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Abstract— In this paper we introduce a new packing
problem, the Three-Dimensional Knapsack Problem with
Balancing Constraints (3BKP), the extension of the stan-
dard Three-Dimensional Knapsack Problem (3KP) where
additional constraints related to the center of mass of the
three-dimensional packing are given. Given a set of box
items i = 1, . . . , n with sizes wi, di and ki, a profit pi,
and a mass mi and a container called knapsack of fixed
dimensions W , D and H , 3BKP consists in orthogonally
packing a subset of the items into the knapsack in order
to maximize the sum of the profits of the loaded items.
The items must be accommodated into the knapsack such
that they do not overlap. Moreover, the center of mass
of the overall packing must lie into a predefined boxed
domain within the knapsack. We assume that items can be
rotated. We give a MIP formulation of the problem, used
to derive bounds, as well as an efficient heuristic method
able to solve, with a limited computational effort, the test
instances. Moreover, new test instances are introduced and
used to derive extensive computational results. The results
show how the MIP model is able to find better bounds than
other relaxations, and how the heuristic method is able
to efficiently solve both instances explicitly designed for
3BKP, as well as to be competitive with methods explicitly
designed to solve 3KP.

Keywords— 3D Knapsack, load balancing, Heuristics,
MIP Models

I. INTRODUCTION

A major challenge in the loading problem is taking
into account load balancing constraints. These kind of
constraints arise in many practical applications as aircraft
loading (Kaluzny and Shaw [23]), space cargo loading
(Colaneri et al. [9], and Perboli Perboli2002) and mar-
itime transportation (Bischoff and Ratcliff [6]). The issue
is critical in some applications, as in the space cargo
loading, while it is relevant from the safety and the
economic points of view in air and maritime cargo appli-
cations. For example minor displacements from an ideal

center of mass can result in increased fuel consumption
for aircrafts and ships (Mongeau and Bés [26]). Despite
its importance, the issue of the loading balancing has
not deeply studied. This is mainly due to the difficulty
of extending formulations, exact and heuristic methods
for multidimensional packing to the balanced case. In
fact, the majority of these methods use geometric prop-
erties in order to reduce the computational effort which
cannot be extended to the balancing constraints case.
The aim of this paper is twofold. First, we introduce a
new packing problem, the Three-Dimensional Knapsack
Problem with Balancing Constraints, an extension of the
standard Three-Dimensional Knapsack Problem (3KP)
where additional constraints related to the center of mass
of the three-dimensional packing are given. Given a
set of box items i = 1, . . . , n with sizes wi, di and
ki, a profit pi, and a mass mi and a container called
knapsack of fixed dimensions W , D, and H , the Three-
Dimensional Knapsack Problem with Balancing Con-
straints (3BKP) consists in orthogonally packing a subset
of the items into the knapsack in order to maximize the
sum of the profits of the loaded items. The items must
be accommodated into the knapsack such that they do
not overlap. Moreover, the center of mass of the overall
packing must lie into a predefined boxed domain within
the knapsack. We assume that items can be rotated.
Second, we give a MIP formulation of the problem,
used to derive bounds. Finally, we introduce 3BKP-
U, a heuristic method generalizing the UniPack heuris-
tic for multi-dimensional packing (Crainic et al. [28])
and the extreme point rule (Crainic et al. [10]) for
the accommodation of the items in order to deal with
the center of mass constraints. New tests instances are
introduced and used to derive extensive computational
results. The results show how the MIP model is able
to find better bounds than other relaxations, as well as
the heuristic method is able to efficiently solve both
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instances explicitly designed for 3BKP, as well as to be
competitive with methods explicitly designed for solving
3KP.

In more details, the paper is organized as follows.
In Section II we formally introduce the problem. After
showing conventions and rules involved in 3BKP (most
of them are common to other packing problems), in II-
A we give a formulation for the model. In section III
a state of the art is given; first for multidimensional
packing problems, second for multidimensional knap-
sack problems and, finally, for problems dealing with
balancing constraints. Section IV introduces UniPack
and its history. It is based on the concept of Extreme
Points, which are discussed in detail. UniPack special-
ization leads to 3BKP-U, the heuristic employed to solve
3BKP. In section V results of our work are shown and
we conclude in section VI.

II. PROBLEM DESCRIPTION

The 3BKP is defined as follows: given a container C
with dimensions W , D, and H , volume V = W×D×H ,
and a set of items J = {1, ..., n} with profit pj ,
dimensions wj , dj , and hj , and specific weight swj ,
we want to assign a subset of items J ′ ⊆ J to the
container C such that J ′ is a feasible loading for the
container itself, and the total profit of the loaded items
is maximum. Feasibility requires that loaded items do not
overlap and limits the position of the overall center of
mass inside a given three-dimensional domain. Figure 1
shows an example of a three-dimensional domain with
its projections on the (X, Y ), (X, Z), and (Y, Z) plans.
Following the classification of Wäscher et al. [29], 3BKP
is a Three-Dimensional Single Large Object Placement
Problem (3D-SLOPP) with balancing constraints (3DB-
SLOPP).

Fig. 1. A three dimensional domain

Furthermore the following assumptions are made:
• the items and the container have parallelepiped

shape;

• the origin of the container and the origin of each
item is located at their own left-back-down corners
(see Figure 2);

• the container is located in the positive quadrant
of the Cartesian coordinate system, with its origin
placed in position (0, 0, 0) (see Figure 2);

• items can rotate so that each item side is parallel to
one axis;

• container and items walls have negligible thickness;
• container and items dimensions are assumed to be

non-negative integers;
• the mass of each item is uniformly distributed over

its volume.
Let |J ′| = k ≤ n be the number of accommodated items;
then the value of the overall profit P can be calculated
as:

P =

k∑
j=1

pj . (1)

Note that high or low values of P do not necessarily
correspond to a high or a low exploitation of the bin
because, in principle, there is no correlation between
volumes and profits of items.

Given a parallepiped item j, its position ~xj , and its
mass mj , then the position of its center of mass is:

~xCMj
= (xj + wj/2, yj + dj/2, zj + hj/2) . (2)

The position of the overall center of mass is then:

~xCM =

∑k
j=1 ~xCMj

mj∑k
j=1mj

. (3)

Let the solution unbalancing index U be the dispersion
index of packed items center of mass ~xCM with respect
to a desired position ~x′CM . The standard deviation of a
set of values xj , with j ∈ [1, k] and arithmetic average
x̄, is defined as follows:

σx =

√∑k
j=1 (xj − x̄)2

k
. (4)

Formula for the solution unbalancing index U is
found by plugging in (4) centers of mass coordinates.
Moreover, since positions are assumed to be vectors, the
square power of the difference at the numerator must be
applied to the modulus of the difference:

U =

√∑k
j=1

∣∣~xCMj
− ~x′CM

∣∣2
k

. (5)
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Fig. 2. Container and items placement

A. The model

Before showing the model, constants and variables
need to be introduced. As mentioned above, J is the
set of items and its cardinality is n. Associated indexes
may be i or j. ∆ is the set of dimensions. Its cardinality
is 2 for two-dimensional problems and 3 for three-
dimensional ones. In the latter case ∆ = {1, 2, 3}.
Its associated index is δ (Greek d delta stands for
dimension). R is the set of rotations. Its cardinality
is 4 for two-dimensional problems and 6 for three-
dimensional ones. These numbers represent the ways
one can rotate items in a 2D or 3D domain. Index
associated to set R is r (r stands for rotation). Due
to reason of space in the representation of the model,
we omit (but we do mean it) i ∈ J , j ∈ J and
δ ∈ ∆ when subscripts appear within the constraints.
pj , vj and mj are, respectively, the profit, the volume
and the mass of item j. sδir is the dimension (s stands
for size) of item i along direction δ when rotated with
respect to index r (see Figure 3). Sδ is the bin size along
direction δ; in particular

(
S1, S2, S3

)
= (W, D, H).

V is the bin volume (note that V = Πδ ∈ ∆S
δ). Lδ

and U δ are the bounds along direction δ which limit
the domain where the overall center of mass must lie
within. γδir is the position of item i center of mass
along direction δ when it is rotated according to rotation
r and when it is placed with its bottom-left point in
the axis origin. For instance, according to Figure 3 if
item i undergo a rotation with r = 3, then we have(
γ1
i3, γ

2
i3, γ

3
i3

)
= (di/2, wi/2, hi/2). Greek g gamma

stands for gravity because the center of mass is the
point where gravity force acts on a body like if it
were concentrated just on that point. UB is an upper
bound on the overall profit. Its value may come from a
pre-processing step or may be known a priori. Talking
about variables, tj is a binary variable which value is
1 if item j is loaded in the container, 0 otherwise (t
stands for taken). χδi is the coordinate of the bottom-
left point of item i along direction δ. For instance, if
such a point is placed in position (xi, yi, zi), then we
have (χ1

i , χ
2
i , χ

3
i ) = (xi, yi, zi). bδij is a binary variable

which value is 1 if item i comes before item j along
direction δ, 0 otherwise. Finally ρir is a binary variable
which is 1 if item i is rotated according to rotation
r, 0 otherwise. The model for the Three-Dimensional
Knapsack Problem with Balancing Constraints can then
be formulated as follows:

max
∑
j ∈ J

pjtj (6)

s.t.
∑
j ∈ J

vjtj ≤ V (7)∑
δ ∈ ∆

(bδij + bδji) ≥ ti + tj − 1, i < j (8)

χδi +
∑
r ∈ R

sδiρir ≤ Sδ (9)

χδi +
∑
r ∈ R

sδirρir ≤

χδj +M(1− bδij), i < j (10)

χδj +
∑
r ∈ R

sδjrρir ≤

χδi +M(1− bδji), i < j (11)

χδi ≤Mti (12)

bδij ≤ ti (13)

bδij ≤ tj (14)∑
i ∈ J

miχ
δ
i +

∑
i ∈ J

∑
r ∈ R

miγ
δ
irρir ≥

Lδ
∑
i ∈ J

miti (15)∑
i ∈ J

miχ
δ
i +

∑
i ∈ J

∑
r ∈ R

miγ
δ
irρir ≤

U δ
∑
i ∈ J

miti (16)∑
j ∈ J

pjtj ≤ UB (17)

ti ∈ {0, 1} (18)

bδij ∈ {0, 1} (19)

χδi ≥ 0 (20)

ρir ∈ {0, 1}. (21)

The objective function (6) is expressed as the sum of
the profit of the items (including the selection variables
tj). Constraint (7) expresses capacity constraints, i.e. the
sum of the volumes of the selected items must not exceed
the volume of the container. Constraints (8) ensures that
two packed items do not overlap. Constraints (9) state
that items must lie within the container, i.e., for each
direction δ, the sum of the coordinate of the bottom-left
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(
s1
i1, s

2
i1, s

3
i1

)
= (wi, di, hi)(

s1
i2, s

2
i2, s

3
i2

)
= (wi, hi, di)(

s1
i3, s

2
i3, s

3
i3

)
= (di, wi, hi)(

s1
i4, s

2
i4, s

3
i4

)
= (di, hi, wi)(

s1
i5, s

2
i5, s

3
i5

)
= (hi, wi, di)(

s1
i6, s

2
i6, s

3
i6

)
= (hi, di, wi).

Fig. 3. List of all the possible rotations of an item in 3D

point with the dimension of the item must give a value
less or equal than the size of the bin along dimension
δ. Constraints (10) state that, if item i comes before
item j, then the sum of the position of item i plus its
size must be less or equal than the position value of
item j along direction k. Constraints (11) have the same
meaning, this time with item j coming before item i.
Constraints (12) express that, if item i is not selected,
then its placement coordinates must be zero. A similar
meaning have constraints (13) and (14) that state that, if
an item is not selected, then it cannot be placed before
another one. Constraints (15) and (16) ensures balancing
conditions and they can be derived from the center of
mass definition (3). Constraint (17) is used if an upper
bound UB on the overall profit is known. Finally follow
the involved variables domains.

III. STATE OF THE ART

3BKP can be classified as a problem beloning to the
Cutting and Packing (C&P) family. Wäscher et al. [29]
have recently published a classification for C&P prob-
lems which extendes an older one due to Dyckhoff [12].
The authors characterize a C&P problem with two sets
of elements: a set of large objects (bins, containers,
input, supply) and a set of small items (output, demand).
Multidimensional packing literature is really widespread.
As stated by Wäscher et al. [29], at the time of their
publication, the number of pubblications in the area
of C&P has increased considerably over the last two
decades. This issue was also one of the motivations to
create a new typology for C&P problems. A first attempt
to model multidimensional packing was due to Gilmore
and Gomory [19]. Their column generation approach has
been reviseted by Baldacci and Boschetti [1]. Other con-
tributions come from Beasley [3], Hadjiconstantinou and
Christofides [21], Chung et al. [8], Berkey and Wang [5],
George and Robinson [18], Fekete and Schepers [15],
[17], and Perboli [27]. Martello et al. [24] introduced the
concept of corner points. Extentions of their work can be
found in den Boef et al. [11], and Martello et al. [25].

Crainic et al. [10] introduced the concept of extreme
points, an extension of the corner points previously
introduced by Martello et al. [24]. Extreme Points are
the basis for UniPack, the heuristic introduced in this
paper, able to efficiently solve several packing problems.
In multidimensional knapsack problems the available
bins reduce to one. Papers which tackle this problem
are Beasley [2], Hadjiconstantinou and Christofides [21],
Boschetti et al. [7], and Fekete and Schepers [15], [16],
[17]. To the best of our knowledge the latest contribution
comes from Egeblad and Pisinger [13], where the authors
also propose an exact model. An exact MIP model for
the 3BKP can be found in Fasano [14], where additional
equations to meet the balancing conditions (i.e. the
overall center of mass must lie within a given convex
domain) are taken from Williams [30]. As stated in
Fasano [14], the MIP model [...] is hard to solve using
standard techniques and that justifies a heuristic way in
the solution of 3BKP. Note that balancing conditions
must not be meant as of stability ones. In Junqueira et
al. [22] stability is defined as the capacity of the loaded
boxes to withstand the gravity force acceleration (vertical
stability) or the inertia of its own bodies (horizontal
stability), whilst in 3BKP balancing conditions are re-
quirements on the overall center of mass of the loaded
items. The latter, in fact, must lie within a given convex
domain or, when possible, at a certain position inside the
container.

IV. AN EFFICIENT HEURISTIC

UniPack is based on the fundamental idea to separate
the feasibility of a solution, i.e. the accomodation of the
items, from its optimality, which is related to the specific
packing problem. UniPack is a heuristic able to solve
many packing problems having different objective func-
tions and constraints. It has been created following the
ideas of Crainic et al. [10] where Extreme Points (EPs)
have been introduced. These are a further extension of
the Corner Points introduced by Martello et al. [24].

Corner points are the nondominated locations where
an item can be placed into an existing packing. In two
dimensions, corner points are defined where the envelope
of the items in the bin changes from vertical to horizontal
(the large dots in Figure 4).

Heuristics using Corner Points can be inefficient in
terms of container utilization. Consider, for example, the
packing depicted in Figure 4 and item 11. According to
the definition of the Corner Points, one can add the item
on any of the large black dots. It is clear, however, that
item 11 could also be placed into one of the shaded
regions, which the corner points do not allow us to
exploit.
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(a)

Fig. 4. Corner points in 3D and 2D packings

Extreme Points (EPs) introduced in Crainic et al. [10]
provide the means to exploit the free space defined
inside a packing by the shapes of the items already in
the container. Figure 5 illustrates EPs in 3D and 2D
packings.

(b)

12 3

4

5
6

7
8 9

10

11

(a)

Fig. 5. Extreme Points in 3D and 2D packings

The basic idea of the EPs is that when an item j
with sizes (wj , dj , hj) is added to a given packing and
it is placed with its left-back-down corner in position
(xj , yj , zj), it generates a series of new potential points,
the EPs, where additional items can be accommodated.
The new EPs are generated by projecting the points
with coordinates (xj+wj , yj , zj), (xj , yj+dj , zj), and
(xj , yj , zj+hj) on the orthogonal axes of the container.
Figure 6 illustrates the concept.

Fig. 6. Extreme Points defined by an items (the triangles

Beside the saving of space in applying extreme points
rather than corner points, another advantage is the time
complexity to find an extreme points set. As proved in
Crainic et al. [10], the overall computational effort is

O(n)- where n is the number of items- whilst corner
points require a O(n2) complexity.

As stated before, UniPack exploits the concept of Ex-
treme Points. Its general scheme is depicted in Figure 7.

Fig. 7. General scheme of UniPack

The core of UniPack is an accomodation procedure,
the EP-based constructive heuristic, EP-BPH.

When applied to the initial solution, the name of the
heuristic becomes PCH because items undergo several
sortings which lead to different initial solutions and only
the best one is selected.

We assign a score to each item, thus specifying
the order in which items are to be considered by the
accomodation heuristics. The score definition is problem
specific.

Scores are thus first initialized through the Score
Initialization procedure, and then are dynamically mod-
ified by means of the Score Update and Long-term
Score Reinitialization procedures. Score Update pro-
ceeds through small changes, aiming to adjust the scores
used to sort the items at iteration k of UniPack according
to the quality of the solution built at iteration k − 1.
Long-term Score Reinitialization incorporates long-term
decisions, as long-term memory structures, and proceeds
through larger score modifications in the scores in order
to avoid cycling on the same solutions and explore new
regions of the solution space.

Score computation and updates depend upon a number
of parameters. We aim to keep this number as low as
possible to simplify their adjustment during computation.
Indeed, no such adjustment is required for 2D Knapsack
and Strip-Packing problems. For the other ones, Uni-
Pack provides a problem-specific, dynamically-adjusting
parameter procedure denoted Parameter Update (see IV-
C).

The main steps on UniPack are the following (refer to
Figure 7 for a schema of the method):
• Build an initial solution of the packing problem and

set the best-solution BS equal to the initial solution;
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We use the PCH heuristic;
• Scoring Phase

– Initialize the score of the items: the Score
Initialization procedure;

– While Stopping Conditions not encountered,
repeat the following steps:
∗ Sort the items according to their scores and

apply a constructive heuristic to the sorted
list, obtaining a new solution CS; We use
the EP-BPH procedure;

∗ If a given number of successive non-
improving iterations is reached, reinitialize
the scoring using the Long-term Score Reini-
tialization procedure; otherwise, update the
scores using the Score Update procedure
according to the CS solution;

∗ If CS is better than BS, then set BS to CS;
∗ The Parameter Update procedure then inter-

nally adjusts the parameters.

A. EP-based Constructive Heuristics for Non-Guillotine
Orthogonal Higher-Dimensional Packing Problems

We now present the constructive heuristic PCH and
the initial solution procedure EP-BPH we propose for
Non-Guillotine Orthogonal Higher-Dimensional Packing
problems. The procedures are based on the Best Fit
Decreasing (BFD) idea and generalize the heuristic
presented in Crainic et al. [10].

Following an initial sorting of the items by non-
increasing order of their volumes, the BFD constructive
heuristic for 1D Bin Packing problem tries to load each
item into the best bin. The latter is defined as the
bin which, after loading the item, has the maximum
free volume, defined as the container volume minus
the sum of the volumes of the items it contains. A
new container is created whether the item cannot be
accommodated into the existing bins. Despite its simplic-
ity, the BFD heuristic offers good performances for 1D
Bin Packing problems. Similar heuristics exist for other
packing problems, e.g., Knapsack and Strip Packing.
Unfortunately, extending these heuristics to a general
constructive heuristics for Non-Guillotine Orthogonal
Higher-Dimensional Packing problems is a non-trivial
task. On the one hand, while in 1D cases the ordering is
done considering a unique attribute characterizing both
items and bins, i.e., their volume or profit, more choices
exist in the multi-dimensional context. One may thus
consider sorting items according to their width, height, or
depth, as well as, derived from these attributes, according
to their volume or the areas of their different faces.
Consequently, the definition of the best bin in the BFD

heuristic is not unique. On the other hand, while the
item accommodation does not need to be considered in
1D problems, a 2D or 3D packing may vary significantly
according to how items are placed inside the bin, even
when the ordering of the items and the rule selecting
the best bin are not changed. Moreover, according to the
packing problem, the number of available bins may be
unlimited or fixed and all the items or just a subset must
be loaded.

We propose a new constructive heuristics based on
BFD ideas, denoted Extreme-Point Best Positioning
Heuristic (EP-BPH), which places the items into con-
tainers by using the Extreme Points concept of Crainic
et al. [10]. As indicated earlier, the Extreme Points define
the points where one may place an item that one wants
to add to an existing packing.

The main steps of the algorithm are as follows:
• Order the items according to a sorting criterion;
• For each item in the resulting sequence, find the

best EP of the best available bin where to load the
item;

• If such a bin exists, load the item into it on the
given EP;

• If the item cannot be loaded in any existing bin, a
new bin is created if the total number of bins does
not exceed the given maximum, otherwise the item
is discarded.

Changing the maximum number of available bins
adapts EP-BPH to different packing problems. For exam-
ple, the number of bins is infinite for the Bin Packing
problem, but it is equal to 1 for the 3BKP problem.
The behavior of EP-BPH depends on how the best EP
is selected and how the items are sorted. Computational
experiments have shown that, from the EP selection point
of view, the best trade off between solution quality and
computational results is given by the Residual Space rule
(see Crainic et al. [10]).

The Residual Space (RS) measures the free space
available around an EP. Roughly speaking, the RS of an
EP is the distance, along each axis, from the bin edge
or the nearest item. The nearest item can be different
on each axis. More precisely, when an EP is created, its
Residual Space on each axis is set equal to the distance
from its position to the side of the bin along that axis
(Figure 8a). The algorithm puts an item on the EP that
minimizes the difference between its RS and the item
size:

f = [(RSxe − wj) + (RSye − dj) + (RSze − hj)], (22)

where RSxe , RSye , and RSze are the RSs of EP e on X , Y ,
and Z axes, respectively. Every time an item is added to
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the packing, the RSs of all the EPs are updated. Figure 8b
illustrates the concept. For “complex” packings, the RS
gives only an estimate of the effective volume available
around the EPs and, thus, potential overlaps with other
items have to be verified when accommodating a new
item on the chosen EP. See Crainic et al. [10] for further
details.

Fig. 8. Example of Residual Space

To build an initial solution, we apply EP-BPH using a
number of sorting criteria. The resulting PCH heuristic
builds an initial solution by iteratively applying the
sorting criteria and selecting the best.

Items may have several attributes, but from the sorting
algorithm perspective, the most important ones are:

1) profit: the worth or priority of an item;
2) specific weight;
3) area: for three-dimensional problems it must be

meant as the item projection on the (X, Y ) plane
(see Figure 9).

Fig. 9. Definition of the area of an item

Since items show more than one attribute, many ways
to sort them are possible. Giving more importance to an
attribute means to favor those items showing the highest
values of that attribute or score. Often sorting procedure
involves more than an attribute or more than a score.
Sometimes items are sorted after they have been grouped
into clusters. A cluster is a set of items showing “close”
values of a particular attribute or score. By “close” we

mean that the values are inside a given set. Suppose,
for instance, to sort the items by clustered area (see
Figure 9), let Amin, Amax be the extreme values of
the area interval that we want to cluster. Each cluster
will have a length which is the length of the global
interval Amax − Amin times a given percentage θ/100,
with θ ∈ [1, 100]. The number of clusters nc is the
ration of the overall interval length over the length of a
single cluster. This ratio is nc = d100/θe. Each cluster
Ai(θ) can then be expressed as:

Ai(θ) = [Amin + (i− 1)(Amax −Amin)θ/100,

Amin + i(Amax −Amin)θ/100], (23)

with i = 1, . . . , nc. Note that, if we want to cluster
the overall container (basis) area, then Amin = 0 and
Amax = W ×D and (23) becomes:

Ai(θ) = [(i− 1)WDθ/100, iWDθ/100], (24)

with i = 1, . . . , nc. By combining the three items
attributes, six different sortings can be performed:

1) a-sw: clustered area, sorted specific weight;
2) a-p: clustered area, sorted profit;
3) sw-a: clustered specific weight, sorted area;
4) sw-p: clustered specific weight, sorted profit;
5) p-sw: clustered profit, sorted specific weight;
6) p-a: clustered profit, sorted area.

When a solution has been calculated, its corresponding
objective function value is given by the following merit
function:

F = P − αU. (25)

Note that (25) is a Lagrangean relaxation of the sum of
the selected items profits. This means that, according to
α, attention is also devoted to the balancing constraints,
even before the center of mass optimization procedure.
For values of α see Section IV-C.

B. Center of mass optimization

Given a three-dimensional convex domain inside the
container, the balancing procedure tries to adjust packed
items positions so that the global center of mass lies
inside the domain. The heuristic just moves already
packed items, therefore no items are added or removed
by the container, nor the overall profit is modified by
the procedure. The center of mass optimization heuristic
works as follows: it first calculates the position ~xCM of
packed items center of mass as reported in equations (2)
and (3), then it moves one item after another so that ~xCM
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moves towards the desired position. Two issues arise:
where to move an item and how to avoid it overlapping
other items and the edges of the bin.

The first problem may be tackled starting from equa-
tions (2) and (3). Assuming k is the number of accom-
modated items, M =

∑k
j=1mj is the overall mass of

the items, and we want to move item i from its actual
position ~xi = (xi, yi, zi) to an unknown new position
~x′i = (x′i, y

′
i, z
′
i) so that the overall center of mass moves

from the actual position ~xCM to the new desired position
~x′CM in order to meet balancing conditions. By (3) the
actual center of mass can be written as:

~xCM =
∑
j 6=i

mj~xCMi
/M +mi~xCMi

/M (26)

When item i moves from ~xi to ~x′i then its new center
of mass becomes ~x′CMi

, while the overall center of mass
is:

~x′CM =
∑
j 6=i

mj~xCMi
/M +mi~x

′
CMi

/M. (27)

Subtracting (26) from (27) we have:

~x′CM − ~xCM = mi(~x
′
CMi

/M −mi~xCMi
)/M, (28)

which lead to the new coordinates of item i center of
mass:

~x′CMi
= ~xCMi

+ (~x′CM − ~xCM )M/mi. (29)

Finally, the new coordinates of item i can be found by
inverting equation (2); in particular:

~x′i = (x′CMi
− wi/2, y′CMi

− di/2, z′CMi
− hi/2) (30)

(b)

x
i’

D
i

x
i

x
i’’

x
i’

D
i

x
i

(a)

Fig. 10. Example of Permitted Movements of an Item in 2D

Unfortunately, due to overlapping issues, it is not
always possible to move item i to ~x′i. Here comes the
second problem: the definition of a three-dimensional
convex connected domain where item i can freely move

without having to overlap other items nor the bin.
Actually, we define such a domain Di as the set of
allowed positions for the the origin of item i. To do
so, an algorithm similar to the one used to calculate the
RS of an EP is used. Once Di has been defined, three
possible scenarios may take place:
• Di = {∅}: item i cannot move;
• ~x′i ∈ Di: item i moves to ~x′i thus letting the

balancing to be achieved (see Figure 10a for a two-
dimensional example);

• ~x′i /∈ Di and Di 6= {∅}: item i moves to an
intermediate position ~x′′i defined as the point which
better approximates ~x′i on each axis (see Figure 10b
for a two-dimensional example).

Items movements may lead to a state that does not
take gravity effects into account. That would result in
faulty solutions for many real-life applications, so the
algorithm simulates the force of gravity by compacting
all items along the Z axis towards the (X, Y ) plan.

The heuristic stops when the packing is balanced,
when no items can move, or after a given number of
iterations.

C. Unipack specialization

In this Subsection we show how to adapt UniPack
parameters and scores in order to deal with the 3BKP.

1) Score Initialization: The idea is to use the score
as a measure of the willingness to accommodate an
item in the knapsack. Consequently, we start from the
initial solution decisions, and prioritize the items selected
by the accommodation procedure by assigning them a
higher score than to the non loaded ones. Two criteria
are used to define such initial scores. First, the score
should reflect the profit associated to each item. Second,
the gap between a loaded and a non loaded item should
be small enough to guarantee the possibility of changes
in the ordered list. The initial score of an item is then
set to si = kpi if the item has been loaded in the initial
solution, and to si = pi otherwise. The value of k has
been experimentally set to 3.

2) Score Update: Previous experience has shown
that the various sorting criteria used by the procedure
building the initial solution load into the knapsack a
significant subset of the items making up the optimal
solution. “Mistakes” usually are caused when selecting
among items with similar profits, but with peculiar
sizes, resulting in an underutilization of the knapsack.
The knowledge given by the sorting criteria and the
profits being already taken into account by the Score
Initialization procedure, the update of the scores thus
focuses on a special subset of items: the less profitable
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items already loaded and the most profitable non loaded
ones. The goal is to force at each iteration swaps between
less profitable loaded and profitable non loaded items by
changing the scores as follows:
• Find the item k loaded during the last iteration,

minimizing µi = (1 + f li )pi/(widi), where f li
represents the number of iterations item i has been
loaded into the container;

• Update the score of item k to sk = (1− α)sk;
• Find the item l non loaded during the last iteration,

maximizing µi = pi/(widi(1 + fui )), where fui
represents the number of iterations item i has not
been loaded into the container;

• Update the score of item l to sl = (1 + β)sl;
• Swap the scores of items k and l;
• Keep the score unchanged for all items i, i 6= k and
i 6= l;

where, µi measures the willingness to accommodate an
item into the knapsack, f li and fui maintain a long-term
memory of the selected items to avoid always selecting
from the same subset of items, and α and β represent
the percentage score decrease and increase, respectively,
and are experimentally set to 0.1. This procedure ensures
that at least two items are swapped at each iteration.

3) Long-term Score Reinitialization: Given the sorted
list of items which built the best solution found so far, we
first give a score to each item according to the same rule
used in Score Initialization. A fixed number of item pairs
are then randomly selected and their scores are swapped.

4) Initialization of Parameters and Stopping Criteria:

• α = β = 0.1;
• Long-term Score Reinitialization every 1000 itera-

tions;
• number of item-pairs: 5% of the items.
• α. If the best solution is unfeasible, α = 2 × α.

If the best solution is feasible, α = α/2 remains
unchanged if the center of mass lies in the central
half of its feasibility domain, while is unchanged
otherwise.

The overall process stops after 5 seconds.

V. COMPUTATIONAL RESULTS

In this section, we analyze the behaviour of the model
and the heuristics in term of solution quality and com-
putational efficiency. While the standard 3KP is known
in the literature, the 3BKP is introduced in this paper
for the first time. Thus, in Subsection V-A we define
some benchmark instances. The first two sets, namely
Set1 and Set2, are obtained by extending the instances
for 3KP literature, while the third one, Set3, extends the

rules used in the previous sets in order to diversify the
instances. All the tests have been performed on a Intel
I7 2.8 GhZ Workstation with 4 Gb of Ram. The model
has been solved by means of Gurobi 4.0 solver limited
to 1 core [20]. Subsection V-B is devoted to compare
the computational results of the MIP model and the
heuristic, while subsection V-C shows the behaviour of
the developed model and heuristic compared with state-
of-the-art algorithms. Being 3BKP firstly introduced in
this paper, we compare the model and the heuristic with
the results of heuristics developed specifically for the
problem which is more similar to 3BKP, the Three-
Dimensional Knapsack Problem.

A. Test Instances

In this section we introduce different instance sets
for 3BKP. Following the test for the 3KP, the instances
cover up to items and different types of item, knapsack
and weight distributions. The sets, namely Set1 and Set2,
are obtained by extending the instances by Egeblad and
Pisinger [13]. All instance sets can be downloaded from
the web site of OR-Library [4]. In the following we give
a detailed description of the different set parameters. In
these two sets of instances, the size of the knapsack,
as well as the sizes of the items are the same that
the ones in [13], while weights are added as additional
items’ attribute. Thus, the two sets differ for the weight
generation, i.e., the weights in Set1 are generated in a
smaller interval than in Set2. In order to give a better of
the instances, in the following we report the full list of
the parameters used to generate the instances.
• number of items: n ∈ {20, 40, 60};
• items’ generation strategy: t ∈ {C, R}, where:

– C alias clustered, because instance consists of
only 20 items which are duplicated appropri-
ately;

– R alias random, because instance consists of
independently generated items;

• bin size: p ∈ {50, 90}, expressed in percentage of
the total volume of the items.

• the items’ attributes; assuming i = 1, ..., n is the ith

item, then i is identified by:
– size: si = (wi, di, hi), which must belong to

one among the following geometric classes:
∗ Cubes (C). The items are cubic and their

sizes are defined as wi ∈ [1, 100] , di =
wi, hi = wi;

∗ Diverse (D). The sizes of the items are
randomly chosen in the following ranges
wi ∈ [1, 50] , di ∈ [1, 50] , hi ∈ [1, 50];
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∗ Long (L). The sizes of the items are ran-
domly chosen in the following ranges wi ∈
[1, 200/3] , di ∈ [50, 100] , hi ∈ [1, 200/3];

∗ Uniform (U). The sizes of the items are ran-
domly chosen in the following ranges wi ∈
[50, 100] , di ∈ [50, 100] , hi ∈ [50, 100].

– profit: pi = 200 + wi di hi;
– Center of mass position: the center of mass of

each item is placed int he geometrical center of
the item itself, i.e. CMi = {wi/2, di/2, hi/2}

– specific weight: swi, uniformly distributed on
the interval Isw, where the limits of the interval
depend on the set:
∗ Set1: Isw = [70, 100];
∗ Set2: Isw = [10, 1000];

– CoM domain: the domain constraints are
fixed as Lδ = {W/4, D/4, 0} and U δ =
{3W/4, 3D/4, H/2}. These limits are given
by practical issues in maritime and air cargo
applications. In particular, for the limits on Z,
for stability reasons the requirement is usually
to be as near a s possible to 0, i.e., the bottom
of the container [23].

The combination of all the values give 120 instances, 60
for each set.

B. Model and Heuristic results

C. State-of-the-Art results

As stated in Section III, 3BKP is introduced in this
paper for the first time. Thus, no other method than our
model and heuristic is present in the literature. Moreover,
computing specific upper bounds for 3BKP is quite
difficult. In fact, upper bounds obtained by model 3BKP-
M are quite poor and have mainly the same quality a
trivial bound obtained by computing the optimal solution
of the mono-dimensional Knapsack Problem where the
size of the knapsack is the volume of the 3D one and
the size of the items is the volume of the 3D items,
in the following referred as 1DB, [14], [13]. Moreover,
additional upper bounds that can be obtained by means
of conservative scales in the 3D packing without rotation
are not valid for the problems where the rotations are
allowed [13]. On the other hand, 3BKP is an extension
of the standard 3KP and thus the solutions obtained by
3BKP-M and 3BKP-U as valid for 3KP. Thus, in Table
I we compare 3BKP-M and 3BKP-U with the results
obtained by HEP , heuristic by Egeblad and Pisinger
on their instances for 3KP. The computational times
have been fixed to 120 seconds for HEP , 200 seconds
for 3BKP-M and 5 seconds for 3BKP-U. 3BKP-M is

solved by means of Gurobi 4.0 [20], while 3BKP-U is
implemented in C++. For HEP the results have been
given by Egeblad and Pisinger.

The meaning of the columns is the following:
• Columns 1-4. The columns give the instance name

defined in [13], the number of items, the item size
geometry and the item generation type.

• Column 5. The objective function of the upper
bound 1D.

• Columns 6-9. The objective function of the best
solution found by HEP , the Model 3BKP-M, our
heuristic 3BKP-U with and without the balancing
constraints activated.

• Columns 10-14. The percentage gap between the
upper bound upper bound 1D and objective function
of the best solution found by HEP , the Model
3BKP-M, our heuristic 3BKP-U with and without
the balancing constraints activated. In the case of
3BKP-U with balancing constraints, we consider the
weights of Set1.

The computational times are not reported, being fixed for
each method to 120 seconds for HEP , 200 seconds for
3BKP-M and 5 seconds for 3BKP-U. From the results
we can notice how the model is not competitive, with a
gap almost doubled than HEP . However, the model is
much more flexible than the heuristics, making possible
to easily introduce additional constraints like fixed posi-
tions for the items, forbidden rotations and precedence
constraints in items loading. Moreover, giving to the
model a time limit equal to 1000 seconds, the gap can be
reduced, even if it is still about 10% more than HEP . If
we compare HEP with 3BKP-U with the balancing con-
straints activated, we can notice how the results of 3BKP-
U are about 3% worst than HEP . However, this gap is
given by the balancing constraints. In fact, if we remove
the balancing constraints we obtain a mean gap of 16%,
which is about 2% less than Egeblad and Pisinger results.
These results are more impressive if we consider that
3BKP-U require a computational time which is about
2 order of magnitude less than HEP . We also tried to
increase the computational time of 3BKP-U in order to
obtain better results, but the computational experience
show that the increase of efficacy is negligible.

VI. CONCLUSIONS

In this paper, we introduced the Three-Dimensional
Knapsack Problem with Balancing Constraints Prob-
lem, the extension of the standard Three-Dimensional
Knapsack Problem Problem (3KP) where additional con-
straints related to the Center of Mass of the three-
dimensional packing are given. A MIP formulation of
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Instance n IT Geom IT Gen 1D HEP Model 3BKP-U 3BKP-U HEP Model 3BKP-U 3BKP-U
UNB UNB

ep3d-20-C-C-50 20 C C 1026348 633672 633672 633672 633672 7.0 7.0 7.0 7.0
ep3d-20-C-C-90 20 C C 1834340 916241 916241 916241 916241 0.0 0.0 0.0 0.0
ep3d-20-C-R-50 20 C R 2188245 1492413 1492413 1492413 1492413 0.0 0.0 0.0 0.0
ep3d-20-C-R-90 20 C R 3925057 2497691 2497691 2449089 2497691 0.0 0.0 1.9 0.0
ep3d-20-D-C-50 20 D C 395916 239532 316492 315964 315964 24.3 0.0 0.2 0.2
ep3d-20-D-C-90 20 D C 718692 468112 559756 526480 526480 34.9 22.1 26.7 26.7
ep3d-20-D-R-50 20 D R 240621 195937 206026 214227 214227 18.6 14.4 11.0 11.0
ep3d-20-D-R-90 20 D R 414188 318848 368476 335123 335123 23.0 11.0 19.1 19.1
ep3d-20-F-C-50 20 F C 2395087 1900250 1900250 1900250 1900250 20.7 20.7 20.7 20.7
ep3d-20-F-C-90 20 F C 4304020 2989393 2510887 3118132 3118132 30.5 41.7 27.6 27.6
ep3d-20-F-R-50 20 F R 2252037 1563997 1698795 1800399 1800399 30.5 24.6 20.1 20.1
ep3d-20-F-R-90 20 F R 4099982 2918002 2353072 3232580 3232580 28.8 42.6 21.2 21.2
ep3d-20-L-C-50 20 L C 1064487 834335 941069 891283 891283 21.6 11.6 16.3 16.3
ep3d-20-L-C-90 20 L C 1894489 1589303 1546821 1619190 1619190 16.1 18.4 14.5 14.5
ep3d-20-L-R-50 20 L R 718561 569900 633463 626381 626381 20.7 11.8 12.8 12.8
ep3d-20-L-R-90 20 L R 1282710 1051084 1114602 1056699 1056699 17.9 12.9 17.5 17.5
ep3d-20-U-C-50 20 U C 4495440 3088676 2796072 3127252 3127252 31.3 37.8 30.4 30.4
ep3d-20-U-C-90 20 U C 8067424 5360280 4289980 6074000 6074000 33.5 46.7 24.6 24.6
ep3d-20-U-R-50 20 U R 4413077 3509748 2677316 3087569 3509748 20.5 39.3 30.0 20.5
ep3d-20-U-R-90 20 U R 8041072 6921250 4156121 6638762 6921250 13.9 48.3 17.4 13.9
ep3d-40-C-C-50 40 C C 2065540 1265664 1265664 1265664 1265664 38.7 38.7 38.7 38.7
ep3d-40-C-C-90 40 C C 3652448 2828160 2335561 2717385 2828160 21.8 35.4 24.8 21.8
ep3d-40-C-R-50 40 C R 4102972 3002269 2503936 3008658 3008658 26.8 39.0 26.7 26.7
ep3d-40-C-R-90 40 C R 7335602 5972946 3498247 4900577 5972946 4.1 43.8 21.3 4.1
ep3d-40-D-C-50 40 D C 788124 539040 580512 630996 630996 31.6 26.3 19.9 19.9
ep3d-40-D-C-90 40 D C 1423896 1126300 1032016 1124788 1126300 20.9 27.5 21.0 20.9
ep3d-40-D-R-50 40 D R 399894 349470 248518 349152 349470 12.6 37.9 12.7 12.6
ep3d-40-D-R-90 40 D R 728248 639819 510962 612487 639819 12.1 29.8 15.9 12.1
ep3d-40-F-C-50 40 F C 4816926 3590244 2596874 3274502 3590244 25.5 46.1 32.0 25.5
ep3d-40-F-C-90 40 F C 8664122 6435962 4039655 5760960 6435962 25.7 53.4 33.5 25.7
ep3d-40-F-R-50 40 F R 4518343 3477469 2623783 3644680 3644680 23.0 41.9 19.3 19.3
ep3d-40-F-R-90 40 F R 8199224 7336067 3560051 6386094 7336067 10.5 56.6 22.1 10.5
ep3d-40-L-C-50 40 L C 2127316 1675122 1410197 1760700 1760700 21.3 33.7 17.2 17.2
ep3d-40-L-C-90 40 L C 3819412 2943657 2054950 3032364 3032364 22.9 46.2 20.6 20.6
ep3d-40-L-R-50 40 L R 1784686 1609648 1067546 1567893 1609648 9.8 40.2 12.1 9.8
ep3d-40-L-R-90 40 L R 3224295 2699629 1722617 2689260 2699629 16.3 46.6 16.6 16.3
ep3d-40-U-C-50 40 U C 8988536 7008136 4317064 7355808 7355808 22.0 52.0 18.2 18.2
ep3d-40-U-C-90 40 U C 16241380 14065676 5580692 10819676 14065676 13.4 65.6 33.4 13.4
ep3d-40-U-R-50 40 U R 8666294 7766238 4418573 7538465 7766238 10.4 49.0 13.0 10.4
ep3d-40-U-R-90 40 U R 15531980 13077284 6217878 11120608 13077284 15.8 60.0 28.4 15.8
ep3d-60-C-C-50 60 C C 3063219 1504980 1370916 1504980 1504980 50.9 55.2 50.9 50.9
ep3d-60-C-C-90 60 C C 5517671 4475024 2590702 3892171 4475024 18.9 53.0 29.5 18.9
ep3d-60-C-R-50 60 C R 6493464 5695120 2916398 4435949 5695120 12.3 55.1 31.7 12.3
ep3d-60-C-R-90 60 C R 11675188 10209801 4213641 8729652 10209801 12.5 63.9 25.2 12.5
ep3d-60-D-C-50 60 D C 1200408 1057032 801200 954856 1057032 11.9 33.3 20.5 11.9
ep3d-60-D-C-90 60 D C 2143544 1843584 1440492 1488020 1843584 14.0 32.8 30.6 14.0
ep3d-60-D-R-50 60 D R 538113 484363 323947 502275 502275 10.0 39.8 6.7 6.7
ep3d-60-D-R-90 60 D R 966582 861655 433736 848299 861655 10.9 55.1 12.2 10.9
ep3d-60-F-C-50 60 F C 7193700 6257697 3700025 5565875 6257697 13.0 48.6 22.6 13.0
ep3d-60-F-C-90 60 F C 12913715 10412682 3714761 8298024 10412682 19.4 71.2 35.7 19.4
ep3d-60-F-R-50 60 F R 6780100 6146420 3193484 5484876 6146420 9.3 52.9 19.1 9.3
ep3d-60-F-R-90 60 F R 12301636 10866326 4154808 8884312 10866326 11.7 66.2 27.8 11.7
ep3d-60-L-C-50 60 L C 3211612 2327139 1708786 2656622 2656622 27.5 46.8 17.3 17.3
ep3d-60-L-C-90 60 L C 5736894 4832080 2773026 4422760 4832080 15.8 51.7 22.9 15.8
ep3d-60-L-R-50 60 L R 2391507 2042317 1157278 2158105 2158105 14.6 51.6 9.8 9.8
ep3d-60-L-R-90 60 L R 4304649 3872594 1748761 3568203 3872594 10.0 59.4 17.1 10.0
ep3d-60-U-C-50 60 U C 13508800 12033592 4939888 10782744 12033592 10.9 63.4 20.2 10.9
ep3d-60-U-C-90 60 U C 24342664 19787768 3868824 14683564 19787768 18.7 84.1 39.7 18.7
ep3d-60-U-R-50 60 U R 12097660 10857656 5207450 9952696 10857656 10.2 57.0 17.7 10.2
ep3d-60-U-R-90 60 U R 21893096 19304585 4374061 14216597 19304585 11.8 80.0 35.1 11.8

Mean 18.2 40.0 21.0 16.0

TABLE I
3KP: RESULTS OF 3BKP-M AND 3BKP-U WITHOUT BALANCING CONSTRAINTS COMPARED TO HEP .
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the problem as well as an efficient and accurate heuristic
method are presented. Extensive computational results
showed how the MIP model is able to find better bounds
than other relaxations and the heuristic method is able
to efficiently solve both instances explicitly designed
for 3BKP, as well as to be competitive with methods
explicitly designed for solving 3KP. Presently, we are
extending the test instances in order to give a better
insight of the relationship between solution quality and
balancing constraints tightness.
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