(

n
R2

)

. Note thatDα
2 always dominateDα

1 .
To computeDα

3 andDα
4 we can apply standard results [7],

[9], [6], [5] obtained for the i.i.d mobility model, since relative
movements of nodes within each cluster area are i.i.d.

In particular, we haveDα
3 = Θ(1), sincen2 can broadcast

the packet in any slot devoted to the third hop without any
other requirement.

After the third hop, a numberΘ( n
mR2 ) of nodes within the

destination cluster hold a copy of the tagged packet, hence
Dα

4 corresponds to the average time that it takes before the
first one of these nodes arrive at distancer4 = Θ(1) from
the destination. In a slot devoted to hop 4, the probability
P(n3|d, 4) that at least one node holding a copy of the tagged
packet falls within transmission ranger4 from d is given by

P(n3|d, 4) = 1−
(

1− r24
R2

)
n

mR2

= Θ
( n

mR4

)

Since the access delay of the fourth hop follows a geometric

distribution Geom(P(n3|d, 4)), we have:Dα
4 = Θ

(

mR4

n

)

.
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