
04 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Modeling, Simulation and Emulation of Intelligent Domotic Environments / Bonino, Dario; Corno, Fulvio. - In:
AUTOMATION IN CONSTRUCTION. - ISSN 0926-5805. - STAMPA. - 20/7:(2011), pp. 967-981.
[10.1016/j.autcon.2011.03.014]

Original

Modeling, Simulation and Emulation of Intelligent Domotic Environments

Publisher:

Published
DOI:10.1016/j.autcon.2011.03.014

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2399669 since:

Elsevier

Modeling, Simulation and Emulation of Intelligent Domotic
Environments

Dario Boninoa, Fulvio Corno∗,a

aPolitecnico di Torino, Dipartimento di Automatica ed Informatica, Corso Duca degli Abruzzi 24, 10129 - Torino, Italy

Abstract

Intelligent Domotic Environments are a promising approach, based on semantic models and
commercially off the shelf domotic technologies, to realize new buildings that provide users
with increased care, adaptability and safety. Intelligent buildings exhibit complex behaviors and
are composed of various subsystems, and of many layers and components: such complexity
requires innovative design methodologies and tools for ensuring correctness and effectiveness.
Therefore suitable simulation and emulation approaches must be adopted, and tools must be
provided, to allow architects and designers to experiment with their ideas and to incrementally
verify the effects of designed policies. Incremental design and implementation of new strategies
or new functionalities requires a validation scenario where the environment is partly emulated
and partly composed of real devices. This paper describes a framework, which exploits UML2.0
state diagrams for automatic generation of device simulators from ontology-based descriptions
of domotic environments. The device models are managed by the DogSim simulator, that may
either simulate a complete building automation system in software, or may be integrated inside
the Domotic OSGi Gateway (Dog) as a new emulation driver (EmuDog), allowing partial simula-
tion of virtual devices alongside with actual interface to real devices. The proposed approach has
been tested both on a synthetic 6-room flat equipped with 120 devices and on a real home com-
prising 3 flats located in northern Italy. Synthetic and real experiments show that the approach
is feasible and can easily address both simulation and emulation, thus supporting incremental
design and validation of home automation policies in realistic home scenarios.

Key words: Simulation, Emulation, Intelligent Domotic Environment, State Chart, Ontology
Modeling

1. Introduction

Intelligent Domotic Environments (IDE), i.e., “environments where commercial domotic sys-
tems are extended with a low cost device (embedded PC) allowing integration and inter-operation
with other appliances, and supporting more sophisticated automation scenarios” [1, 2], currently
promise to achieve advanced intelligence at a relatively low cost, enabling the creation of new

∗Corresponding author
Email addresses: dario.bonino@polito.it (Dario Bonino), fulvio.corno@polito.it (Fulvio

Corno)

Preprint submitted to Automation in Construction November 8, 2010

building automation scenarios, with much more complex behavior and functionality. The design
of such complex systems involves a high number of often conflicting aspects, which include user
experience and satisfaction, intelligent behaviors and automated scenarios. Designers should
be able to grasp a good understanding of the possible interactions between systems contribut-
ing to an IDE design (automatic plants, complex devices, control algorithms, context-dependent
scenarios, and the users), and of the modalities with which such interactions will affect the over-
all correctness and effectiveness of designed solutions. In particular, both modeling tools (for
expressing design requirements and programming system behaviors) and validation tools (for
simulating different scenarios before actually implementing the system) are a necessary addition
to the toolkits of system designers and integrators.

In the literature, very few works address this problem (a short survey is provided in Section 2)
and most design methodologies heavily rely on individual designer’s experience. To provide a
more structured support to the design and test of automation and intelligence for domotic envi-
ronments, sounder approaches should be developed, based on formal models, property checking,
test pattern generation, and simulation based techniques.

Among these approaches, the ability to simulate domotic devices is useful in different design
phases (see Table 1): in the preliminary design, a software model of the whole building au-
tomation system may be simulated for validating the overall design and the complex interactions
that arise when combining advanced devices and control strategies. On the other hand, several
scenarios (such as upgrading an existing system or evaluating a new component) require the in-
teraction of real devices with simulated ones: in these cases, simulators must be generated only
for the ‘missing’ devices, while interaction with real devices is provided by the house gateway
(emulation).

To clarify the terminology adopted in the paper, we refer to simulation when all represented
devices are “virtual” and their execution is done in a completely controlled context, i.e., inside
simulation software, such as DogSim [3]. Emulation, sometimes called “Hardware In the Loop
simulation,” on the other hand, involves at least one real device, i.e., the Home Gateway, and
possibly one or more controlled devices.

Table 1: IDE simulation and emulation: applications and required tools.

Real
devices

Simulated
devices

Gateway Applications Required tools

Simulation No All No Initial abstract design validation DogSim [3]
Full Emulation No All Real Validation of interactions with

the domotic gateway and its em-
bedded strategies

EmuDog

Mixed Emulation Some Some Real Validation of incremental de-
ployment and plant evolutions

EmuDog

Deployment All No Real Actual home control Dog [2]

This paper proposes a simulation and emulation framework for intelligent environments that
may be exploited over the entire IDE life-cycle, from early policy design to final on-the-field
deployment. Our approach is based on the automatic generation of state charts from an ontology
model (DogOnt [1]) of domotic devices, appliances, and their interconnections. State charts
simulate the behavior of each device, as well as the messages and data that they exchange in
their in-building installation.

2

The solutions presented in this paper are incrementally built on technologies developed in the
last years: some initial results about state charts simulation were already introduced in a former
work by Bonino and Corno [3], the control of real devices is achieved through the open-source
Dog gateway [2], and the description of domotic system configurations exploits the DogOnt
ontology formalism [1].

In this work, the declarative knowledge encoded in DogOnt is automatically associated to the
operational knowledge encoded in device-specific state diagrams by means of ontology query-
ing and customization of diagram templates. Device interconnections, modeled in DogOnt as
semantic relations, are translated into event-remapping machines exploiting the event messaging
framework defined by the state diagram formalism. Simulation of device behavior is supported
at runtime through the DogSim API [3], which embeds a state machine execution engine based
on the Apache Commons SCXML library, and by providing event-driven interaction with the
IDE model. Emulation capabilities are addressed by means of an emulation driver (EmuDog),
integrated inside the Dog [2] Domotic OSGi Gateway.

Experiments involving both DogSim and the EmuDog driver are reported, applying the pro-
posed framework to a synthetic DogOnt model representing a 6-room flat equipped with 120 con-
trollable devices and to 3 domotic flats (Maison Equipée) located in St. Marcel, Valle d’Aosta,
Italy. Results show that the approach is feasible and that quite complex behaviors and interactions
can easily be simulated, with a satisfying time performance.

The remainder of the paper is organized as follows: Section 2 describes relevant related
works. Section 3 briefly provides IDE, Dog, DogOnt and state diagram background. Section 4
introduces state diagrams for Intelligent Domotic Environments, highlighting the underlying as-
sumptions and design choices, while Section 5 shows how state diagram descriptions of IDEs
are automatically generated from DogOnt instances. Section 6 describes the architecture of the
DogSim API whereas Section 7 describes the EmuDog driver design and its integration in Dog.
Section 8 provides experimental results. Eventually, Section 9 draws conclusions and proposes
future works.

2. Related Works

Despite the increasing interest in the AmI field and on related technologies (see [4] for a
recent review), the current state of the art in modeling and simulation for AmI environments, and
in particular for IDEs, is rather sparse and offers a mixture of approaches from many different
communities whilst a general consensus is still lacking. Emulation is even more neglected and
nearly no approaches have been currently presented that address this specific aspect of intelligent
environment design.

Among the proposed approaches, the Habitation language [5] is one of the most affine works
to DogSim. Habitation is a Domain-Specific Language (DSL) specifically designed for Home
Automation. It is one of the earliest attempts to apply Model Driven Engineering to the Home
Automation domain. Habitation aims at tackling the life-cycle of home automation system de-
sign. It combines a model-driven approach with DSLs to support the design of home automation
systems, from high-level, technology independent graphical design to technology-specific auto-
matic code generation. The Habitation language is based on a three-layered approach including:
1) a computation-independent model, which represents the syntax and part of the semantics of
the defined DSL, 2) a platform-independent model, which is a simplification of the UML meta-
model for reactive systems [6], and considers components, activities and state diagrams, and 3) a

3

platform-specific model in which a meta-model for KNX/EIB1 home automation technology is
defined, exploiting the domain object model used by ETS2. The approach proposed in this pa-
per has several differences and complementary aspects. First, Habitation aims at supporting the
Home Automation design from requirements specification to programming of individual devices
but completely ignores validation and simulation of the generated system configurations. On the
contrary, the proposed approach is focused on the last two aspects thus being complementary
with Habitation. Secondly, Habitation bases its abstraction model on UML, while DogSim ex-
ploits OWL descriptions of the home environment. UML is more suited for code generation but it
does not support the design and implementation of complex inferences and artificial intelligence
policies, on the other hand OWL can be exploited both to design inferences and to define meta-
models for code generation. Finally, the Habitation approach is strongly targeted at generating
software controllers for single devices; however, IDEs are often made by not-programmable
devices whose predefined behaviors have to be combined in new ways, for achieving more “in-
telligent” functionalities.

In [7], Conte et al. tackle the problem of modeling and simulating Home Automation Sys-
tems (HAS) by applying the Multiple Agent Systems (MAS) theory [8]. They start from a formal
theory of Home Automation Systems [9], based on the MAS theory and construct an environ-
ment for simulation and emulation of HAS. On top of this theory, Conte et al. define performance
indicators for paradigmatic control strategies allowing to simulate and analyze the effects caused
by control parameters variations on the control overall performance. The home simulation en-
vironment they introduce is a specialization of general MAS simulation engine in which agents
represent appliances, described from an abstract, behavioral point of view. Each agent’s behavior
is modeled as a sequence of transitions from state to state driven by a set of rules requiring the
availability of specific resources. The sequence of state transitions during normal operation of
each agent is time-driven, except when required resources are, or become, unavailable. The main
focus is on simulating single home control tasks as a set of independent, time-driven processes
concurrently accessing and consuming a shared set of resources, e.g., electricity, hot water, etc.
Although both Conte’s approach and DogSim are based on state machines, they show many dif-
ferences. First, while the goal of the Conte’s simulation environment is the refinement of control
strategies, DogSim goal is to provide a simulation environment for real-world IDEs where de-
vices are not isolated but can interact explicitly through commands and notifications. Second,
DogSim is designed to provide a validation and simulation framework on top of which specific
aspects of IDE control and intelligence can be investigated; in this sense the approach of DogSim
is compatible and complementary with Conte’s work. Finally, in the approach presented in [9]
the formal model of the HAS does not take into account the environment configuration nor the
functionalities of real-world domotic plants, which in most cases are much simpler than the do-
motic agents they define. Moreover the MAS model they define does not provide easy to exploit
mechanisms for reasoning on the environment configuration and state, thus limiting the kind of
applicable intelligent behaviors.

3. Background

Domotic systems, also known as home automation systems, have been available on the mar-
ket for several years, however only in the last few years they started to spread over residential

1KNX/EIB, http://www.eiba.com/en/eiba/overview.html
2The official configuration software for KNX/EIB plants.

4

buildings, thanks to the increasing availability of low cost devices and driven by new emerging
needs on house comfort, energy saving, security, communication and multimedia services.

Current domotic solutions are still suffering from two main draw-backs: they are produced
and distributed by various electric component manufacturers, each having different functional
goals and marketing policies; and they are mainly designed as an evolution of traditional elec-
tric components (such as switches and relays), thus being unable to natively provide intelligence
beyond simple automation scenarios. The first drawback causes interoperation problems that pre-
vent different domotic plants or components to interact with each other, unless specific gateways
or adapters are used. While this was acceptable in the first evolution phase, where installations
were few and isolated, now it becomes a very strong issue as many large buildings are mixing
different domotic components, possibly realized with different technologies, and need to coordi-
nate them as a single system. On the other hand, the roots of domotic systems in simple electric
automation prevent satisfying the current requirements of home inhabitants, who are becoming
more and more accustomed to technology and require more complex interaction possibilities.

To overcome this issues while retaining low cost and wide availability typical of commer-
cially off-the-shelf home automation, in 2008 we defined the concept of Intelligent Domotic
Environment [2]. An Intelligent Domotic Environment is a home or building where existing
domotic systems (wired or wireless), are extended by adding devices and agents that support
interoperation and intelligence. The core of an IDE is a machine processable formal model of
the environment expressed in form of ontology. Ontologies allow on one hand to formally rep-
resent the environment components, i.e., devices, appliances, furniture elements, in a technology
independent and easy to elaborate format. On the other hand, they provide support for advanced
intelligence based on logic and rule-based reasoning, context representation, etc.

Rather than accessing and handling devices on the basis of specific protocols and communica-
tion technologies, an IDE abstracts the low-level communication issues typical of such complex
environments and offers a uniform and abstract view of the home (or building) and of the devices
therein. Any device therefore becomes accessible on the basis of its capabilities, independently
from the specific technology with which the device is built. For example, in an IDE, a lamp will
always be represented as an object that can either be switched on or off, and that if switched on
emits light.

To support this abstraction chain, three main components are needed (Figure 1): a set of
network-level drivers able to deal with all low level issues that the IDE shall overcome, a domain
model specifying the capabilities of all the entities taking part to the IDE, and a Home Gateway
encapsulating both the drivers and the model, thus offering flexible access to the IDE function-
alities. The latter component is the natural place where intelligent policies and behaviors can be
deployed.

While IDEs easily solve interoperation issues and offer clear ways for designing and imple-
menting home intelligence on top of commercial domotic systems, there is still a lack of tools
to support end to end development of these environments, from early design to final on-the-field
installation. Currently, a IDE designer can already exploit DogOnt [1] as a rather stable environ-
ment modeling ontology and Dog [2] as beta-level open source gateway implementing the above
principles. Home descriptions shall be defined during the design process, however the designer
is not required to master ontologies and related formalisms since suitable tools3 (auto-generation
rules, XML-to-OWL translators, etc.) are available for reducing the complex ontology instan-
tiation process to a simpler definition of an XML list of devices. We are currently working on

3included in the Dog gateway distribution at http://domoticdog.sourceforge.net
5

Network Driver

(e.g., KNX)

Network Driver

(e.g., MyOpen)

Network Driver

(e.g., Z-Wave)
EmuDog

IP Network (e.g., Ethernet, WiFi)

KNX-to-IP

KNX bus

MyOpen-to-IP

MyOpen bus

Emulated

Devices

Connectors

Home Gateway Modules

(Dog Bundles)

IP Network (e.g., Ethernet, WiFi)

Figure 1: The general IDE architecture.

6

graphical modeling environments for enabling architects and interior designers to easily master
next generation intelligent domotics.

Besides modeling, there is a growing need to simulate the environment for which intelligent
policies are designed. Such a simulation is almost complete in the early design stages while
(see Table1), during IDE deployment, intelligent behaviors need to be refined by interfacing real
devices (hardware in line simulation). Next sections show how this can be achieved by exploiting
the DogOnt environment model and the Harel’s [10] state diagram formalism. For the benefit of
readers not familiar with these technologies, the rest of this section provides a short introduction
to DogOnt-based IDE modeling, Dog and Harel’s state diagrams, with a particular reference to
the specific semantics defined in the UML 2.0 standard [11].

3.1. DogOnt in a nutshell

DogOnt is an ontology specifically designed for modeling Intelligent Domotic Environments
(for a complete description of the DogOnt design and modeling capabilities see [1]). It is orga-
nized along 5 main hierarchies of concepts (Figure 2) supporting the description of:

• the domotic environment structure (rooms, walls, doors, etc.), by means of concepts de-
scending from BuildingEnvironment;

• the type of domotic devices and of smart appliances (concepts descending from the Con-
trollable subclass of the BuildingThing main concept);

• the working configurations that devices can assume, modeled by States and StateValues
(see the following paragraphs for more details);

• the device capabilities (Functionalities) in terms of accepted events and generated mes-
sages, i.e., Commands and Notifications;

• the technology-specific information needed for interfacing real-world devices (Network-
Component) and

• the kind of furniture placed in the home (concepts descending from the UnControllable
subclass of the BuildingThing main concept).

DogOnt models domotic devices in terms of functionalities and states.

Functionalities. They describe the device under the viewpoint of device interaction capabilities,
i.e. they describe how a given device can be controlled, queried and whether it can autonomously
generate “events”. For example, while a lamp can only be switched on and off, a light sensor can
either be queried for the current luminance or can autonomously send luminance change events
at regular time intervals. DogOnt functionalities include:

• ControlFunctionalities, modeling the ability of a device to be controlled by means of some
message or command,

• QueryFunctionalities, modeling the ability of a device to be queried about its current state,
and

• NotificationFunctionalities, modeling the ability of a device to issue notifications about
state changes, in an event-driven interaction model.

7

Figure 2: DogOnt in a nutshell.

Functionalities are either associated with commands (for ControlFunctionalities) or with no-
tifications (NotificationFunctionalities) that further detail the specific operations supported by
DogOnt device instances. Figure 3 shows a sample DogOnt model of a dimmer lamp, with
functionalities highlighted in bold.

Figure 3: A sample Dimmer Lamp model in DogOnt

Device interconnections are modeled by the controlledObject relationship [12] linking a con-
troller4 device (e.g., a switch) to one or more controlled devices5(e.g., a group of lamps). The
same device can be involved in different connections with different roles, i.e., as either a con-
troller or a controlled device. Connections can be further specialized through the generatesCom-
mand relation, which permits to specify the command(s) generated in response to a given device

4rdfs:domain(dogont:Control)
5rdfs:domain(dogont:Controllable)

8

notification (Figure 4).

Figure 4: A sample of connection modeling in DogOnt where a Switch controls a Dimmer Lamp.

States. They describe the various stable configurations that a device can assume during its work-
ing life-cycle. From the modeling point of view, each device may include one or more different
simultaneous behaviors: being on or off, the number of the CD track being played, and hav-
ing a given audio volume are all independent stable configurations of a CD player. In DogOnt
such behaviors are called dogont:State. The description of each dogont:State is rep-
resented by a set of identifiers, called dogont:StateValue, that model each operating con-
dition. For example the CD player is modeled as having three independent dogont:States:
dogont:OnOffState, dogont:PlayingState and dogont:VolumeLevelState.
Each of these three states include a specific set of possible state values (for example, the first
state includes a dogont:OnStateValue and a dogont:OffStateValue). The current
state of a device is therefore defined by a list containing one dogont:StateValue per each
dogont:State.

Example 1. Consider a shutter actuator model as an example (Figure 5). The shutter actuator is
represented in DogOnt as having one dogont:UpDownRestState that, in turn is related to
3 state values: UpStateValue, DownStateValue and RestStateValue. These values
represent the visible operating conditions of the actuator. However, the real device can have
more behaviors than the model: for example it can operate in 2 more conditions identifying
if the actuator is raising or lowering the shutter, respectively. These hidden conditions are not
modeled in DogOnt and therefore they have no counterpart in the StateValues associated to the
dogont:UpDownRestState concept.

9

ShutterActuator

UpDownRestState

UpStateValue

DownStateValue

RestStateValue

hasState

hasStateValue

hasStateValue

hasStateValue

Figure 5: State modeling of a roller shutter actuator.

3.2. Dog
Dog (Domotic OSGi Gateway) [2] is a Home Gateway [13, 14] designed to transform new, or

existing, domotic installations into intelligent domotic environments. The main features of Dog
include: interoperability, versatility, advanced intelligence and accessibility, in terms of sup-
ported applications and affordable costs. Interoperability and versatility are achieved by means
of a strongly modular architecture exploiting the OSGi framework, the de-facto reference frame-
work for Residential Gateways [15]. Advanced intelligence support is gained by formally mod-
eling the home environment through the DogOnt ontology and by defining suitable reasoning
mechanisms on top of it. Accessibility is provided through an application-level API exposed ei-
ther directly, to external OSGi bundles, or wrapped into an XML-RPC [16] service access point.
Costs are kept low by ensuring the ability to run the Dog gateway on cheap hardware platforms,
e.g., netbooks6 or embedded computers.

The Dog logic architecture is deployed along 4 layers (rings, in the Dog terminology, see
Figure 6) ranging from low-level interconnection (Rings 0 and 1) to high-level modeling and
interfacing (Rings 2 and 3). Each ring hosts several OSGi bundles implementing the platform
modules.

Specifically, Ring 0 includes the Dog common library and the bundles required for managing
the interactions between the OSGi platform and the other Dog bundles. Ring 1 encompasses the
Dog bundles that provide interconnection services for domotic technologies.7 Each network tech-
nology is managed by a dedicated driver, which abstracts the network protocol into a common,
high-level message protocol (DogMessage, see Figure 1) based on the DogOnt ontology model.
Ring 2 provides the routing infrastructure for messages traveling across network driver bundles
and directed to (or originated from) Dog bundles. It hosts the Dog core intelligence, based on
the DogOnt ontology and implemented by the House Model bundle, and the Dog runtime rules
core: DogRules. Finally, Ring 3 hosts the Dog bundles offering access to external applications,
either by means of the API bundle, for OSGi applications, or by exploiting an XML-RPC service
access point for applications based on other technologies.

6The reference platform is currently an ASUS eeePC 701 netbook, with 4GBytes of SSD and 512 Mbytes of RAM
7Currently Dog supports KNX and MyOpen domotic networks, and the Z-Wave wireless protocol; ZigBee support is

under development
10

OSGi

DOG
Library

Configuration
Registry

Network Drivers

MyHome

Konnex

Simulator
Platform
Manager

Message
Dispatcher

Executor

House
Model

Status

API

XML-RPC

Ring 0 Ring 1 Ring 2 Ring 3

DogRules

Figure 6: The Dog gateway architecture.

3.3. State diagrams

UML state diagrams [11, 17, 18] are based on the state chart notation [10] invented by David
Harel in 1987. State diagrams are designed to specifically address the problem of representing
large and complex reactive systems, avoiding state explosion issues by means of a suitable con-
current semantics. According to Harel “A reactive system is characterized by being to a large
extent event-driven, continuously having to react to external and internal stimuli” [10]. Intel-
ligent Domotic Environments can be considered as belonging to the class of reactive systems,
at least for what concerns their control part. They must in fact respond to user actions, to en-
vironmental changes (external stimuli) and to events generated by control algorithms (internal
stimuli). Although some approaches exploit state diagrams for automatically generating home
automation circuits and software (e.g., [19]) we have no knowledge of other approaches applying
them to formal IDE modeling.

4. State Diagrams for IDE

Design of Intelligent Domotic Environments mainly involves 3 different areas: control, data
acquisition and media handling. In this paper we concentrate on issues related to the control do-
main, and we apply and extend the DogSim state diagram model for interconnected IDE devices,
first introduced in [3].

4.1. Device modeling

In DogSim, every DogOnt device concept has a state machine counterpart modeling the
dynamic behavior (in terms of states transitions) of devices belonging to that class. For example,
the dogont:Lamp class has a matching state machine that models the dynamic behavior of a
generic lamp (Figure 7).

While the state machine topology is directly related to the device class and to the function-
alities and states modeled in DogOnt, every single device instance deployed in a specific IDE
possesses different states and can transition from one state to another independently from the
other devices of the same class. In other words, while DogOnt device concepts define the general

11

lampMachine

OffState

lampMachine

OnState

lampOn

lampOff

LampMachine

Figure 7: The state machine template associated to the dogont:Lamp class

state machine topology, called in this paper “state machine template”, DogOnt device instances
correspond to distinct state machines, instantiating the former template.

Templates are defined during the DogOnt design process and come bundled with the envi-
ronment description primitives that the ontology provides. They define the skeleton of a state
machine representing every device behavior and include suitable customization points to sup-
port the machine instantiation in specific models. Figure 8 shows a sample WindowActuator
template, encoded in SCXML. Customization points are represented by means of a placeholder
XML entity (&id;).

<?xml version=’1.0’ encoding=’UTF-8’?>
<!DOCTYPE scxml SYSTEM "template.dtd">
<!-- @device=WindowActuator -->
<scxml xmlns="http://www.w3.org/2005/07/scxml" version="1.0">
<state id="&id;windowMachine">
<state id="&id;openState">
<transition event="&id;close" target="&id;closingState"/>

</state>
<state id="&id;closeState">
<transition event="&id;open" target="&id;openingState"/>

</state>
<state id="&id;closingState">
<transition event="&id;windowClose" target="&id;closeState"/>
<transition event="&id;tClose" target="&id;closeState"/>
<transition event="&id;open" target="&id;openingState"/>
<onentry>
<send sendid="&id;delay1" targettype="scxml" event="&id;tClose" delay="2000"/>
</onentry>
<onexit><cancel sendid="&id;delay1"/></onexit>

</state>
<state id="&id;openingState">
<transition event="&id;windowOpen" target="&id;openState"/>
<transition event="&id;tOpen" target="&id;openState"/>
<transition event="&id;close" target="&id;closingState"/>
<onentry>
<send sendid="&id;delay2" targettype="scxml" event="&id;tOpen" delay="2000"/>
</onentry>
<onexit><cancel sendid="&id;delay2"/></onexit>
</state>
<initial><transition target="&id;closeState"/>

</initial>
</state>

</scxml>

Figure 8: Sample WindowActuator template (graph and SCXML).

During the design of a specific IDE, ontology classes are instantiated and generic templates (as
the one shown in Figure 7) are referred to specific instances (e.g., to the “MyDesktopLamp”) by

12

simply renaming every state and every transition accordingly (Figure 9), i.e., by substituting the
“&id;” placeholder with the device instance unique name (URI).

MyDesktopLamp

OffState

MyDesktopLamp

OnState

MyDesktopLamp_lampOn

MyDesktopLamp_lampOff

MyDesktopLamp_Machine

Figure 9: The state machine associated to the myhome:MyDesktopLamp instance of the dogont:Lamp device class.

Whenever a new device class is added to the ontology, the corresponding state machine
template is developed by the ontology design team thus enabling IDE designers to concentrate
on specific IDE descriptions, without requiring intense and technically difficult modeling ef-
forts. Currently 102 template machines are defined, one per each device class descending from
dogont:Controllable. The joint availability of DogOnt device classes and corresponding
state machine templates supports the development of graphical design environments for archi-
tects and interior designers, which are not required to master any ontology related knowledge.

Different, possibly interacting, device instances are modeled as different state machine in-
stances combined through parallel composition, i.e., by representing them as orthogonal sub-
states of the full environment machine (see Figure 10).

Figure 10: A minimal IDE state diagram.

IDE state machines can receive and send events from/to both the surrounding world and the
orthogonal sub-states (regions in the UML notation) composing them. In the simple room ex-
ample, reported in Figure 10, the whole IDE machine accepts 4 input events (pressedOn,
pressedOff, lampOn and lampOff) and may generate 2 output events represented by the
arguments of the send construct, i.e., switchOn and switchOff. The pressedOn and
pressedOff events are external and user-generated, while the others are internal events ab-
stracting the actual device operations. According to the UML model semantics, connections
between different state machines are represented by identical naming of corresponding input and

13

output events.

Example 2. Consider the example in Figure 4 where a simple switch and a dimmer lamp are
modeled in DogOnt as two connected devices. Figure 11 shows a possible state machine repre-

Dimmer Lamp

On State

On Dimmed

Off

H

set(lightintensity)

on

onEntry:

if(0 < lightIntensity <100)

setLampLuminance(lightIntensity)

set(100)

stepUp

(lighIntensity+=10)

stepUp

(lighIntensity-=10)

set(lightintensity)

off

Single Button for light regulation

On

UnPressed

Pressed

press

release[!ticked] /

send(push)

release[ticked]

after 0.2s /

send(tick),

ticked=true

Off

steppingUp

steppingDown

tick/

send(stepDown)

tick/

send(stepUp)

tick[n>10]

tick[n>10]

onEntry:

if(n>10) n=0: n++

onEntry:

if(n>10) n=0; n++

H

push /

send(on)

tick /

send(On)

push /

send(off)

Figure 11: Example of non-trivial home device statemachines.

sentation of the devices used in that model, using non-trivial state machine templates.
In the top of Figure 11 the dimmer lamp state machine is modeled: it possesses one off

and one on state (dogont:OnOffState) and the on state has one “On Dimmed” sub state
modeling the current intensity of the lamp (see the state variable named “lightintensity”). This
inner state corresponds to the dogont:LightRegulationState concept defined in Do-
gOnt. Moreover the dimmer lamp possess a memory able to store the light intensity value when
the lamp is switched off. Such a property is typical of real-world dimmer actuators and it is
easily implemented in the state chart model reported in Figure 11 by exploiting a history node.
Whenever the history is empty, i.e., the dimmer lamp ha never been regulated to a dim value, the
transition between the history node and the OnDimmed state causes the lamp to be switched on
at the maximum intensity.

The bottom of Figure 11 shows an even more complex state machine template modeling the
typical operation of a single-button dimmer switch. A single button dimmer switch works as
follows: one quick pression of the button allows to switch the lamp on and off, while keeping

14

the button pressed allows to regulate the light intensity through a ramping mechanism that cycli-
cally increases and decreases the lamp illumination in a triangular-shaped intensity modulation.
The state machine reported in Figure 11 simulates the real switch behavior by exploiting a par-
allel state machine composed of two parts tackling the button pressure and the ramp generation,
respectively. Whenever the button is pressed (“press” event in the machine) the button mod-
eling machine (on the left) starts a cycling polling (modeled using the “after” event defined in
UML2.0 state diagrams) to check if the button is still pressed. While the button is pressed, the
polling cycle generates a tick event which is received by the right part of the state machine, which
is responsible for the ramp generation. The intensity ramp is obtained by “oscillating” between a
“Stepping Up” state, sending 10 tick-synchronized “stepUp”commands to the connected dimmer
lamp, and a “SteppingDown”state sending 10 “stepDown” commands. The ramp is repeated un-
til the button is pressed, i.e., until the tick event is received. Finally, when the button is released,
a push event is sent only if no tick occurred, thus accounting for the behavior associated to short
button clicks.

4.2. Connection modeling

Real world device-to-device communication is complex and cannot be completely addressed
through standard identical naming defined in UML, e.g., the general case of n-to-n connections
cannot be addressed. Therefore, in DogSim we model device interconnections by designing new,
special purpose, orthogonal machines (connectors) acting as event-translators, i.e., converting
each input event into a corresponding set of output events.

Figure 12: The connector machine skeleton.

The anatomy of a connector machine is extremely simple: it includes a single state and a
variable set of self-loop transitions translating a given input event into corresponding output
events (Figure 12). Connectors support modeling of any kind of state machine interactions with
a negligible complexity increase in the resulting IDE state diagram.

Example 3. Referring back to DogOnt, while device machines correspond to DogOnt device
classes, connector machines are used to model, in state diagrams, the same information repre-
sented by the union of the dogont:controlledObject and the dogont:generatesCommand
relationships. The former identifies which devices shall be interconnected, i.e., the state machine
names (used in all machine events, as better explained in the following subsection). The latter
specifies which notifications and commands shall be connected, i.e., which events of the two ma-
chines shall be bridged. For example, the connection between the switch and the dimmer lamp
shown in Figure 4 is represented by in the connector machine shown in Figure 13 where the On-
Notification of the switch has been mapped onto the switch onEvent and the OnCommand
of the dimmer lamp has been translated to the dimmerLamp onEvent. The same procedure

15

allows tackling the connection between the OffNotification of the switch and the OffCommand
of the lamp.

Connector

switchToDimmerConnectorMachine

switch_onEvent/

send(dimmerLamp_onEvent)

switch_offEvent/

send(dimmerLamp_offEvent)

Figure 13: The connector machine for the sample switch and dimmer lamp state machines.

It must be noticed that connector machines act on the abstract network representation deriv-
ing from DogOnt. As a consequence their behavior is completely independent from any network
specific issues which are demanded to the abstraction layer that translates DogOnt-based com-
mands and notifications to specific home-automation protocols. In case the IDE is powered by a
Dog instance, this abstraction layer is composed by all the available network drivers, while the
connector machines work only on technology neutral DogMessages.

5. Automatic Generation of IDE State Diagrams

State machines and connectors can be automatically generated given a complete IDE descrip-
tion in DogOnt, i.e., given the DogOnt ontology schema and instances. The DogOnt schema
defines the set of device templates, associated to every DogOnt class during the ontology de-
velopment process. The specific device instances, instead, are extracted by querying the IDE
model and their peculiar characteristics are exploited to specialize general templates into specific
machine instances. Connections between devices are extracted in the same way (ontology query-
ing) and automatically converted into connector instances. Discussing the automatic generation
process is out of scope in this paper (more details can be found in [3]), however a brief summary
of the generation workflow is reported.

Figure 14 shows the flow chart of the automatic generation algorithm. It works as follows:
first the ontology information (concepts and instances) is checked for consistency, reasoned to
extract implicit knowledge and transitively closed over the isA (hierarchy) relationship. Then,
the ontology is queried using a suitable set of SPARQL queries as part of the DogSim simula-
tor. (Figures 15,16) extracting the list of all dogont:Controllable instances, i.e., the list
of all devices that the IDE home gateway can potentially control. Subsequently, the automatic
generation process extracts from the DogOnt template library the state machine template associ-
ated to each of the found device instances. If the IDE ontology model only uses device classes
explicitly defined in DogOnt a corresponding template is always found. On the converse, if a
given device is defined as belonging to a user-defined subclass of a DogOnt device concept, e.g.,
as a user-definedColoredFlashLamp subclass of the standard dogont:FlashingLamp,
no template can directly be found. In such a case, an automatic generalization process starts and
navigates the device class hierarchy until a state machine template is available. In the worst case,
no template is found until the root of device concepts (dogont:Controllable) is reached;
if this happens the device state machine is not created and the generation process continues on
the next device instance. After the device machine generation, the ontology is queried again

16

Figure 14: The automatic state diagram generation process.

(Figure 16) to extract device interconnections, i.e., to find device instances connected by means
of the dogont:controlledObject and the dogont:genereatesCommand relations.
For each interconnection, suitable connectors are generated adding device-to-device interactions
to the generated IDE simulator. In the end, the complete IDE state diagram is saved as a standard
SCXML machine definition [20] and shared with other modules or applications.

SELECT ?controllable WHERE
{
?controllable rdfs:subClassOf dogont:Controllable
}

Figure 15: A Sample SPARQL query for extracting all controllable device classes.

6. Simulation

Automatic generation of IDE state diagrams and state diagram execution (simulation) is im-
plemented by the DogSim Simulation API. This section, in particular, analyzes the Simulation
case (Table 1), where all the IDE components are simulated and no real devices nor gateways
are deployed. Section 7 will later show how DogSim has been exploited to implement emulation
inside the Dog gateway.

DogSim is logically organized into 3 layers (Figure 17):

• the data layer hosting the DogOnt instance to be simulated, the repository of device tem-
plates and the resulting IDE SCXML machine;

17

SELECT DISTINCT ?x ?n ?v ?c ?d ?class
?cn WHERE
{
?x a dogont:Controllable .
?y a dogont:Controllable .
?x dogont:controlledObject ?y .
?x dogont:hasFunctionality ?f .
?f dogont:hasNotification ?n .
?n dogont:notificationValue ?v .
?n dogont:generateCommand ?c .
?d dogont:hasFunctionality ?f2 .
?f2 dogont:hasCommand ?c .
?c rdf:type ?class .
?class rdfs:subClassOf
dogont:DiscreteCommand .
?class rdfs:subClassOf [rdf:type
owl:Restriction; owl:onProperty
dogont:realCommandName;
owl:hasValue ?cn]
}

(a) discrete commands

SELECT DISTINCT ?x ?n ?v ?c ?d ?class
?cv WHERE
{
?x a dogont:Controllable .
?y a dogont:Controllable .
?x dogont:controlledObject ?y .
?x dogont:hasFunctionality ?f .
?f dogont:hasNotification ?n .
?n dogont:notificationValue ?v .
?n dogont:generateCommand ?c .
?d dogont:hasFunctionality ?f2 .
?f2 dogont:hasCommand ?c .
?c rdf:type ?class .
?class rdfs:subClassOf
dogont:ContinuousCommand .
?class rdfs:subClassOf [rdf:type
owl:Restriction; owl:onProperty
dogont:realCommandName;
owl:hasValue ?cn]
?class rdfs:subClassOf [rdf:type
owl:Restriction; owl:onProperty
dogont:CommandValue;
owl:hasValue ?cv]
}

(b) continuous commands

Figure 16: Sample SPARQL query for extracting connector data.

• the model generation layer hosting the software modules for template retrieval and cus-
tomization (Template Factory) and for implementing DogOnt querying and reasoning
functionalities (DogOnt2SCXML);

• the simulation layer where the state diagram execution engine is located.

External applications can access services offered by DogSim through an event-based service
access point (defined as a set of Java interfaces) shown on top of the 3rd layer in Figure 17.

6.1. Data Layer

The data layer has a twofold nature: it contains all the information sources needed for gener-
ating the state diagram model of a given IDE (generation) and it provides state diagram persis-
tence on file (simulation). It wraps 3 different resources:

• the DogOnt structure and instantiation modeling the given IDE;

• the template repository, currently implemented as a simple directory tree containing tem-
plate SCXML files;

• the IDE SCXML resulting from the generation step.

While the DogOnt instance and the Template Repository are mandatory and must be present
to enable a successful model generation, the final SCXML state diagram may either be kept in
memory for on the fly simulation or can be persisted on a SCXML file for enabling further reuse.

18

Figure 17: The DogSim logic architecture.

6.2. Model Generation Layer
The model generation layer hosts the two modules of DogSim: TemplateFactory and Do-

gOnt2SCXML and they implement solutions described in Section 4. The TemplateFactory man-
ages the Template Repository data and facilitates template retrieval based on the device instances;
it only supports direct template to device class mappings. Whenever a template is requested, the
Template Factory queries the Template Repository and if a match is found, returns a customized
template representing the device instance provided as input. If no matching template is found,
the module returns a retrieval error which can be managed by the calling software module, e.g.,
for triggering a generalization step, as done in DogOnt2SCXML.

DogOnt2SCXML manages ontology-related information by exploiting the HP Jena API [21]
to load and represent a DogOnt instantiation as a set of Java objects. Jena supports the ex-
ecution of the transitive closure of the DogOnt model by either exploiting an internal or an
external reasoner.8 In addition, it facilitates queries (SPARQL) based on the reasoned model.
DogOnt2SCXML implements the automatic generation algorithm described in Section 4, in-
cluding the automatic generalization of devices for which specific templates are not available.
It can either work on-the-fly, i.e., by generating an in-memory representation of the IDE state
diagram model, ready to be used for simulation, or it can generate a persistent SCXML [20]
representation of the IDE, which can either be fed to the DogSim engine or that can be reused
at later times. In both cases, DogOnt2SCXML exploits the services offered by the Template
Factory for creating the needed device machines and for instantiating connectors.

6.3. Simulation Layer
The simulation layer provides the functionalities needed for executing runtime simulations of

generated IDE state diagrams and offers an event-based interface allowing external applications

8See [3] for a comparison of reasoning performance in automatic state diagram generation for Pellet [22] and the
internal Jena reasoner [21].

19

to dynamically interact with the simulation. It exploits the Commons SCXML Apache library9

which implements an SCXML 1.0 compliant simulation engine and provides hooks for listening
to events and state changes of the simulated machines, and for injecting new events. Such an
engine is wrapped to provide a convenient, event-based, access API and to provide support func-
tionalities for either loading in-memory state machines generated by the generation layer or for
loading SCXML IDE machines stored on files.

7. Emulation

Emulation of IDE devices (rows 2 and 3 in Table 1) is addressed by integrating the DogSim
API and the Dog domotic gateway. This integration allows exploiting the simulation abilities
of DogSim in a mixed environment where state machine events can both be synthetic (as in
DogSim) or can stem from real device interactions thanks to the Dog messaging framework.
During emulation, the control and intelligence parts of Dog deal uniformly with real and simu-
lated devices, and which devices are actually simulated is unknown to the upper layers of Dog.
In fact, emulated devices are handled by a special “network driver,” (in Ring 1) that, from the
point of view of the gateway, is indistinguishable from other network drivers used to control real
plants. This new network driver, called EmuDog (Figure 18), integrates the DogSim Simulation
API in Dog by interfacing with the Dog event messaging bundle, MessageDispatcher and, the
DogLibrary and HouseModel bundles for handling ontology and templates.

Figure 18 shows how DogSim modules have been wrapped to interface Dog bundles. This
interfacing sugar is needed to let DogSim to either work as a standalone simulation environ-
ment or as on-line emulation driver in Dog. While the overall logic architecture is the same in
both cases, in EmuDog some ontology-related tasks are delegated, by means of the HouseModel
Adapter, to the Dog gateway, which already performs ontology closure and supports ontology
querying through the House Model bundle. Additionally, the HouseModel Adapter enables the
EmuDog driver to only attach the subset of devices needing emulation, while real devices are
directly managed by the corresponding network drivers (e.g., MyHome or KNX).

The EmuDog life-cycle inside Dog is divided into 2 main phases: initialization and runtime
operation.

In the initialization phase (Figure 19), the HouseModel loads the DogOnt ontology and the
corresponding instances and performs the transitive closure of the ontology. Then, EmuDog
queries the House Model discovering devices needing emulation, i.e., devices for which no net-
work driver has been found or devices that explicitly require emulation through a special property
Dogont:emulateThis being set.

For each found device, EmuDog builds the corresponding state machine, exploiting the Do-
gOnt2SCXML module.

Connector machines are then generated according to the following filtering rules:

a) If both connected devices are real, no connector is generated.

b) If at least one of the involved devices is virtual (emulated) then a suitable connector machine
is created.

9http://commons.apache.org/scxml/index.html

20

OSGi

DOG
Library

Configuration
Registry

Network Drivers

MyHome

Konnex

Platform
Manager

Message
Dispatcher

Executor

House
Model

Status

API

XML-RPC

Ring 0 Ring 1 Ring 2 Ring 3

DogRules

To/from the
House
Model

To/from the
MessageDispatcher

To/from the
Dog Library

Figure 18: EmuDog.

House Model Executor Dispatcher

Transitive
closure

(to)

EmuDog

?device to emulate

device instances
Generate

state machines

Load the
DogSim engine

Figure 19: The EmuDog initialization sequence diagram.

21

Generated state machines are loaded in the DogSim Engine integrated in EmuDog and the bundle
becomes ready.

At runtime (Figure 20), EmuDog works as any other Network Driver in Dog: it receives
DogMessages requesting device actions (e.g., to switch a lamp on) and injects them as new
events in the DogSim Engine. Running machines possibly change their states as a consequence
of the injected event and detected state changes are then packed into one or more DogMessages
and sent back to the MessageDispatcher bundle.

allLampsOFF

?lamp

all Lamps

* for all Lamp(?x)

Set(?x,OFF)

Validate

Set(?x,OFF)

Set(?x, OFF)

Set(?x1, OFF)

Set(?x2, OFF)

Event Injection
&

state change
detection
(~20ms)

stateChanged(device)

External App. API House Model Executor Dispatcher EmuDog MyHome ND

Network Drivers

Figure 20: Sample EmuDog runtime sequence diagram.

8. Experimental Results

DogSim and EmuDog have been tested on two distinct environments: a synthetic, but real-
istic, case study involving a 6-room flat (called Simple Home) equipped with several domotic
devices and a real building (Maison Equipée, Figure 21) composed of 3 domotic flats equipped
with KNX home automation and located in St.Marcel, Valle d’Aosta, Italy.

Figure 21: Maison Equipée.

The first environment allowed to benchmark the framework performance in a rather con-
trolled set-up, the second, on the other hand, enabled experimentation in a real-world setting.

22

8.1. Simple Home
The Simple Home is a synthetic environment composed of 6 rooms (see Figure 22) and

counting 120 different domotic devices. The corresponding DogOnt description includes 378
class definitions and 53 different semantic relations for what concerns the ontology schema, and
over 1400 concept instances describing specific devices, functionalities, states, commands and
notifications.

Figure 22: The Simple Home environment.

Simple Home devices are further divided into 25 real devices installed in two demo cases10

(Figure 23) and 95 emulated devices.

Figure 23: The Demo Cases used in the experimental setup.

Emulated devices belong to a set of 11 different DogOnt classes, for which state diagram
templates are available, with different diagram complexity (see Table 2).

While real devices are handled by the Dog MyHome and KNX network drivers, emulated
devices are managed by EmuDog which takes care of both single-device simulation and device
interconnection through the DogSim API. Connection handling (see Section 7), in particular,
manages 3 different configurations that occur in the Simple Home test:

10Hosting BTicino MyHome and KNX devices, respectively.
23

Table 2: Device Templates
DogOnt class #Inputs /#Outputs #States Timed transitions

Button 1/1 1 No
DoorActuator 4/0 5 Yes (4)
IRSensor 2/2 2 Yes (1)
Lamp 2/0 2 No
MainsPowerOutlet 2/0 2 No
ShutterActuator 5/0 5 Yes (2)
SimpleLamp 2/0 2 No
SmokeSensor 2/2 2 Yes (1)
Switch 2/2 2 No
ToggleRelay 1/2 2 No
WindowActuator 4/0 4 Yes (2)

• Connections between real devices connected to the same domotic plant are not managed
by Dog, instead they already exists as part of the domotic network (wires and/or address
associations).

• Connections between real devices belonging to different networks are managed by the
Rules bundle already available in Dog, which enables cross-plant inter-operation [23].

• Connections among emulated devices as well as connections between real and emulated
devices are managed through the EmuDog bundle.

The resulting emulation state diagram includes 95 device machines and 33 connectors, which
are represented as orthogonal state diagrams counting a total amount of 384 defined states.

We measured elapsed times for model generation and model execution inside Dog, exploiting
the House Model reasoning facilities (Jena OWL-Micro reasoner) for ontology-related tasks. In
the model generation phase, two operations have been timed: the ontology loading and inference
time to, measuring the time needed to load the DogOnt model of the SimpleHome and to compute
the ontology closure; the template instantiation time ti, measuring the average time required to
instantiate all the templates associated to emulated devices.

Table 3 reports the corresponding figures, averaged over 10 test runs, obtained by running
the tests on a double-core laptop PC, with an Intel Centrino2 P8400 processor and 4 GBytes
of RAM11. CPU times needed for ontology loading/closure (House Model) and for template
instantiation in EmuDog are comparable with the time required for the gateway startup and they
are only needed at the beginning (one-shot operation). In particular, the template instantiation
time ti is around 6 s and is mainly due to the execution of SPARQL queries on the House Model.
The highest time consumption contribution is due to the Jena API, which already proved to scale
up to huge information bases (billion triples), much larger than the usual size of DogOnt building
models (few thousand triples for very complex buildings).

Runtime execution of EmuDog is completely independent from ontology-related technolo-
gies. EmuDog employs less than 0.5 s for loading the 95 state machines in the Simple Home
test. Event handling is very efficient and requires negligible times (< 5ms) for unpacking Dog
Messages and injecting them into the simulator engine, as well as for detecting machine state
changes and for packing them back into Dog Messages. Timing of EmuDog-mediated interac-
tions is comparable to, and sometimes faster than, timing of interaction between real devices

11Acer Aspire AS5930G, P8400, 4GBytes of RAM, 250GBytes HDD

24

Table 3: Model generation performance on the SimpleHome testset.

Time Interval Duration (s)

to 6.15 (House Model)
ti 6.36 (EmuDog)

Total generation time 12.51

managed through the MyHome and KNX drivers, thus allowing device emulation within the
(weak) real time constraints required by smart environments. This result supports the adoption
of EmuDog for emulation (HIL simulation) of IDE components and proves the effectiveness of
the DogSim framework in simulating and emulating real-world complex IDEs like offices and
smart buildings.

8.2. Maison Equipée

Maison Equipée is a home facility designed to help injured or people with disabilities to
experiment with home assistive technologies including home automation solutions. It is owned
by the public health administration of the Regione Valle d’Aosta and is mainly aimed at helping
people with recent impairments to conceive, design and adapt their homes to their new conditions
(i.e., to better tackle their physical impairments). The home is designed to offer medium term
(three months in mean) residences allowing people to identify their specific home requirements
and to live in a friendly and accessible home like setting while adapting their own homes. It is
composed of 3 differently sized flats (Figure 24): two of them (Trait1 and 2) are designed for
families and the remaining one for single patients (Maison Tech).

Figure 24: Simplified floorplan of Maison Equipée.

All the flats in Maison Equipée are instrumented with KNX home automation, each with
different components to allow people to experiment with an appreciable variety of solutions on
the market. Over 250 devices are installed in the three flats, divided as follows: 115 devices in

25

Trait1, 96 devices in Trait2 and 73 devices in Maison Tech. They include simple lamps, dimmer
lamps, shutter, window and door actuators, infrared presence sensors, flooding detection systems,
smoke alarms, etc.

We have been collaborating with the Maison Equipée management staff for over 6 months
deploying different mixed configurations (real plus simulated devices) with the aim of design-
ing and experimenting the next evolution of automation policies of the 3 flats. In particular,
we exploited the DogSimg and EmuDog framework for supporting on-the-field testing of future
configurations, e.g., simulating new actuators or new lamps controlled by real buttons, and for
supporting home-to-user adaptation. In the latter case, we exploited the state machine infras-
tructure presented in this paper to allow reconfiguration of the environments responding to user
needs. We experimented with home alarm reconfiguration exploiting connector machines to dy-
namically redirect alarms to either visual or auditive feedback depending on the user living in
the home: visual feedback for deaf persons, auditory signals for blind people, combined auditory
and visual alerts for families composed of normal and diversely able persons.

Although we’ve been experimenting for a couple of months, many open perspectives still
need to be investigated and new application possibilities can be easily foreseen for Dog-powered
environments. While achieving a quantitative and formal evaluation of the effectiveness of the
proposed solution in the real-world is an open issue, we received very positive feedback from the
Maison Equipée management staff, which was amazed from the variety of possible configura-
tions that we have been able to experiment and evaluate together, without implementing a single
change in the physical setting of the KNX home automation plant.

9. Conclusions

In this paper a framework for automatically generating and deploying state chart device sim-
ulators and emulators from ontology descriptions of domotic environments has been presented.
The presented approach provides domotic system designers with both a powerful validation tool
and an easy to deploy incremental development framework. The DogSim simulator and the Do-
gEmu emulation bundle have been developed and integrated inside the Domotic OSGi Gateway
(Dog), supporting the full range of possible emulation scenarios, from initial abstract design to
final IDE deployment through Hardware In the Loop simulation. We tested the resulting plat-
form on a synthetic, yet realistic, case study involving a 6-room flat and we deployed it in a
real-world setting at the Maison Equipée. Evaluation involved performance benchmarking on a
mixed emulation scenario with 25 real devices variously interacting with 95 emulated devices,
and real-world experimentation with the Maison Equipée management staff. Results show that
the approach is feasible and can easily address the complexity of real home environments. Fu-
ture works will address deployment of the proposed approach in the real-world design work-flow,
tackling open issues such as: effective interfaces, integration with currently existing CAD solu-
tions, integrated development and automated deployment of designed solutions, etc.

References

[1] D. Bonino, F. Corno, DogOnt - Ontology Modeling for Intelligent Domotic Environments, in: A. Sheth, S. Staab,
M. Dean, M. Paolucci, D. Maynard, T. Finin, K. Thirunarayan (Eds.), International Semantic Web Conference,
number 5318 in LNCS, Springer-Verlag, 2008, pp. 790–803.

[2] D. Bonino, E. Castellina, F. Corno, The DOG Gateway: Enabling Ontology-based Intelligent Domotic Environ-
ments, IEEE Transactions on Consumer Electronics 54(4) (2008) 1656–1664.

26

[3] D. Bonino, F. Corno, Dogsim: A state chart simulator for domotic environments, in: Eighth Annual IEEE
International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 61–
66.

[4] D. J. Cook, J. C. Augusto, V. R. Jakkulaa, Ambient intelligence: Technologies, applications, and opportunities,
Pervasive and Mobile Computing Volume 5, Issue 4 (2009) 277–298.

[5] M. Jimenez, F. Rosique, P. Sanche, B. lvarez, A. Iborra, Habitation: A domain-specific language for home automa-
tion, IEEE SOFTWARE 26 (2009) 30–38.

[6] D. Alonso, C. Vicente-Chicote, O. Barais, V3Studio: A Component-Based Architecture Modeling Language,
in: Engineering of Computer-Based Systems, IEEE International Conference on the, volume 0, IEEE Computer
Society, Los Alamitos, CA, USA, 2008, pp. 346–355.

[7] G. Conte, D. Scaradozzi, A. Perdon, M. Cesaretti, G. Morganti, A simulation environment for the analysis of home
automation systems, in: Proc. Mediterranean Conference on Control & Automation MED ’07, pp. 1–8.

[8] K. Sycara, Multi Agent Systems, AI magazine 19(2) (1998) 79–92.
[9] G. Conte, D. Scaradozzi, Modeling and Control of Complex Systems, CRC Press, p. Ch.15.

[10] D. Harel, Statecharts: A visual formalism for complex systems, Science of Computer Programming 8(3) (1987)
231–274.

[11] O. M. G. OMG, OMG Unified Modeling Language (OMG UML) v2.0, Technical Report, Object Management
Group OMG, 2007.

[12] D. Bonino, F. Corno, Interoperation modeling for intelligent domotic environments, in: M. Tscheligi, B. de Ruyter,
P. Markopoulus, R. Wichert, T. Mirlacher, A. Meschterjakov, W. Reitberger (Eds.), Ambient Intelligence, volume
5859 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2009, pp. 143–152.

[13] T. Saito, I. Tomada, Y. Takabatake, J. Ami, K. Teramoto, Home gateway architecture and its implementation, IEEE
Transactiona on Consumer Electronics, 2000. ICCE. 2000 Digest of Technical Papers. 46 (2000) 194 –195.

[14] HGI, Home gateway technical requirements: Residential profile, Technical Report, Home Gateway Initiative, 2008.
[15] S.-L. Chung, W.-Y. Chen, MyHome: A Residential Server for Smart Home, Knowledge-Based Intelligent Infor-

mation and Engineering Systems 4693/2007 (2007) 664–670.
[16] D. Winer, XML-RPC Specification, Technical Report, UserLand Software, 2003.
[17] D. Drusinsky, Modeling and Verification Using UML State Charts, Elsevier, 2006.
[18] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language User Guide, Addison Wesley Professional,

2005.
[19] S. Manesis, K. Akantziotis, Automated synthesis of ladder automation circuits based on state-diagrams, Advances

in Engineering Software 36, Issue 4 (2005) 225–233.
[20] J. Barnett, R. Akolkar, R. Auburn, M. Bodell, D. C. Burnett, J. Carter, S. McGlashan, State Chart XML (SCXML):

State Machine Notation for Control Abstraction, Technical Report, W3C Working Draft, 2009.
[21] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, K. Wilkinson, Jena: implementing the semantic

web recommendations, in: WWW Alt. ’04: Proceedings of the 13th international World Wide Web conference on
Alternate track papers & posters, ACM, New York, NY, USA, 2004, pp. 74–83.

[22] B. Parsia, E. Sirin, Pellet: An OWL DL Reasoner, in: International Semantic Web Conference, p. (poster).
[23] D. Bonino, E. Castellina, F. Corno, Automatic Domotic Device Interoperation, IEEE Transactions on Consumer

Electronics 55(2) (2009) 499–506.

27

