The three-dimensional knapsack problem with balancing constraints

Original
The three-dimensional knapsack problem with balancing constraints / Baldi, MAURO MARIA; Perboli, Guido; Tadei, Roberto. - In: APPLIED MATHEMATICS AND COMPUTATION. - ISSN 0096-3003. - STAMPA. - 218:19(2012), pp. 9802-9818. [10.1016/j.amc.2012.03.052]

Availability:
This version is available at: 11583/2460949 since:

Publisher:
Elsevier

Published
DOI:10.1016/j.amc.2012.03.052

Terms of use:
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
The Three-Dimensional Knapsack Problem with Balancing Constraints

Mauro Baldi\(^a\), Guido Perboli\(^a,b,\ast\), Roberto Tadei\(^a\)

\(^a\)Politecnico di Torino, Turin, Italy
\(^b\)CIRRELT, Montreal, Canada

Abstract

In this paper we introduce a new Packing problem, the Three-Dimensional Knapsack Problem with Balancing Constraints (3BKP), the extension of the Three-Dimensional Knapsack Problem (3KP) where additional constraints related to the packing center of mass are given. The 3BKP consists in orthogonally packing a subset of three-dimensional weighted items into a knapsack in order to maximize the total profit of the loaded items. The items must not overlap and the packing center of mass must lie into a predefined boxed domain inside the knapsack. We assume that items can be rotated. We give a MIP model for the problem, upper bounds and an efficient heuristic to solve large size instances.

The computational results show that the MIP model cannot find optimal solutions, except for small size instances, but it can be used to calculate upper and lower bounds. It is shown that our heuristic outperforms the solution quality both of the MIP model and the heuristics available in the literature explicitly designed to solve 3KP.

Keywords: 3D Knapsack, load balancing, MIP model, heuristic

1. Introduction

A major challenge in the loading problem is taking into account load balancing constraints. These kind of constraints arise in many practical applications such as aircraft loading [1], space cargo loading [2], and maritime transportation [3]. The balancing issue is extremely important in some very risky applications, e.g. space cargo loading, but it is of great interest also in other applications, e.g. air and maritime cargo loading, where safety and cost of loading issues must be considered. From the cost viewpoint, it has been shown (Mongeau and Bés [4]) that minor displacements from an ideal center of mass can result in a significant increasing of fuel consumption for aircrafts and ships. Despite its importance, the issue of the balance loading has not been deeply studied. This is mainly due to the difficulty of extending exact and heuristic methods developed for the multi-dimensional packing to the balanced case. In fact, most of these methods use geometric properties in order to reduce the computational effort and these properties do not hold anymore when the balancing constraints are considered.

The aim of this paper is threefold. First, we introduce a new Packing problem, the Three-Dimensional Knapsack Problem with Balancing Constraints, the extension of the Three-Dimensional Knapsack Problem (3KP) where additional constraints related to the packing center of mass are given.

Second, we give a MIP model for the problem. Computational experience shows that the model, except for small size instances, cannot solve to optimality the problem. Nevertheless, it can be used to calculate upper and lower bounds.

Finally, we introduce 3BKP-H, a new heuristic which generalizes the existing heuristic UniPack, developed for multi-dimensional Packing (Crainic et al. [5] and Perboli et al. [6]), and the Extreme Point rule (Crainic et al. [7]) for the items accommodation, in order to cope with the center of mass constraints.

We want to point out that balancing conditions are not equivalent to stability conditions. In particular, balancing conditions explicitly keep the packing center of mass into account, i.e. it must lie within a given three dimensional...
domain. Stability conditions are related to the definition of indices related to the center of mass, but do not explicitly consider it (see [3] for further details). The most popular stability conditions are related to the supporting surface (i.e. the percentage of area on which an item lays down) and the number of items making up the supporting surface itself. The latter is related to the geometrical stability of the item and is a measure of the bottom surface which prevents the item to fall down. Another condition is related to the number of supporting items. In fact, practitioners prefer that the supporting surface is made by more than one item, in order to avoid that the movement of a single item can cause the upper item to collapse. Another index of stability (see, for instance, [8]) is given by the maximum weight allowed along the vertical axis. This index is useful to take into account the fragility of certain items.

New test instances are introduced and used to derive extensive computational results. It is shown that our heuristic outperforms the solution quality both of the MIP model and the heuristics available in the literature which are explicitly designed to solve 3KP.

The remainder of the paper is organized as follows. In section 2 we introduce the problem and the MIP model. In section 3 a state of the art is presented by considering 3D Packing problems, 3D Knapsack problems and, eventually, 3D Knapsack problems with balancing constraints. Section 4 is devoted to exact methods to solve the problem and to derive upper and lower bounds. Section 5 introduces our heuristic 3BKP-H. In section 6 extensive computational results are given. Finally, the conclusions of our work are reported in section 7.

2. Problem description and MIP model

The 3BKP is defined as follows: given a knapsack K with size W (width), D (depth), and H (height), and a set of items $J = \{1, ..., n\}$ with profit p_j, size w_j (width), d_j (depth), and h_j (height), and mass m_j, we want to assign a subset of items $J' \subseteq J$ to the knapsack K such that J' is a feasible loading for the knapsack itself, and the total profit of the loaded items is maximum. We denote k the cardinality of J', i.e. the number of loaded items. Feasibility requires that loaded items do not overlap and the overall center of mass position is inside a given three-dimensional domain. For three-dimensional domain we mean any three-dimensional connected set of points within the knapsack. In this paper we treat parallelepiped domains, given by the following cartesian product: $[L^1, U^1] \times [L^2, U^2] \times [L^3, U^3]$, where, as we will show in Section 2.1, L^δ and U^δ are the coordinates of the vertices of the parallelepiped along dimension δ. Figure 1 shows an example of a three-dimensional domain with its projections on the (x, y), (x, z), and (y, z) plans. Following Wäscher et al. classification [9], 3BKP is a Three-Dimensional Single Large Object Placement Problem (3D-SLOPP) with balancing constraints (3DB-SLOPP).

Furthermore the following assumptions are made:

- the items and the knapsack have parallelepiped shape
- the origin of the knapsack and of each item is located at their own bottom-left-back corner (see Figure 2)
- the knapsack is located in the first octant of the 3D Cartesian coordinate system, with its origin placed in position $(0, 0, 0)$ (see Figure 2)
• items can rotate so that each item side is parallel to one axis

• knapsack and items walls have negligible thickness; this means that an item can be placed at the very end of another item. Negligible thickness of the knapsack walls means that the whole knapsack volume WDH can be exploited. If, for instance, the knapsack walls had thickness ϵ, then the available volume would be $(W - 2\epsilon)(D - 2\epsilon)(H - 2\epsilon)$

• knapsack and items size is assumed to be a non-negative integer.

Considering the accommodated items, the value of the overall profit P can be calculated as:

$$P = \sum_{j \in J} p_j. \tag{1}$$

Note that high or low values of P do not necessarily correspond to high or low knapsack volume exploitations because, in principle, there is no correlation among volumes and profits of items. This also mean that a high profit item not necessarily has a high volume. There can be items with small volumes but high profits.

We define \vec{r}_{CM}, the radius vector (position) of the center of mass of any accommodated item j, and $M = \sum_{j \in J} m_j$ the overall mass of the accommodated items. The packing center of mass position is given by the average of the loaded items positions weighted by their masses m_j:

$$\vec{r}_{CM} = \frac{\sum_{j \in J} \vec{r}_{CM_j} m_j}{M}. \tag{2}$$

Ideally, we would like the packing center of mass lie at a given point. This is impossible in practice and so we relax this condition requiring the overall center of mass to be within a given three dimensional domain. If, as a measure of solution quality, we used the distance between the packing center of mass and the ideal center of mass, then, all the solutions with their center of mass lying on a sphere with center the ideal center of mass would be equivalent. Nevertheless, in real life situations, packings with their center of mass toward the bottom of the knapsack are more desirable. To take this issue into account we use the unbalancing index U, which relies on the standard deviation, as figure of merit for evaluating solutions quality.

The unbalancing index U is then a measure of the dispersion of the actual packing center of mass \vec{r}_{CM} with respect to an ideal position \vec{r}_{CM}'.

To define U, we first consider the standard deviation of a set of values x_j, with $j \in J'$ and arithmetic mean \bar{x}, defined as follows:

$$\sigma_x = \sqrt{\frac{\sum_{j \in J'} (x_j - \bar{x})^2}{k}}. \tag{3}$$

The formula for the unbalancing index U is obtained by plugging in (3) the radius vectors of the centers of mass. Moreover, since we are dealing with vectors, the modulus of their difference must be considered:

$$U = \sqrt{\frac{\sum_{j \in J} |\vec{r}_{CM_j} - \vec{r}_{CM}'|^2}{k}}. \tag{4}$$

More details can be found in [2].

2.1. The model

Let us define:

• J: the set of items, with cardinality n and associated indexes i and j

• Δ: the set of dimensions $\{1, 2, 3\}$, with associated index δ

• R: the set of rotations, with cardinality 6 and associated index r
\(s^\delta_{ir} \): the size of item \(i \) along dimension \(\delta \) when the item is rotated with rotation \(r \)

\(S^\delta \): the knapsack size along dimension \(\delta \); in particular \((S^1, S^2, S^3) = (W, D, H)\)

\(L^\delta, U^\delta \): lower and upper bounds along dimension \(\delta \) which limit the domain where the packing center of mass must lie within

\(\gamma^\delta_{ir} \): the coordinate of the center of mass of item \(i \) along dimension \(\delta \) when the item is rotated with rotation \(r \). This coordinate is calculated with respect to the bottom-left-back point of the item

\(\chi^\delta_i \): the coordinate of the bottom-left-back point of item \(i \) along dimension \(\delta \)

\(t_i \): a binary variable which assumes value 1 if item \(i \) is loaded into the knapsack, 0 otherwise

\(b^\delta_{ij} \): a binary variable which assumes value 1 if item \(i \) comes before item \(j \) along dimension \(\delta \), 0 otherwise. Item \(i \) comes before item \(j \) along dimension \(\delta \) if \(\chi^\delta_i < \chi^\delta_j \). Since items cannot overlap, we can be more restrictive on such inequation by imposing that \(\chi^\delta_i + s^\delta_{ir} \leq \chi^\delta_j \) if item \(i \) is rotated with rotation \(r \)

\(\rho_{ir} \): a binary variable which assumes value 1 if item \(i \) is rotated with rotation \(r \), 0 otherwise.

Finally, the notation \(i < j \) means that index \(i \) precedes index \(j \) in the given items from 1 to \(n \).

The model for the Three-Dimensional Knapsack Problem with Balancing Constraints (3BKP-M) can then be formulated as follows:

\[
\max \sum_{j \in J} p_j t_j \tag{5}
\]
\[
\text{s.t.} \quad \sum_{j \in J} w_j d_j h_j t_j \leq WDH \tag{6}
\]
\[
\sum_{\delta \in \Delta} (b^\delta_{ij} + b^\delta_{ji}) \geq t_i + t_j - 1, \quad i < j, \ i \in J, \ j \in J \tag{7}
\]
\[
\chi^\delta_i + \sum_{r \in R} s^\delta_{ir} \rho_{ir} \leq S^\delta \quad i \in J, \ \delta \in \Delta \tag{8}
\]
\[
\chi^\delta_j + \sum_{r \in R} s^\delta_{jr} \rho_{ir} \leq \chi^\delta_i + M(1 - b^\delta_{ij}) \quad i < j, \ i \in J, \ j \in J, \ \delta \in \Delta \tag{9}
\]
\[
\chi^\delta_i + \sum_{r \in R} s^\delta_{ir} \rho_{ir} \leq \chi^\delta_j + M(1 - b^\delta_{ji}) \quad i < j, \ i \in J, \ j \in J, \ \delta \in \Delta \tag{10}
\]
\[
\chi^\delta_i \leq M t_i \quad i \in J, \ \delta \in \Delta \tag{11}
\]
be discussed in detail in Section 5. Some applications work with a different geometry. One of the most studied is the 3BKP: multidimensional packing and balancing constraints.

The objective function (5) gives the total profit of the selected items. Constraint (6) expresses the capacity constraints, i.e. the sum of the volumes of the selected items must not exceed the knapsack volume. It is redundant with constraints (8), but we keep it because it helps the solver providing better continuous relaxations in some instances. Constraints (7) ensures that two packed items do not overlap. Constraints (8) state that items must lie inside the knapsack, i.e. for each dimension \(\delta \) the sum of the coordinate of the bottom-left point with the dimension of the item must give a value less or equal than the size of the knapsack along dimension \(\delta \). Constraints (9) state that, if item \(i \) comes before item \(j \), then the sum of the position of item \(i \) plus its size must be less or equal than the position value of item \(j \) along dimension \(\delta \). Constraints (10) have the same meaning, this time with item \(j \) coming before item \(i \). Note that constraints (7) - (10) are taken from [10, 11, 12]. Constraints (11) express that, if item \(i \) is not selected, then its placement coordinates must be zero. A similar meaning have constraints (12) and (13) that state that, if an item is not selected, then it cannot be placed before another one. Constraints (14) and (15) ensure balancing conditions and can be derived from the center of mass definition (2). Note, in fact, that the overall center of mass position along dimension \(\delta \) is given by

\[
r^\delta_{CM} = \frac{\sum_{i \in J} m_i \chi_i^\delta + \sum_{i \in J} \sum_{r \in R} m_i y^\delta_{ir} p_{ir}}{\sum_{i \in J} m_i}.
\]

Since balancing constraints imply that the overall center of mass along dimension \(\delta \) must lie within \(L^\delta \) and \(U^\delta \), i.e. \(L^\delta \leq r^\delta_{CM} \leq U^\delta \) then constraints (14) and (15) hold. Equations (16) imply that each item must be rotated according exactly one of the six available rotations. Finally, the involved variables domains follow.

3. State of the art

The 3BKP is a problem belonging to the Cutting and Packing (C&P) family. Wäscher et al. [9] have recently published a classification for C&P problems which extends an older one due to Dyckhoff [13]. According to Wäscher et al. classification, the 3BKP is a Three-Dimensional Single Large Object Placement Problem (3D-SLOPP) with balancing constraints (3DB-SLOPP) [9]. In the following we present the literature along two main components of 3BKP: multidimensional packing and balancing constraints.

A first attempt to model multidimensional packing was due to Gilmore and Gomory [14] dealing with column generation. Baldacci and Boschetti [15] developed a Branch and Cut for solving the problem. Other contributions come from Beasley [16], Chung et al. [17], Berkey and Wang [18], and Fekete and Schepers [19].

Martello et al. [20] introduced the concept of Corner Points. Extensions of their work can be found in den Boef et al. [21], Martello et al. [22], and Crainic et al. [7]. In particular, Crainic et al. [7] introduced an extension of the Corner Points, the Extreme Points. Being the basis of the heuristic introduced in this paper, the Extreme Points will be discussed in detail in Section 5. Some applications work with a different geometry. One of the most studied is the
case where the items have a spherical shape rather than a parallelepiped one. That is the case of the sphere packing. Musès [23] tackles the problem in multiple dimensions.

The specific literature on multidimensional Knapsack packing problems is huge (see [24] for a recent survey). In the following we will give only some on the main references. Papers tackling this problem are Hadjiconstantinou and Christofides [25], Boschetti et al. [26], George and Robinson [27], and Fekete and Schepers [28, 29]. Other contributions are due to Caprara and Monaci [30] and Clautiaux et al. [31] which deal with exact approaches to the multidimensional knapsack problems. Multidimensional Knapsack problems can be further extended to the case of multiple objective functions. An interesting work is due to Mavrotas et al. [32]. To the best of our knowledge the latest contribution to 3D Knapsack problems comes from Egeblad and Pisinger [33], where the authors propose an exact model and heuristics for 2D and 3D Knapsack problems. Unfortunately, their model is useless to derive both lower and upper bounds, whilst their heuristic manages instances up to 60 items for the 3D case.

To the authors knowledge there are only few papers on packing problems dealing with non-linear or balancing constraints. Various approaches, including artificial intelligence or simulated annealing have been considered to tackle different cargo issues (see [34], [35], [2], and [36]) and are related to aircraft loading problems. A MIP model for the 3BKP can be found in Fasano [37], where additional equations to meet balancing conditions are taken from Williams [38]. MartinVega [39] focused his research on splitting the set of items into groups to be assigned to different airplanes, without considering the packing problem. Cochard and Yost [40] developed a heuristic that first solves the packing problem and then tries to balance the airplane by swapping groups of items. The most relevant works on packing with balancing constraints are the ones led by Amiouny et al. [41] and Mathur [42]. In both papers the authors investigate on the accommodation of preloaded containers in fixed positions, with balancing constraints to be satisfied in one dimension only. Colaneri et al. [2] presented a MIP-based heuristic to solve a specific 3D packing problem related to the space cargo loading, but the specific packing constraints make hard to use their model for the item accommodation in 3BKP. An application more similar to 3BKP can be found in Kaluzny and Shaw [1], where a variant of the 3D packing problem is introduced, but the balancing is not considered as a constraint. In fact, the authors use the balancing in the objective function, minimizing its deviation from a specific point. Moreover, they solved their instances by means of a MIP model, which makes their approach impracticable even with 20 items.

4. Exact methods and upper bounds

In the following, we will discuss why it is not possible to extend the available exact methods for multi-dimensional packing problems to 3BKP and how upper bounds for this problem can be computed.

Most of the exact methods which are effective for standard multi-dimensional packing problems try to reduce the number of the possible locations of items to be added to an existing packing, as for the Corner Points by Martello et al. [20], or the number of possible packings by means of an implicit representation of classes of equivalent packings, as in the Packing Class approach by Fekete and Schepers [28]. Unfortunately, both approaches cannot be extended to the balanced case. While Corner Points push the items towards a corner of the knapsack, which clearly makes impossible to represent some optimal solutions of the balanced case, the representation used in Packing Class loses its main advantage of collapsing several (potentially exponential) packings in the same Packing Class when balancing constraints are present. In fact, Packing Class works on the idea that, given two items which are placed in a packing, one after the other, by swapping their mutual order the packing volume usage does not change. Unfortunately, whilst this is true from a geometrical point of view, it does not work from a balancing point of view.

Thus, in order to solve to optimality the 3BKP, the only current available approach is through the MIP model 3BKP-M, given by (5)-(20). 3BKP-M, even if implemented by the most efficient commercial solvers, is not able to solve instances with more than 20 items. This is mainly due to the poor quality of its continuous relaxation. The 3BKP-M relaxation could be strengthened by means of cut generation techniques as in [1]. Unfortunately, our computational experience has shown that these cuts are not effective when the number of items becomes larger than 20. Nevertheless, the MIP model can be profitably used to calculate upper and lower bounds for 3BKP, as we will show in Section 6.

A first upper bound, named UB_{1D}, can be calculated by solving a one-dimensional knapsack problem, i.e. the model 3BKP-M where the constraints (7)-(16) are ignored. The relaxed problem becomes a one-dimensional knapsack problem where the knapsack maximum weight is WDH and the weight of each item j is $w_jd_jh_j$. This approach has been used in literature by Fekete and Schepers [19], Caprara and Monaci [30] and Balducci and Boschetti [15].
In principle, this bound could be strengthened by means of dual feasible functions ([28, 15]), which can be applied both to the oriented and non-oriented case. Unfortunately, the test we performed on the model shows that known dual feasible functions are not effective when the balancing constraints hold.

A second upper bound, named UB_{RM}, could be obtained from the linear relaxation of model (5)-(20). Previous tests on similar models for the unbalanced case show that this bound has the same quality of UB_{1D} ([37, 33]). In the following UB_{1D} will then be used.

5. The heuristic

It is trivial to show that the 3BKP is NP-Hard, being an extension of the Three-Dimensional Knapsack Problem, which is NP-Hard [33]. In the following, we present 3BKP-H, an efficient heuristic conceived to solve 3BKP, which is an extension of the UniPack framework by Crainic et al. [5] and Perboli et al. [6]. As stated by Fasano [37], the MIP model is hard to solve using standard techniques, while we showed in Section 4 how other properties used to compute exact solutions for standard multi-dimensional packing problems are not valid for the 3BKP. Thus, that justifies a heuristic approach to solve the 3BKP.

UniPack is a heuristic able to solve many packing problems which differ in the objective function and constraints. It is based on the concept of Extreme Points (EPs), introduced by Crainic et al. [7]. These are a further extension of the Corner Points introduced by Martello et al. [20].

Corner Points are the non-dominated locations where an item can be placed into an existing packing. In two dimensions, Corner Points are defined where the envelope of the items in the knapsack changes from vertical to horizontal (the green dots in Figure 3).

Heuristics using Corner Points can be inefficient in terms of knapsack utilization. Consider, for example, the packing depicted in Figure 3 and item 11. According to the Corner Points definition, one can add the item on any of the green dots. It is clear, however, that item 11 could also be placed into one of the shaded regions, which the Corner Points do not allow to exploit.

Extreme Points (EPs) provide the means to exploit the free space defined inside a packing by the shapes of the items already in the knapsack. Figure 4 illustrates EPs in 2D and 3D packings.

Figure 3: Corner Points in 2D and 3D packings

Figure 4: Extreme Points in 2D and 3D packings

7
The basic idea of the EPs is that when an item j with sizes (w_j, d_j, h_j) is added to a given packing and is placed with its left-back-down corner in position (x_j, y_j, z_j), it generates a series of new potential points, the EPs, where additional items can be accommodated. The new EPs are generated by projecting the points with coordinates $(x_j + w_j, y_j, z_j)$, $(x_j, y_j + d_j, z_j)$, and $(x_j, y_j, z_j + h_j)$ on the orthogonal axes of the knapsack. Figure 5 illustrates the concept.

Figure 5: Extreme Points (the triangles) defined by an item

Beside the saving of space by applying Extreme Points rather than Corner Points, another advantage is the time complexity to find an extreme point set. As proved in Crainic et al. [7], the overall computational effort is $O(n)$- where n is the number of items- whilst Corner Points require a $O(n^2)$ complexity.

The general scheme of the heuristic 3BKP-H is depicted in Figure 6.

![Figure 6: General scheme of 3BKP-H](image)

The core of 3BKP-H is an accommodation procedure, the EP-based constructive heuristic, named EP-BPH. 3BKP-H is also used to build the initial solution by applying several sorting criteria to the items and retaining the best one as the initial solution. In the following, we refer to this composite heuristic as PCH (Packing Constructive Heuristic).

We assign a score to each item, thus specifying the order in which items are to be considered by the accommodation heuristic. The score definition is problem specific.

Scores are thus first initialized through the Score Initialization procedure, and then are dynamically modified by means of the Score Update and Long-term Score Reinitialization procedures. Score Update proceeds through small changes, aiming to adjust the scores used to sort the items at iteration k of 3BKP-H according to the quality of the solution built at iteration $k - 1$. Long-term Score Reinitialization incorporates long-term decisions, as long-term memory structures, and proceeds through larger score modifications in the scores in order to avoid cycling on the same solutions and explore new regions of the solution space.

Score computation and update depend upon a number of parameters. We aim to keep this number as lower as possible to simplify their adjustment during computation. 3BKP-H provides a dynamically-adjusting parameter procedure denoted Parameter Update (see section 5.3).

The main steps on 3BKP-H are the following:
• Build an initial solution of the packing problem and set the best-solution BS equal to the initial solution. We use the PCH heuristic

• Scoring Phase
 – Initialize the score of the items: the Score Initialization procedure
 – While Stopping Conditions are not encountered, repeat the following steps:
 * Sort the items according to their scores and apply a constructive heuristic to the sorted list, obtaining a new solution CS. We use the EP-BPH procedure
 * If a given number of successive non-improving iterations is reached, reinitialize the scoring using the Long-term Score Reinitialization procedure; otherwise, update the scores using the Score Update procedure according to the CS solution
 * If CS is better than BS, then set BS to CS
 * The Parameter Update procedure then internally adjusts the parameters.

We now present the constructive heuristic PCH and the initial solution procedure EP-BPH we propose for Non-Guillotine Orthogonal Higher-Dimensional Packing problems. The procedures are based on the Best Fit Decreasing (BFD) idea and generalize the heuristic presented in Crainic et al. [7]. An interesting work on this topic is the one of Burke et al. [43, 44].

Following an initial sorting of the items by non-increasing order of their volumes, the BFD constructive heuristic for 1D Bin Packing problem tries to load each item into the best bin. The latter is defined as the bin which, after loading the item, has the minimum free volume, defined as the bin volume minus the sum of the volumes of the items it contains. If the item cannot be accommodated into the existing bins, a new bin is created. Despite its simplicity, the BFD heuristic offers good performances for 1D Bin Packing problems. Similar heuristics exist for other packing problems, e.g. Knapsack and Strip Packing. Unfortunately, extending these heuristics to a general constructive heuristics for Non-Guillotine Orthogonal Higher-Dimensional Packing problems is a non-trivial task. On the one hand, while in 1D cases the ordering is done considering a unique attribute characterizing both items and bins, i.e. their volume or profit, more choices exist in the multi-dimensional context. One may thus consider sorting items according to their width, depth, or height, as well as, derived from these attributes, according to their volume or the areas of their different faces. Consequently, best bin definition in the BFD heuristic is not unique. On the other hand, whilst items accommodation does not need to be taken into account in 1D problems, a 2D or 3D packing may significantly vary according to how items are placed inside the bins, even when their ordering and the rule for selecting the best bin are not changed. Moreover, according to the packing problem, the number of available bins may be unlimited or fixed and all the items or just a subset of them must be loaded.

We propose a new constructive heuristic based on BFD ideas, denoted Extreme-Point Best Positioning Heuristic (EP-BPH), which places the items into bins using the Extreme Points concept. As indicated earlier, the Extreme Points define the points where one may place an item to be added to an existing packing.

The main steps of the algorithm are as follows:

• Order the items according to a sorting criterion
• For each item in the resulting sequence and each rotation r, find the best EP of the best available bin where to load the item
• If such a bin exists, load the item into it on the given EP
• If the item cannot be loaded in any existing bin, a new bin is created if the total number of bins does not exceed the given maximum, otherwise the item is discarded

Changing the maximum number of available bins adapts EP-BPH to different packing problems. For example, the number of bins is infinite in the Bin Packing problem, but it is equal to 1 in the 3BKP problem. EP-BPH behavior depends on how the best EP is selected and how the items are sorted. Computational experiments have shown that,
from the EP selection point of view, the best trade off between solution quality and computational results is given by the Residual Space rule (see Crainic et al. [7]).

The Residual Space (RS) measures the free space available around an EP. Roughly speaking, the RS of an EP is the distance, along each axis, from the bin edge or the nearest item. The nearest item can be different on each axis. More precisely, when an EP is created, its Residual Space on each axis is set equal to the distance from its position to the side of the bin along that axis (Figure 7a). The algorithm puts an item on the EP that minimizes the difference between its RS and the item size:

\[f = [(RS_x^e - w_j) + (RS_y^e - d_j) + (RS_z^e - h_j)], \]

Figure 7: Example of Residual Space

To build an initial solution, we apply EP-BPH using a number of sorting criteria. The resulting PCH heuristic builds an initial solution by iteratively applying the sorting criteria and then selecting the best one.

Items may have several attributes, but from the sorting algorithm perspective, the most important ones are:

1. profit: the worth or priority of an item;
2. specific weight, sw;
3. area: for three-dimensional problems it must be meant as the item projection on the \((x, y)\) plane (see Figure 8).

Since items show more than one attribute, many ways to sort them are possible. Giving more importance to an attribute means to favor those items showing the highest values of that attribute or score. Often sorting procedure
involves more than an attribute or more than a score. Sometimes items sorted afterwards are grouped into clusters. A cluster is a set of items showing “close” values of a particular attribute or score. By “close” we mean that the values are inside a given set. Suppose, for instance, to sort the items by clustered area (see Figure 8). Let \(A_{\min}, A_{\max} \) be the extreme values of the area interval that we want to cluster. Each cluster will have a length which is the length of the global interval \(A_{\max} - A_{\min} \) times a given percentage \(\theta/100 \), with \(\theta \in [1, 100] \). The number of clusters \(n_c \) is the ratio between the overall interval length and the length of a single cluster. This ratio is \(n_c = \lceil 100/\theta \rceil \). Each cluster \(A_i(\theta) \) can then be expressed as:

\[
A_i(\theta) = [A_{\min} + (i - 1)(A_{\max} - A_{\min})\theta/100, \\
A_{\min} + i(A_{\max} - A_{\min})\theta/100]
\]

with \(i = 1, \ldots, n_c \). Note that, if we want to cluster the overall bin (basis) area, then \(A_{\min} = 0 \) and \(A_{\max} = W \times D \) and (22) becomes:

\[
A_i(\theta) = [(i - 1)WD\theta/100, \ iWD\theta/100]
\]

with \(i = 1, \ldots, n_c \). By combining the three item attributes, six different sorting criteria can be performed:

1. \(a-sw \): clustered area, sorted specific weight;
2. \(a-p \): clustered area, sorted profit;
3. \(sw-a \): clustered specific weight, sorted area;
4. \(sw-p \): clustered specific weight, sorted profit;
5. \(p-sw \): clustered profit, sorted specific weight;
6. \(p-a \): clustered profit, sorted area.

When a solution has been calculated, its corresponding objective function value is given by the following merit function:

\[
F = P - \alpha U
\]

where \(P \) is the total profit of the selected items, \(U \) is the unbalancing index given by (4), and \(\alpha \) is a nonnegative parameter. Note that (24) is equivalent to a linear combination of two issues: the total profit \(P \) and the unbalancing index \(U \). This means that, according to \(\alpha \), attention is also devoted to the balancing constraints, even before the center of mass optimization procedure. For setting the \(\alpha \) values see subsection 5.3.

5.2. Center of mass optimization

Given a three-dimensional convex domain inside the bin, the balancing procedure tries to adjust the packed items position so that the packing center of mass lies inside the domain. The heuristic just moves already packed items, therefore neither items are added or removed from the knapsack, nor the overall profit is modified by the procedure. The center of mass optimization heuristic works as follows: first it calculates the position \(\vec{r}_{CM} \) of packed items center of mass as reported in equation (2), then it moves one item after another so that \(\vec{r}_{CM} \) will move towards the desired position. Two issues arise: where to move an item and how to avoid it overlapping other items and the knapsack edges.

We want to move item \(i \) from its actual position \(\vec{r}_i = (r^1, r^2, r^3) \) to an unknown new position \(\vec{x}_i' = (r'^1, r'^2, r'^3) \) such that the overall center of mass moves from its actual position \(\vec{r}_{CM} \) to the new desired position \(\vec{r}_{CM}' \) in order to meet the balancing conditions. By (2) the current center of mass can be written as:

\[
\vec{r}_{CM} = \sum_{j \neq i} m_j \vec{r}_{CM}/M + m_i \vec{r}_{CM}/M
\]
When item i, rotated with rotation \tilde{r}, moves from \vec{r}_i to \vec{r}_i' then its new center of mass becomes \vec{r}_{CM}', while the overall center of mass is:

$$\vec{r}_{CM}' = \sum_{j \neq i} m_j \vec{r}_{CM,j}/M + m_i \vec{r}_{CM,i}/M.$$ \hspace{1cm} (26)

Subtracting (25) from (26) we have:

$$\vec{r}_CM - \vec{r}_CM = m_i (\vec{r}_{CM}' - \vec{r}_{CM})/M,$$ \hspace{1cm} (27)

which leads to the new coordinates of item i center of mass:

$$\vec{r}_{CM}' = \vec{r}_{CM} + (\vec{r}_{CM}' - \vec{r}_{CM})/m_i.$$ \hspace{1cm} (28)

Finally, the new coordinates of item i can be found as:

$$\vec{r}_i' = (\vec{r}_{CM,i}' - \gamma_{i1}, \vec{r}_{CM,i}^2 - \gamma_{i2}, \vec{r}_{CM,i}^3 - \gamma_{i3}).$$ \hspace{1cm} (29)

Unfortunately, due to overlapping issues, it is not always possible to move item i to the position \vec{r}_i'. To overcome this problem a three-dimensional convex connected domain is defined where item i can freely move without overlapping neither other items nor the bin. Actually, we define such a domain D_i as the set of allowed positions for the the origin of item i. To do so, an algorithm similar to the one used to calculate the RS of an EP in Section 5.1 is used. Once D_i has been defined, three possible scenarios may take place:

- $D_i = \{\emptyset\}$: item i cannot move
- $\vec{r}_i' \in D_i$: item i moves to \vec{r}_i' thus letting the balancing to be achieved (see Figure 9a for a two-dimensional example)
- $\vec{r}_i' \notin D_i$ and $D_i \neq \{\emptyset\}$: item i moves to an intermediate position \vec{r}_i'' defined as the point which better approximates \vec{r}_i' on each axis (see Figure 9b for a two-dimensional example)

Items movements may lead to a state that does not take gravity effects into account. That would result in faulty solutions for many real-life applications, so the algorithm simulates the force of gravity by compacting all items along the z axis towards the (x, y) plan.

The heuristic stops when one of the following three conditions does hold: the packing is balanced, no item can be moved anymore, a maximum number of iterations has been reached.

5.3. Score and parameter setting

In this subsection we show how to set the scores and parameters of the heuristic 3BKP-H.
5.3.1. Score Initialization

The idea is to use the score as a measure of the willingness to accommodate an item into the bin. Consequently, we start from the initial solution decision, and prioritize the items selected by the accommodation procedure by assigning them a higher score than the non loaded ones. Two criteria are used to define such initial scores. First, the score should reflect the profit associated to each item. Second, the gap between a loaded and a non loaded item should be small enough to guarantee the possibility of changes in the ordered list. The initial score of an item is then set to \(s_i = kp_i \) if the item has been loaded in the initial solution, and to \(s_i = p_i \) otherwise. The value of \(k \) has been experimentally set to 3.

5.3.2. Score Update

Previous experience has shown that the various sorting criteria used by the procedure for building the initial solution load into the bin a significant subset of the items making up the optimal solution. “Mistakes” usually are caused when selecting among items with similar profits, but with peculiar sizes, resulting in an underutilization of the bin. The score update focuses on a special subset of items: the less profitable items already loaded and the most profitable non loaded ones. This procedure is similar to the one proposed by Boschetti and Mingozzi [45]. The goal is to force at each iteration swaps between less profitable loaded and profitable non loaded items by changing the scores as follows:

- Find the item \(k \) loaded during the last iteration, minimizing \(\mu_i = (1 + f_i^l)p_i/(w_i d_i h_i), \) where \(f_i^l \) represents the number of iterations item \(i \) has been loaded into the bin;
- Update the score of item \(k \) to \(s_k = (1 - \alpha)s_k \), with \(\alpha \in (0, 1) \);
- Find the item \(l \) non loaded during the last iteration, maximizing \(\theta_i = p_i/(w_i d_i h_i(1 + f_i^u)), \) where \(f_i^u \) represents the number of iterations item \(i \) has not been loaded into the bin;
- Update the score of item \(l \) to \(s_l = (1 + \beta)s_l, \beta \in (0, 1) \);
- Swap the scores of items \(k \) and \(l \);
- Keep the score unchanged for all items \(i, i \neq k \) and \(i \neq l \);

where, \(\mu_i \) and \(\theta_i \) measure the willingness to accommodate an item into the bin, \(f_i^l \) and \(f_i^u \) maintain a long-term memory of the selected items to avoid always selecting from the same subset of items, and \(\alpha \) and \(\beta \) represent the percentage score decrease and increase, respectively, and are experimentally set to 0.1. This procedure ensures that at least two items are swapped at each iteration.

5.3.3. Long-term Score Reinitialization

Given the sorted list of items which built the best solution found so far, we first give a score to each item according to the same rule used in Score Initialization. A fixed number of item pairs (i.e. swaps between two items) are then randomly selected and their scores are swapped.

If the best solution found so far is unfeasible, \(\alpha = 2\alpha \) and \(\beta = 2\beta \). If the best solution is feasible, \(\alpha = \alpha/2 \) and \(\beta = \beta/2 \), if the center of mass lies into the central half of its feasibility domain, while they are unchanged otherwise.

5.3.4. Parameter Initialization and Stopping Criteria

- \(\alpha = \beta = 0.1 \);
- Long-term Score Reinitialization every 1000 iterations;
- number of item pairs: 5% of the items.

The overall process stops after 5 seconds.
6. Computational results

In this section, we analyze the behavior of the model and the heuristics in terms of solution quality and computational efficiency. As the 3BKP is introduced in this paper for the first time, we introduce in Subsection 6.1 some benchmark instances. The first two sets, namely Set1 and Set2, are obtained by extending the instances in literature for the 3KP, while the third one, Set3, extends the rules used in the previous sets in order to diversify the instances. All the tests have been performed on an Intel I7 2.8 GhZ Workstation with 4 Gb of Ram. The model has been solved by means of Gurobi 4.0 solver limited to 1 core [46]. Subsection 6.2 is devoted to compare the computational results of the MIP model and the heuristic, while subsection 6.3 shows the behavior of the developed model and heuristic compared with state-of-the-art algorithms. Being the 3BKP a new problem, we compare the model and the heuristic with the results of heuristics developed specifically for the problem which is more similar to the 3BKP, the Three-Dimensional Knapsack Problem.

6.1. Test Instances

In this section we introduce different instance sets for 3BKP. Following the tests for the 3KP, the instances cover up to items and different types of items, knapsack and weight distributions. The sets, namely Set1 and Set2, are obtained by extending the instances by Egeblad and Pisinger [33]. All instance sets can be downloaded from the web site of OR-Library [47]. In the sets Set1 and Set2, the size of the knapsack as well as the size of the items are the same and weights are considered as additional item attributes. Thus, the two sets differ for the weight generation, i.e. the weights in Set1 are generated in a smaller interval than in Set2. In order to give a better description of the instances, in the following we report the full list of the parameters used to generate the instances:

- number of items: \(n \in \{20, 40, 60\} \);
- item generation strategy: \(t \in \{C, R\} \)
 - \(C \) alias clustered, because the instance consists of only 20 items which are duplicated appropriately;
 - \(R \) alias random, because the instance consists of independently generated items;
- bin size: they are calculated such that \(W = D, H = 2W \) and the bin volume \(WDH \) is equal to a percentage \(p \) of the total volume of the items. In particular, \(p = 50\% \) for Set1 and \(p = 90\% \) for Set2;
- item attributes:
 - size: \(s_i = (w_i, d_i, h_i) \), which must belong to one among the following geometric classes (see [33]):
 - Cubes (C). The items are cubic and their sizes are defined as \(w_i \in [1, 100], d_i = w_i, h_i = w_i \);
 - Diverse (D). The sizes of the items are randomly chosen in the following ranges \(w_i \in [1, 50], d_i \in [1, 50], h_i \in [1, 50] \);
 - Long (L). The sizes of the items are randomly chosen in the following ranges \(w_i \in [1, 200/3], d_i \in [50, 100], h_i \in [1, 200/3] \);
 - Uniform (U). The sizes of the items are randomly chosen in the following ranges \(w_i \in [50, 100], d_i \in [50, 100], h_i \in [50, 100] \);
 - profit: \(p_i = 200 + w_i d_i h_i \);
 - Center of mass position: the center of mass of each item is placed in the geometrical center of the item itself, i.e. \(\bar{r}_{CM} = (w_i/2, d_i/2, h_i/2) \)
 - specific weight: \(s_{wi} \), uniformly distributed in the interval \(I_{sw} \), where the limits of the interval depend on the set:
 - Set1: \(I_{sw} = [70, 100] \)
 - Set2: \(I_{sw} = [10, 1000] \);
 - CoM domain: the domain constraints are set as \(L^\delta = [W/4, D/4, 0] \) and \(U^\delta = [3W/4, 3D/4, H/2] \). These limits are given by practical issues in maritime and air cargo applications. In particular, for the limits on \(z \), for stability reasons the requirement is usually as near as possible to 0, i.e. the bottom of the bin [1].

The combination of all the values give 120 instances, 60 for each set.
6.2. Model and Heuristic results

This section is devoted to compare the results of the different solution methods for 3BKP, 3BKP-M solved by means of a commercial solver and 3BKP-H.

As stated in Section 4, model 3BKP-M is not efficient in proving the optimality of the solutions due to the poor quality of its continuous relaxation. In our tests we used three well-know commercial solver, FICO XPress 2010, CPLEX 12.1 and Gurobi 4.0. The three solvers have been tested by using their default parameter values, setting a maximum computation time of 200 seconds and a mono-processor setting. Moreover, we tested them with their internal cut generation on and off. We do not report the detailed results of our tests, but we can say that for all solvers the best results in 200 seconds are found by setting off the internal cut generator. Moreover, the solver able to find the best solutions is Gurobi.

According to our tests, Gurobi is quite efficient in finding very good feasible solutions of the MIP model. Moreover, these solutions are found at the very first nodes of the search. On the contrary, if we consider the quality of the model relaxation, Gurobi presents comparable results with respect to XPress and CPLEX.

Table 1 compares the behaviour of UB_{1D} with the continuous relaxation of 3BKP-M. The first column reports the number of items in the instances, while the two remaining columns give the percentage gap of UB_{1D} with respect to the continuous relaxation of 3BKP-M applied to Set1 and Set2 (a positive value means that the continuous relaxation is tighter than UB_{1D}). Each cell reports the mean over the instances with the same number of items. This aggregation is justified by the fact that the number of items has been the only parameter affecting the results. The data show that the gap is large on the 20 item instances only, while it decreases rapidly with the increasing of the items. This is mainly due to constraints (9) and (10), that cluster a lot the binary variables when a continuous relaxation is applied.

Finally, Table 2 is devoted to compare the results obtained by the MIP model 3BKP-M and 3BKP-H, where the computational times have been set to 200 seconds for 3BKP-M and 5 seconds for 3BKP-H. The meaning of the columns is the following:

- Columns 1-4. The columns give the instance name defined in [33], the number of items, the item geometry class and the item generation strategy.
- Columns 5-6. The percentage gap between the solution obtained by 3BKP-H and the continuous relation of 3BKP-M in Set1 and Set2, respectively. When we proved the optimality of the solution by means of 3BKP-M, an asterisk is placed in the table.

The results show how the model performs better than the heuristic on small sized instances (20 items), while starting from 40 items the heuristic is able to give results which are about 10% better than the model and the computational effort of 3BKP-H is about two order of magnitude less than 3BKP-M. Moreover, the accuracy gap between the model and the 3BKP-H in 20 item instances can be reduced by increasing the computational time of 3BKP-H to 10 seconds.

Finally, Table 3 reports the position of the packing center of mass. The values are grouped by item geometry class. Due to the presence of different knapsack sizes and in UB_{1D} in order to uniform the results, for each class we give the position along the three axes of the center of mass as percentage with respect to the full size of the knapsack. Thus, the geometric center of the knapsack corresponds to the values 50%, 50%, 50%. According to these results, we can notice that the packing is very well balanced, with its center of mass almost in the center of the feasibility domain along x and y axes, while is in the given domain in the z axis too. This axis is quite peculiar, in fact in practical applications is very difficult to obtain a center of mass in the lower half bottom of the knapsack without losing most of the bin loading volume. In our tests, we had a mean filling ration of 76% in Set2, the most unbalanced, which raises to about 83% if we solve the instances like a standard bin loading problem, i.e. the profit of the items is the volume of the items themselves. These results are very promising, considering that in the unbalanced applications the filling ration is around 92%. Moreover, these gap is mainly due to the constraint on z. In fact, by relaxing it we can fill the bin at 87% in average.

6.3. State of the Art results

As stated in Section 3, 3BKP is introduced in this paper for the first time. Thus, no other method than our model and heuristic is present in the literature. Moreover, computing specific upper bounds for 3BKP is quite difficult. In fact, upper bounds obtained by model 3BKP-M are quite poor and have mainly the same quality a trivial bound.
Table 1: Comparison of different upper bounds

<table>
<thead>
<tr>
<th>n</th>
<th>Set1</th>
<th>Set2</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>6.16</td>
<td>6.35</td>
</tr>
<tr>
<td>40</td>
<td>0.35</td>
<td>1.12</td>
</tr>
<tr>
<td>60</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

UB\textsubscript{1D} obtained by computing the optimal solution of the mono-dimensional Knapsack Problem ([37, 33]). Moreover, additional upper bounds that can be obtained by means of conservative scales in the 3D Packing without rotation are not valid for the problems where the rotations are allowed [33]. On the other hand, 3BKP is an extension of the 3KP and thus the solutions obtained by 3BKP-M and 3BKP-H are valid for 3KP. Thus, in Table 4 we compare 3BKP-M and 3BKP-H with the results obtained by \(H_{EP}\), heuristic by Egeblad and Pisinger [33] on their instances for 3KP. The computational times have been set to 120 seconds for \(H_{EP}\), 200 seconds for 3BKP-M and 5 seconds for 3BKP-H and they will be not reported in the table. 3BKP-M is solved by means of Gurobi 4.0 [46], while 3BKP-H is implemented in C++. For \(H_{EP}\) the results have been given by [33].

The meaning of the columns is the following:

- Columns 1-4. The instance name defined in [33], the number of items, the item geometry class, and the item generation strategy.
- Column 5. The objective function of the upper bound UB\textsubscript{1D}, which is the only one computed for all the methods.
- Columns 6-9. The objective function of the best solution found by \(H_{EP}\), the Model 3BKP-M, our heuristic with (3BKP-H) and without (3BKP-H UNB) the balancing constraints activated.
- Columns 10-14. The percentage gap between the upper bound UB\textsubscript{1D} and objective function of the best solution found by \(H_{EP}\), the Model 3BKP-M, our heuristic with (3BKP-H) and without (3BKP-H UNB) the balancing constraints activated. In the case of 3BKP-H with balancing constraints, we consider the weights of Set1. If we prove the optimality of the solution by means of 3BKP-M, an asterisk is placed in the table.

From the results we can notice that the model is not competitive, with a gap almost doubled than \(H_{EP}\). However, the model is much more flexible than the heuristic, making possible to easily introduce additional constraints like fixed positions for the items, forbidden rotations and precedence constraints in items loading. In fact, while in the heuristic we need additional code to consider these constraints, in the case of the model we simply need to fix the appropriate variables. Moreover, giving to the model a time limit equal to 1000 seconds, the gap can be reduced, even if it is still about 10% higher than \(H_{EP}\). If we compare \(H_{EP}\) with 3BKP-H with the balancing constraints activated, we can notice that the results of 3BKP-H are about 3% worse than \(H_{EP}\). However, this gap is given by the balancing constraints. In fact, if we remove the balancing constraints we obtain a total mean gap of 16%, which is about 2% less than Egeblad and Pisinger results. These results are more impressive if we consider that 3BKP-H require a computational time which is about 2 order of magnitude less than \(H_{EP}\). We also tried to increase the computational time of 3BKP-H in order to obtain better results, but the computational experience show that the increase of quality is negligible. From the means computed per item number, we can see how the gap between \(H_{EP}\) and 3BKP-H is constantly present in all the instances, even if it reduces while the size of the instances increases. 3BKP-M is competitive when the number of items is 20, but its gaps makes it unusable in practice for larger instances. Finally, the consistent gap between UB\textsubscript{1D} and all the presented methods is, how stated in [33], mainly due to the poor quality of the relaxation, which is not able to take into account neither geometric nor balancing issues.

7. Conclusions

In this paper, we introduced the Three-Dimensional Knapsack Problem with Balancing Constraints, the extension of the Three-Dimensional Knapsack Problem (3KP) where additional constraints related to the Center of Mass of the three-dimensional packing are given. A MIP formulation of the problem as well as an efficient and accurate heuristic
<table>
<thead>
<tr>
<th>Instance</th>
<th>n</th>
<th>IT Geom</th>
<th>IT Strat</th>
<th>3BKP-M Set1</th>
<th>3BKP-H Set1</th>
<th>3BKP-M Set2</th>
<th>3BKP-H Set2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ep3d-20-C-C-50</td>
<td>20</td>
<td>C</td>
<td>C</td>
<td>7.0</td>
<td>7.0</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ep3d-20-C-C-90</td>
<td>20</td>
<td>C</td>
<td>R</td>
<td>6.3</td>
<td>10.3</td>
<td>8.2</td>
<td>12.0</td>
</tr>
<tr>
<td>ep3d-20-D-C-50</td>
<td>20</td>
<td>D</td>
<td>C</td>
<td>17.8</td>
<td>19.6</td>
<td>26.7</td>
<td>27.4</td>
</tr>
<tr>
<td>ep3d-20-D-R-50</td>
<td>20</td>
<td>D</td>
<td>R</td>
<td>14.6</td>
<td>22.9</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>ep3d-20-D-R-90</td>
<td>20</td>
<td>D</td>
<td>R</td>
<td>16.8</td>
<td>14.7</td>
<td>19.1</td>
<td>19.1</td>
</tr>
<tr>
<td>ep3d-20-F-C-50</td>
<td>20</td>
<td>F</td>
<td>C</td>
<td>20.1</td>
<td>18.9</td>
<td>20.7</td>
<td>20.7</td>
</tr>
<tr>
<td>ep3d-20-F-R-50</td>
<td>20</td>
<td>F</td>
<td>R</td>
<td>14.6</td>
<td>22.9</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>ep3d-20-F-R-90</td>
<td>20</td>
<td>F</td>
<td>R</td>
<td>16.8</td>
<td>14.7</td>
<td>19.1</td>
<td>19.1</td>
</tr>
<tr>
<td>ep3d-20-L-C-50</td>
<td>20</td>
<td>L</td>
<td>C</td>
<td>11.6</td>
<td>13.2</td>
<td>16.3</td>
<td>19.1</td>
</tr>
<tr>
<td>ep3d-20-L-C-90</td>
<td>20</td>
<td>L</td>
<td>R</td>
<td>13.2</td>
<td>12.1</td>
<td>14.5</td>
<td>14.5</td>
</tr>
<tr>
<td>ep3d-20-L-R-50</td>
<td>20</td>
<td>L</td>
<td>R</td>
<td>11.9</td>
<td>10.0</td>
<td>12.8</td>
<td>12.8</td>
</tr>
<tr>
<td>ep3d-20-L-R-90</td>
<td>20</td>
<td>L</td>
<td>R</td>
<td>13.9</td>
<td>15.1</td>
<td>17.4</td>
<td>19.3</td>
</tr>
<tr>
<td>ep3d-20-U-C-50</td>
<td>20</td>
<td>U</td>
<td>C</td>
<td>21.0</td>
<td>14.7</td>
<td>24.6</td>
<td>26.8</td>
</tr>
<tr>
<td>ep3d-20-U-R-50</td>
<td>20</td>
<td>U</td>
<td>R</td>
<td>21.0</td>
<td>16.7</td>
<td>30.0</td>
<td>29.5</td>
</tr>
<tr>
<td>ep3d-20-U-R-90</td>
<td>20</td>
<td>U</td>
<td>R</td>
<td>21.0</td>
<td>18.5</td>
<td>17.4</td>
<td>17.4</td>
</tr>
<tr>
<td>ep3d-40-C-C-50</td>
<td>40</td>
<td>C</td>
<td>C</td>
<td>38.7</td>
<td>38.7</td>
<td>38.7</td>
<td>38.7</td>
</tr>
<tr>
<td>ep3d-40-C-C-90</td>
<td>40</td>
<td>C</td>
<td>R</td>
<td>24.3</td>
<td>24.7</td>
<td>26.7</td>
<td>33.1</td>
</tr>
<tr>
<td>ep3d-40-D-C-50</td>
<td>40</td>
<td>D</td>
<td>C</td>
<td>37.6</td>
<td>24.4</td>
<td>21.0</td>
<td>21.0</td>
</tr>
<tr>
<td>ep3d-40-D-R-50</td>
<td>40</td>
<td>D</td>
<td>R</td>
<td>35.3</td>
<td>37.3</td>
<td>12.7</td>
<td>11.5</td>
</tr>
<tr>
<td>ep3d-40-D-R-90</td>
<td>40</td>
<td>D</td>
<td>R</td>
<td>32.1</td>
<td>38.7</td>
<td>15.9</td>
<td>15.9</td>
</tr>
<tr>
<td>ep3d-40-F-C-50</td>
<td>40</td>
<td>F</td>
<td>C</td>
<td>31.5</td>
<td>29.0</td>
<td>33.5</td>
<td>33.5</td>
</tr>
<tr>
<td>ep3d-40-F-R-50</td>
<td>40</td>
<td>F</td>
<td>R</td>
<td>28.9</td>
<td>26.4</td>
<td>19.3</td>
<td>19.3</td>
</tr>
<tr>
<td>ep3d-40-L-C-50</td>
<td>40</td>
<td>L</td>
<td>C</td>
<td>33.2</td>
<td>33.5</td>
<td>17.2</td>
<td>15.9</td>
</tr>
<tr>
<td>ep3d-40-L-C-90</td>
<td>40</td>
<td>L</td>
<td>R</td>
<td>35.4</td>
<td>41.5</td>
<td>20.6</td>
<td>21.4</td>
</tr>
<tr>
<td>ep3d-40-L-R-50</td>
<td>40</td>
<td>L</td>
<td>R</td>
<td>37.9</td>
<td>32.9</td>
<td>12.1</td>
<td>9.9</td>
</tr>
<tr>
<td>ep3d-40-L-R-90</td>
<td>40</td>
<td>L</td>
<td>R</td>
<td>44.4</td>
<td>39.1</td>
<td>16.6</td>
<td>16.6</td>
</tr>
<tr>
<td>ep3d-40-U-C-50</td>
<td>40</td>
<td>U</td>
<td>C</td>
<td>21.9</td>
<td>27.6</td>
<td>18.2</td>
<td>17.9</td>
</tr>
<tr>
<td>ep3d-40-U-C-90</td>
<td>40</td>
<td>U</td>
<td>C</td>
<td>23.6</td>
<td>20.9</td>
<td>33.4</td>
<td>33.4</td>
</tr>
<tr>
<td>ep3d-40-U-R-50</td>
<td>40</td>
<td>U</td>
<td>R</td>
<td>20.4</td>
<td>25.5</td>
<td>13.0</td>
<td>13.0</td>
</tr>
<tr>
<td>ep3d-40-U-R-90</td>
<td>40</td>
<td>U</td>
<td>R</td>
<td>31.7</td>
<td>27.5</td>
<td>28.4</td>
<td>28.4</td>
</tr>
<tr>
<td>ep3d-60-C-C-50</td>
<td>60</td>
<td>C</td>
<td>C</td>
<td>50.9</td>
<td>53.1</td>
<td>50.9</td>
<td>50.9</td>
</tr>
<tr>
<td>ep3d-60-C-C-90</td>
<td>60</td>
<td>C</td>
<td>R</td>
<td>35.9</td>
<td>31.1</td>
<td>29.5</td>
<td>29.5</td>
</tr>
<tr>
<td>ep3d-60-D-C-50</td>
<td>60</td>
<td>D</td>
<td>C</td>
<td>29.1</td>
<td>25.3</td>
<td>31.7</td>
<td>31.7</td>
</tr>
<tr>
<td>ep3d-60-D-R-50</td>
<td>60</td>
<td>D</td>
<td>R</td>
<td>44.7</td>
<td>36.2</td>
<td>25.2</td>
<td>25.2</td>
</tr>
<tr>
<td>ep3d-60-D-R-90</td>
<td>60</td>
<td>D</td>
<td>R</td>
<td>23.8</td>
<td>29.4</td>
<td>20.5</td>
<td>20.5</td>
</tr>
<tr>
<td>ep3d-60-F-C-50</td>
<td>60</td>
<td>F</td>
<td>C</td>
<td>29.7</td>
<td>28.1</td>
<td>30.6</td>
<td>30.6</td>
</tr>
<tr>
<td>ep3d-60-F-R-50</td>
<td>60</td>
<td>F</td>
<td>R</td>
<td>50.0</td>
<td>38.7</td>
<td>6.7</td>
<td>6.7</td>
</tr>
<tr>
<td>ep3d-60-L-C-50</td>
<td>60</td>
<td>L</td>
<td>C</td>
<td>49.1</td>
<td>53.3</td>
<td>12.2</td>
<td>12.2</td>
</tr>
<tr>
<td>ep3d-60-L-C-90</td>
<td>60</td>
<td>L</td>
<td>R</td>
<td>33.5</td>
<td>41.6</td>
<td>22.6</td>
<td>22.7</td>
</tr>
<tr>
<td>ep3d-60-L-R-50</td>
<td>60</td>
<td>L</td>
<td>R</td>
<td>32.6</td>
<td>30.8</td>
<td>19.1</td>
<td>20.1</td>
</tr>
<tr>
<td>ep3d-60-U-C-50</td>
<td>60</td>
<td>U</td>
<td>C</td>
<td>31.1</td>
<td>36.1</td>
<td>17.3</td>
<td>17.3</td>
</tr>
<tr>
<td>ep3d-60-U-C-90</td>
<td>60</td>
<td>U</td>
<td>R</td>
<td>38.9</td>
<td>39.1</td>
<td>22.9</td>
<td>21.0</td>
</tr>
<tr>
<td>ep3d-60-U-R-50</td>
<td>60</td>
<td>U</td>
<td>R</td>
<td>63.3</td>
<td>45.2</td>
<td>9.8</td>
<td>9.8</td>
</tr>
<tr>
<td>ep3d-60-U-R-90</td>
<td>60</td>
<td>U</td>
<td>R</td>
<td>51.0</td>
<td>41.5</td>
<td>17.1</td>
<td>17.1</td>
</tr>
</tbody>
</table>

Table 2: Comparison of 3BKP-M and 3BKP-H
have been presented. Extensive computational results showed how the MIP model is able to find better bounds than other relaxations and the heuristic is able to efficiently solve both instances explicitly designed for the 3BKP, as well as to be competitive with methods explicitly designed to solve the 3KP. Presently, we are extending the test instances in order to give a better insight of the relationship between solution quality and balancing constraints tightness.

Acknowledgments

We express our gratitude to Prof. David Pisinger, who graciously provided us with sets of test instances, as well as their detailed results. Moreover, the authors are grateful to Roberto Marcellino for his contribution to a previous version of the paper. This project has been partially supported by the Ministero dell’Istruzione, Università e Ricerca (MIUR) (Italian Ministry of University and Research), under the Progetto di Ricerca di Interesse Nazionale (PRIN) 2007 "Optimization of Distribution Logistics", and the Natural Sciences and Engineering Council of Canada (NSERC), through its Industrial Research Chair and Discovery Grants programs, and by the partners of the Chair, CN, Alimentation Couche-Tard and the Ministry of Transportation of Québec.

References

<table>
<thead>
<tr>
<th>Instance</th>
<th>n</th>
<th>TT Geom</th>
<th>TT Strat</th>
<th>UB</th>
<th>HEP</th>
<th>3BKp-M</th>
<th>3BKp-H</th>
<th>3BKp-H UNB</th>
</tr>
</thead>
<tbody>
<tr>
<td>ep3d-20-C-C-50</td>
<td>20</td>
<td>C</td>
<td>C</td>
<td>1026348</td>
<td>633672</td>
<td>633672</td>
<td>633672</td>
<td>633672</td>
</tr>
<tr>
<td>ep3d-30-C-C-50</td>
<td>30</td>
<td>C</td>
<td>C</td>
<td>1055540</td>
<td>628364</td>
<td>628364</td>
<td>628364</td>
<td>628364</td>
</tr>
<tr>
<td>ep3d-40-C-C-50</td>
<td>40</td>
<td>C</td>
<td>C</td>
<td>1074656</td>
<td>633672</td>
<td>633672</td>
<td>633672</td>
<td>633672</td>
</tr>
<tr>
<td>ep3d-50-C-C-50</td>
<td>50</td>
<td>C</td>
<td>C</td>
<td>1093768</td>
<td>633672</td>
<td>633672</td>
<td>633672</td>
<td>633672</td>
</tr>
<tr>
<td>ep3d-60-C-C-50</td>
<td>60</td>
<td>C</td>
<td>C</td>
<td>1112880</td>
<td>633672</td>
<td>633672</td>
<td>633672</td>
<td>633672</td>
</tr>
</tbody>
</table>

Table 4: 3KP: results of 3BKP-M and 3BKP-H without balancing constraints compared to EP.

