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Abstract—In many applications requiring the study of the 

surface myoelectric signal (SMES) acquired in dynamic 
conditions, it is essential to have a quantitative evaluation of the 
quality of the collected signals. When the activation pattern of a 
muscle has to be obtained by means of single- or double-
threshold statistical detectors, the background noise level (e

 

noise) 
of the signal is a necessary input parameter. Moreover, the 
detection strategy of double-threshold detectors may be properly 
tuned when the signal-to-noise ratio (SNR) and the duty cycle 
(DC) of the signal are known. The aim of this work is to present 
an algorithm for the estimation of enoise

 

, SNR and DC of a SMES 
collected during cyclic movements. The algorithm is validated on 
synthetic signals with statistical properties similar to those of 
SMES, as well as on more than a hundred real signals.  

Index Terms—Cyclic movements, signal-to-noise ratio (SNR), 
surface electromyography (sEMG), surface myoelectric signal 
(SMES). 
 

I. INTRODUCTION 
HE analysis of the myoelectric signal allows to determine 
if a specific muscle is active or silent [1]. Surface 

myoelectric probes – applied on the skin above the muscle – 
permit a non-invasive evaluation of the muscle activity.  

The traditional use of surface myoelectric signal (SMES) in 
physiological and biomechanical research [2] was extended to 
applied research: SMES achieved a well established value as 
an evaluation tool in surgery planning [3], rehabilitation [4], 
biofeedback [5]–[6], sports medicine and training [7], and 
ergonomics research [8].   

Among other innovative applications, it is gaining interest 
the development of advanced human–machine interfaces in 
which SMES has a key role to play. In particular, myoelectric 
control [9] is an advanced technique concerned with the 
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detection, processing, classification, and application of SMES  
to the active control of prosthetic limbs, human-assisting 
robots, or rehabilitation devices. 

 
The vast majority of the above mentioned applications 

evaluates muscle activity in dynamic conditions and, in 
particular, during cyclic or repetitive motor tasks [10]–[12], 
e.g. walking (gait analysis) [13]–[14] or biking [15]. The 
movements of the corresponding body segments imply cyclic 
contractions of muscles. As a consequence, SMES detected 
from a specific muscle results in a sequence of pseudo-
periodical activation bursts [16]. In the time elapsed between 
the end of a muscle burst and the beginning of the successive 
one, the muscle under study is silent. However, the probe 
detects a background noise that is unavoidable in any dynamic 
test. This background noise is mainly due to crosstalk [2] from 
neighboring muscles: it is a ‘physiological’ noise, more 
relevant than that due to instrumentation.  

In order to evaluate the quality of the recorded signals, the 
background noise and the signal-to-noise ratio are usually 
estimated by means of manual or automatic segmentation of 
the signal in the time-domain. To this purpose, myoelectric 
bursts are separated from muscle baseline activity and the 
corresponding powers are calculated and compared.  

In the analysis of dynamic SMES it is of paramount 
importance to obtain the onset and offset time instants of a 
muscle burst, distinguishing the muscle activity from the 
background noise. The relevance of considering the muscle 
activation timing is supported by several studies 
demonstrating its usefulness in orthopedics, treatment of 
cerebral palsy, and a number of other clinical applications 
[13].  

Well established techniques to determine the activation 
pattern of a muscle are based on single- or double-threshold 
statistical detectors [17]–[18]. These detectors require, as a 
necessary input parameter to set the (first) threshold, the 
background noise level. Furthermore, double-threshold 
detectors require additional parameters in order to fine-tune 
the second threshold. In particular, it is important to estimate 
the signal-to-noise ratio (SNR) and, to a minor extent, the duty 
cycle (DC) of the detected signal.  

The method we present in this contribution allows to 
estimate the root-mean-square value of the background noise 
(enoise
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cyclic movements. This is done following a statistical 
approach that does not require any a priori knowledge on the 
signal. In this way, we obtain the input parameters necessary 
to run double-threshold algorithms without the need of pre-
processing the signal in the time domain.  

 

II. MATERIALS AND METHODS 

A. The surface myoelectric signal in cyclic movements 
The SMES recorded during cyclic contractions may be 

considered as the superposition of the signal generated by the 
observed muscle during its contraction and the background 
noise. This noise is mainly due to the activity of neighboring 
muscles, collected because of the limited spatial selectivity of 
the detection probe. Moreover, due to the cyclic nature of the 
movement, this process may be defined as cyclostationary 
[19]. Its periodicity depends on the cyclic movement under 
investigation.  

In its period of cyclostationarity, the signal can be modeled 
as the superposition of two stationary processes: noise only, 
when the muscle is not active, and a second process 
corresponding to the muscle activity. 

When the muscle is non-active (OFF-state) only 
background noise is present. This noise can be modeled as a 
Gaussian process with zero-mean and variance 2

nσ : 
 

)(0, n(t) 2
nσΝ∈ . (1) 

 
During muscle activity (ON-state), the SMES can be 

modeled as a zero-mean Gaussian process given by the 
superimposition of two Gaussian processes corresponding to 
signal and background noise, respectively: 

 

)(0, n(t)  s(t)  x(t) 22
ns σσ +Ν∈+= , (2) 

   
being 2

sσ the variance of s(t). 
The percentage of time in which the muscle is active with 

respect to the total cycle duration is referred to as duty cycle. 
In the following, it is assumed that the signal x(t) is sampled 

with a sampling period Ts that satisfies the Nyquist criterion. 
In particular, since SMES collected by means of usual surface 
probes typically has more than 99% of the signal power below 
500 Hz, we consider a sampling frequency fc

B. Separating signal from noise  

 = 2 kHz, that 
results in a two-time oversampling. 

The probability density function of the cyclostationary 
signal considered above is given by the superposition of the 
probability density functions corresponding to x(t) and n(t) 
and  depends also on the DC. As an example, Fig. 1 reports 
the histograms of three cyclostationary processes 
corresponding to enoise

The separation of the ON-state from the OFF-state could be 
obtained by applying a proper detector, but such detectors 
would require, as an input parameter, the root-mean-square 
value of the background noise e

 equal to 1 µV, SNR equal to 20 dB and 
DC equal to 20%, 50% and 80%, respectively.  

noise [18], that is unknown. A 
possible solution for estimating enoise, without actually 
separating the ON and OFF states in the time domain, consists 
of considering an auxiliary time series with a χ2 

The auxiliary time series C

distribution. 
The amplitude histogram of the auxiliary time series has two 
separated modes, one corresponding to the noise variance and 
the other to the signal variance. 

r

 

(k) is obtained subdividing the 
time series x(t) in M epochs constituted by r consecutive 
samples and then considering the normalized sum of squares 
of each epoch: 

∑
=

=
r

j

kj

r
X

C
1

2

r  (k) ,     k = 1,…,M . (3) 

 

 
Fig. 1.  Cyclo-stationary processes with enoise = 1µV and SNR = 20 dB. 
Upper plots: representation of a single cycle with (a) DC = 20%, (b) DC = 
50%, (c) DC = 80%. Lower plots: histograms of the amplitudes of the three 
processes. The time support of the signals considered to obtain the 
histograms is equal to 30 s.  
 

 
 
Fig. 2.  Histograms of the series of the normalized sum of squares Cr (in 
logarithmic scale) of a 30s-cyclostationary process with SNR = 20 dB and 
DC = 50% for (a) r = 2, (b) r = 10, (c) r = 50.   
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If the signal follows the hypothesized model, the time series 
has a bimodal distribution with two separated modes. The 
larger is the difference among 2

nσ  and 2
sσ , the greater is the 

distance between the modes.  
As an example, Fig. 2 reports the bimodal distributions 

obtained for r = 2, r = 10 and r = 50, respectively. It is evident 
that increasing r allows for a better separation of the two 
modes, but contemporarily, due to the reduced size of the 
series Cr

The assumption of gaussianity of the SMES allows to treat 
the auxiliary time series C

(k), we have a reduced number of samples. Moreover, 
increasing the r value causes a loss of time resolution from 1 
ms (r = 2) up to 25 ms (r = 50). A satisfactory tradeoff may be 
obtained by choosing r = 10 (time resolution equal to 5 ms). 
This guarantees an acceptable time resolution, a good 
separation between the noise and the signal modes, and a 
sufficient number of samples to build the histogram. 

r(k) as χ2-distributed. This is useful 
to determine the number of consecutive samples (r) that 
constitute Cr

 

(k) in an optimal way. However, even if the 
SMES is not exactly Gaussian, the auxiliary time series will 
still be two-bell shaped and the algorithm described below will 
give reliable results. 

C. Description of the algorithm 
In order to estimate enoise

1) Consider the time series {x

, SNR and DC of an SMES 
generated during cyclic movements we use the following 
algorithm: 

i

2) Divide {x

}, i = 1,…, N, being N the 
number of samples. In the following, we refer to a time series 
with a duration equal to 30 s sampled at sampling frequency 
equal to 2 kHz. It follows that the number of samples N is 
equal to 60000. 

i

,10…1,=j},X,…,X,{X =}{X Mj2j1jkj

} into M = N/r epochs. Considering r = 10 we 
have: 

 

3) Obtain the auxiliary time series of the normalized sum of 
squares: 

 

. M,…1, =k      ,
10

 (k)
10

1

2

∑
=

=
j

kjX
C  (4) 

4) Obtain the histogram of the series Log10 

 

C. The bins of 
the histogram are defined as: 

.12,...,3,1),min(
2

)min()max( m  bins(m)

10

1010

−⋅=+
⋅

−
⋅≡

NbinsmCLog
Nbins

CLogCLog
(5) 

 
where Nbins is the number of bins. Since in our case M = 
6000, to have a sufficient sample numerosity for each bin we 
choose Nbins = 60. In general, a number of bins in the range 
50-100 is an acceptable choice. 

5) Search for local maxima of the curve that interpolates the 
frequencies of the histogram. Locate the absolute maximum 
and the highest relative maximum. The leftmost point of 
maximum is associated to noise (Inoise), the rightmost is 
associated to signal (Isignal

6) Estimate the mean power of the noise, averaging five 
bins around I

). 

noise
 

: 

∑

∑
+

−=

+

−=

⋅
= 2I

2I  i

2I

2I  i
noise noise

noise

noise

noise

Freq(i)

Freq(i)bins(i)
  P  . (6) 

 
7) Estimate the mean power of the signal, averaging five 

bins around Isignal
 

: 

 
Fig. 3.  Histogram of Log10C relative to a cyclic signal with enoise = 1µV, 
SNR = 20 dB and DC = 50% (time support of the signal = 30 s). The dark-
colored bars indicate the bins used by the algorithm to estimate the 
parameters.  

 
Fig. 4.  Histogram of Log10C relative to a cyclic signal with enoise = 1µV, 
SNR = 6 dB and DC = 50% (time support of the signal = 30 s). The dark-
colored bars indicate the bins used by the algorithm to estimate the 
parameters.  
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TABLE II 
GAUSSIAN WINDOW WITH σ = 1 

enoise (µV) 

 20% 40% 60% 80% 

6 dB 0.99 ± 0.03 1.01 ± 0.02 1.17 ± 0.31 1.60 ± 0.47 

12 dB 1.00 ± 0.02 1.00 ± 0.02 0.99 ± 0.03 1.00 ± 0.04 

18 dB 1.00 ± 0.02 1.00 ± 0.02 1.00 ± 0.02 1.00 ± 0.03 

24 dB 1.00 ± 0.02 1.00 ± 0.02 1.00 ± 0.02 1.00 ± 0.03 

30 dB 1.00 ± 0.02 0.99 ± 0.02 0.99 ± 0.03 1.00 ± 0.02 

SNR (dB) 

 20% 40% 60% 80% 

6 dB 4.5 ± 0.5 4.3 ± 0.6 3.8 ± 1.5 4.1 ± 2.2 

12 dB 10.6 ± 0.4 10.6 ± 0.3 10.5 ± 0.5 10.5 ± 0.5 

18 dB 16.6 ± 0.4 16.6 ± 0.4 16.5 ± 0.2 16.6 ± 0.5 

24 dB 22.5 ± 0.3 22.6 ± 0.3 22.6 ± 0.2 22.6 ± 0.4 

30 dB 28.5 ± 0.3 28.6 ± 0.4 28.7 ± 0.2 28.7 ± 0.2 

DC (%) 

 20% 40% 60% 80% 

6 dB 18.7 ± 0.7 37.8 ± 5.0 55.1 ± 0.8 71.8 ± 1.5 

12 dB 17.7 ± 0.8 36.5 ± 0.5 56.4 ± 0.3 77.7 ± 0.7 

18 dB 17.7 ± 0.5 36.1 ± 1.0 56.0 ± 0.7 77.8 ± 0.5 

24 dB 17.6 ± 0.3 36.2 ± 0.5 56.1 ± 0.4 77.7 ± 0.4 

30 dB 17.8 ± 0.4 36.6 ± 0.6 56.8 ± 0.6 77.7 ± 0.6 
Estimation of background noise (enoise), signal-to-noise ratio (SNR) and 

duty cycle (DC) for synthetic signals obtained with a Gaussian window 
with σ=1. It is reported the mean value estimated over ten realizations ± 
its standard deviation. 

TABLE I 
RECTANGULAR WINDOW 

 enoise (µV) 

 20% 40% 60% 80% 

6 dB 1.00 ± 0.01 1.00 ± 0.04 1.02 ± 0.03 1.52 ± 0.63 

12 dB 1.00 ± 0.01 1.01 ± 0.03 1.00 ± 0.02 1.01 ± 0.04 

18 dB 1.00 ± 0.02 1.00 ± 0.02 1.00 ± 0.02 1.00 ± 0.02 

24 dB 1.01 ± 0.02 1.00 ± 0.02 1.00 ± 0.02 0.99 ± 0.01 

30 dB 0.99 ± 0.02 1.00 ± 0.02 1.00 ± 0.02 1.00 ± 0.03 

SNR (dB) 

 20% 40% 60% 80% 

6 dB 5.9 ± 0.3 5.9 ± 0.5 5.7 ± 0.4 3.4 ± 3.0 

12 dB 12.0 ± 0.4 11.9 ± 0.4 11.9 ± 0.2 11.9 ± 0.3 

18 dB 17.9 ± 0.3 18.1 ± 0.2 17.8 ± 0.2 18.0 ± 0.3 

24 dB 23.9 ± 0.2 24.0 ± 0.2 23.9 ± 0.2 24.2 ± 0.2 

30 dB 30.0 ± 0.2 30.0 ± 0.2 30.0 ± 0.2 30.0 ± 0.2 

DC (%) 

 20% 40% 60% 80% 

6 dB 20.1 ± 0.7 39.6 ± 0.6 59.1 ± 0.6 80.5 ± 6.9 

12 dB 19.8 ± 1.0 39.9 ± 0.7 60.2 ± 0.6 80.4 ± 0.6 

18 dB 20.2 ± 0.5 40.1 ± 0.6 60.3 ± 0.6 80.3 ± 0.5 

24 dB 20.2 ± 0.6 40.4 ± 0.6 60.1 ± 0.7 80.6 ± 0.6 

30 dB 20.1 ± 0.4 40.2 ± 0.5 60.4 ± 0.6 80.4 ± 0.3 
Estimation of background noise (enoise), signal-to-noise ratio (SNR) and 

duty cycle (DC) for synthetic signals obtained with a rectangular window. 
It is reported the mean value estimated over ten realizations ± its standard 
deviation. 

 

∑

∑
+

−=

+

−=

⋅

= 2I

2I  i

2I

2I  i
s signal

signal

signal

signal

Freq(i)

Freq(i)bins(i)
  ignalP  . (7) 

 
8) Estimate the root-mean-square value of the background 

noise enoise
 

: 

noisenoise Pe = . (8) 

 
9) Estimate the SNR (in dB): 
 

noise

noisesignal

P
PP

LogSNR
−

⋅= 1010 . (9) 

10) Estimate the duty cycle (%): 
 

∑ ∑

∑
+

−=

+

−=

+

−=

+
⋅= 2I

2I  i

2I

2I  i

2I

2I  i

signal

signal

noise

noise

signal

signal

Freq(i)Freq(i)

Freq(i)
100DC . (10) 

 In order to clarify how the algorithm works, Fig. 3 
represents a 30s-cyclostationary signal with DC = 50% and 
SNR = 20 dB. Fig. 4 reports a similar example with SNR = 6 
dB. As one could have expected, in the 6dB-case there is a 
partial superposition between the bell-shaped curve relative to 
the noise and that relative to the signal. However, their modes 
are still clearly distinguishable. 

 

III. RESULTS AND DISCUSSION 

A. Validation of the algorithm 
Synthetic signals are generated with a time duration of 30 s. 

They are cyclic with a cycle duration of 1 s. They are obtained 
adding a random process simulating the background noise to a 
process simulating the SMES generated during a muscle 

 
Fig. 5.  Representation of 1 cycle of the synthetic SMES obtained with (a) a 
rectangular window, (b) a Gaussian window with σ=1 and (c) a Gaussian 
window with σ=2. In this example SNR = 20 dB and DC = 50%.  
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TABLE III 
GAUSSIAN WINDOW WITH σ = 2 

enoise (µV) 

 20% 40% 60% 80% 

6 dB 1.02 ± 0.03 1.05 ± 0.03 1.08 ± 0.04 1.14 ± 0.12 

12 dB 1.01 ± 0.02 1.02 ± 0.01 1.05 ± 0.03 1.20 ± 0.33 

18 dB 0.99 ± 0.02 1.00 ± 0.02 1.02 ± 0.02 1.49 ± 1.04 

24 dB 1.00 ± 0.02 1.00 ± 0.02 1.00 ± 0.03 1.36 ± 1.36 

30 dB 1.00 ± 0.02 0.99 ± 0.02 0.99 ± 0.03 1.44 ± 2.19 

SNR (dB) 

 20% 40% 60% 80% 

6 dB 4.5 ± 2.5 3.9 ± 2.0 1.2 ± 2.1 0.3 ± 2.1 

12 dB 9.2 ± 1.0 9.6 ± 0.6 9.6 ± 0.8 8.2 ± 2.5 

18 dB 16.6 ± 0.5 16.3 ± 0.9 16.2 ± 0.5 13.7 ± 4.9 

24 dB 21.7 ± 1.0 22.1 ± 0.3 22.4 ± 0.4 21.1 ± 4.5 

30 dB 28.2 ± 0.5 28.3 ± 0.5 28.4 ± 0.3 27.4 ± 4.5 

DC (%) 

 20% 40% 60% 80% 

6 dB 10.5 ± 1.6 20.9 ± 1.3 36.4 ± 8.1 46.7 ± 9.7 

12 dB 10.0 ± 0.4 22.0 ± 0.8 35.6 ± 0.9 50.6 ± 1.2 

18 dB 10.0 ± 0.4 22.2 ± 0.8 39.2 ± 0.8 61.3 ± 2.0 

24 dB 10.1 ± 0.8 22.9 ± 0.6 39.9 ± 0.9 64.1 ± 1.1 

30 dB 10.4 ± 0.4 23.3 ± 0.5 40.8 ± 0.7 64.8 ± 0.8 
Estimation of background noise (enoise), signal-to-noise ratio (SNR) and 

duty cycle (DC) for synthetic signals obtained with a Gaussian window 
with σ=2. It is reported the mean value estimated over ten realizations ± 
its standard deviation. 

contraction. Background noise is simulated as a Gaussian 
process with zero mean and standard deviation equal to 1µV. 
The SMES burst is generated as a Gaussian process with zero 
mean and standard deviation equal to 10(SNR/20)

b) a Gaussian window with σ=1, c) a Gaussian window with 
σ=2 (see Fig. 5). 

∙1µV, 
windowed on a time support defined by DC. In order to 
simulate different muscle activation modalities we consider 
three different types of windows: a) a rectangular window,  

The performances of the algorithm were verified for five 
different values of the SNR (6, 12, 18, 24, 30 dB) and for four 
different values of DC (20, 40, 60, 80 %). 

 

We considered 10 realizations of the described synthetic 
signals and estimated enoise

The estimated background noise (e

, SNR and DC for each of them. 
Then, we calculated the mean value and standard deviation of 
these parameters over the 10 realizations. Table 1 reports the 
results relative to the rectangular window, Table 2 those 
obtained using the Gaussian window with σ = 1, and Table 3 
those relative to the Gaussian window with σ = 2. 

noise

On the contrary, when the Gaussian windows are 
considered and DC is equal to 80% , the estimated value of the 
background noise is overestimated up to 60% relative to its 
true value. The effect of this overestimation is a slight 
reduction of the sensitivity of the single- or double-threshold 
detectors, that generally does not compromise their 
performances.  

) shows values that 
are almost always very close to the expected value of 1µV. In 
the large majority of cases, the corresponding error is lower 

than 1%. In the rectangular window case (Table 1) the 
estimated SNR and DC show values that are very close to their 
expected values. Again, in the large majority of simulation 
conditions, the error is lower than 1%. In the case of the 
Gaussian window with σ=1, there is a slight underestimation 
of SNR and DC (see Table 2). This behavior is reinforced in 
the case of the Gaussian window with σ=2. In fact, the 
estimated values are systematically and appreciably lower than 
the expected ones. This is not surprising and it is due to the 
shape of the applied window. When dealing with real signals 
similar to this typology, the estimated values of SNR and DC 
are always underestimated. 

Although the method herein presented was developed to 
allow the tuning of statistical detectors, other applications are 
possible. As an example, the availability of the estimates of 
enoise 

B. Test of the algorithm on real SMES 

and SNR makes it possible to evaluate the quality of the 
acquired signal in a user independent way. This is of 
paramount importance to allow for a prompt detection of 
signals whose quality is not high enough to guarantee reliable 
results of the processing techniques applied to them.  

Although the validation of the proposed algorithm was 
carried out working with synthetic SMES, we tested the 
algorithm also on real signals.  

In order to test the applicability of the algorithm to real 
SMES, recorded during cyclic human movements, we 
consider - as an example - signals acquired during gait. Our 
database consists of a total of 142 SMES collected from: 

 
Fig. 6.  Examples of application of the algorithm to real signals. (a) SMES 
from tibialis anterior: enoise1 = 3.2 µV, SNR1 = 28.0 dB, DC1 = 37.8%. (b) 
SMES from gastrocnemius lateralis: enoise1 = 1.5 µV, SNR1 = 11.3 dB, 
DC1 = 44.6%. 
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tibialis anterior (48), gastrocnemius lateralis (32), lateral 
hamstrings (24), vastus lateralis (24), rectus femoris (14), The 
SMES acquisitions were carried out positioning surface 
myoelectric probes (STEP32, DemItalia, Italy) over the 
muscle’s belly [1]. As for the synthetic signals, we considered 
a time support of 30 s. The real signals are “pseudo-cyclic” 
with a cycle duration equal to the subject gait cycle.  

Fig. 6 shows an example of SMES collected from (a) 
tibialis anterior and (b) gastrocnemius lateralis. The 
corresponding two-bell shaped histograms are shown aside. 

We estimated the parameters both with the algorithm 
described above and by means of an alternative method. The 
parameters estimated through the proposed algorithm will be 
indicated as enoise1, SNR1, DC1, while those estimated with 
the alternative procedure will be indicated as enoise2, SNR2, 
DC2. The alternative procedure consists of  segmenting the 
30-s signals in the time domain, obtaining the ON and OFF 
states by means of the double-threshold detector [18]. An 
example of signal segmentation is shown in Fig. 7.  

Indicating with N the number of segmented gait cycles we 
define: 

 

,
N
1  noise2

N

1 i
Bi∑

=

≡ σe  (11) 

where Biσ  is the standard deviation of the i-th background 
noise segment (see Fig. 7).  

Furthermore, we define: 

, 1log10 NR2 2
B

2
A

10 









−⋅≡

σ
σS  (12) 

where 2
Aσ and 2

Bσ are the mean variances of the ON and OFF 
states, respectively.  

Finally, we define: 

.100 1 C2
N

1 i
⋅

+
≡ ∑

= ii

i

BA
A

N
D  (13) 

 Fig. 8 shows the comparison of the two methods on the set 
of 142 real signals. This figure displays, for each parameter, 
the scatter plot of the values obtained with the proposed 
algorithm (x-axis) and with the alternative method (y-axis). To 
determine how well the proposed algorithm retrieves the 
values obtained with the “direct” time-domain method we 
calculated the regression line among the points. The line 
among enoise1-enoise2 points has a slope  close to 1 (0.97) 
and a very small y-intercept (0.41 µV rms), demonstrating the 
accuracy of the proposed algorithm in the estimation of 
background noise. Results are still acceptable when 
considering the SNR1-SNR2 scatter plot, also if it can be 
noticed a slight underestimation of SNR1 with respect to 
SNR2. For what concerns the duty cycle the values obtained 
with the algorithm are systematically lower than those 
obtained with the alternative method of about 20% of the gait 
cycle. These findings are similar to those already commented 
for the synthetic signals with Gaussian window with σ=1 and, 
more markedly, in the case σ=2. 

 
 

IV. CONCLUSION 
This work presents an algorithm for the estimation of 

background noise, signal-to-noise ratio and duty cycle of 
SMES generated during cyclic movements. The algorithm was 
tested on synthetic and real SMES and  the obtained results 
show that, in most practical situations, it provides accurate and 
stable measures of the aforementioned parameters. 

We adopted this method to choose the parameters of a 
double-threshold statistical detector we previously developed 
[18] and that we have been using in the past years to carry-out 
a user independent analysis of the SMES detected during 
walk.  Results we obtained in that field are fully satisfactory 
and we believe that the approach herein presented could be 
beneficial also in other applications, when dealing with 
operator independent processing of SMES or other biomedical 

 
Fig. 7.  SMES segmentation in the time domain. The segments labeled as A1, 
A2, … correspond to muscle activations (= ON states), while B1, B2,… 
indicate background noise (= OFF states). 
 

 
Fig. 8.  Scatter plots illustrating the comparison between the two methods. Each point in the plots represents the values of the parameters estimated with: (1) the 
proposed algorithm (x-axis) and (2) the time-domain method (y-axis), respectively. In each plot the regression line is shown superimposed as well as its 
corresponding equation. 
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signals with similar characteristics. 
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