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Abstract

SOLID TUMORS MUST RECRUIT AND FORM NEW BLOOD VESSELS FOR MAINTENANCE, GROWTH AND DETACHMENTS OF

METASTASES. DISCOVERING DRUGS THAT BLOCK MALIGNANT ANGIOGENESIS IS THUS AN IMPORTANT APPROACH IN CAN-
CER TREATMENT AND HAS GIVEN RISE TO MULTIPLEin vitro AND in silico MODELS. THE PRESENT HYBRID INDIVIDUAL

CELL-BASED MODEL INCORPORATES SOME UNDERLYING BIOCHEMICAL EVENTS RELATING MORE CLOSELY THE CLASSICAL

CELLULAR POTTSMODEL (CPM) PARAMETERS TO SUBCELLULAR MECHANISMS AND TO THE ACTIVATION OF SPECIFIC SIG-
NALING PATHWAYS . THE MODEL SPANS THE THREE FUNDAMENTAL BIOLOGICAL LEVELS: AT THE EXTRACELLULAR LEVEL

A CONTINUOUS MODEL DESCRIBES SECRETION, DIFFUSION, UPTAKE AND DECAY OF THE AUTOCRINEVEGF; AT THE CEL-
LULAR LEVEL , AN EXTENDED LATTICE CPM, BASED ON A SYSTEM ENERGY REDUCTION, REPRODUCES CELL DYNAMICS

SUCH AS MIGRATION, ADHESION AND CHEMOTAXIS; AT THE SUBCELLULAR LEVEL, A SET OF REACTION-DIFFUSION EQUA-
TIONS DESCRIBES A SIMPLIFIEDVEGF-INDUCED CALCIUM-DEPENDENT INTRACELLULAR PATHWAY. THE RESULTS AGREE

WITH THE KNOWN INTERPLAY BETWEEN CALCIUM SIGNALS AND VEGF DYNAMICS AND WITH THEIR ROLE IN MALIGNANT

VASCULOGENESIS. MOREOVER, THE ANALYSIS OF THE LINK BETWEEN THE MICROSCOPIC SUBCELLULAR DYNAMICS AND

THE MACROSCOPIC CELL BEHAVIORS CONFIRMS THE EFFICIENCY OF SOME PHARMACOLOGICAL INTERVENTIONS THAT ARE

CURRENTLY IN USE AND, MORE INTERESTINGLY, PROPOSES SOME NEW THERAPEUTIC APPROACHES, THAT ARE COUNTER

INTUITIVE BUT POTENTIALLY EFFECTIVE.

KEYWORDS: CELLULAR POTTS MODEL · VASCULAR ENDOTHELIAL GROWTH FACTOR· TUBULOGENESIS· CALCIUM

1 Introduction
Blood vessel formation and development is a multiscale process, driven by the activation of endothelial cells (ECs) and
occurring both in the embryo and in the adult (for a review, see [13]). In the adult, vascular progression plays a key role
under several physiological conditions, such as in ovary and uterus during the menstrual cycle, in mammary glands
during lactation and in granulation tissue after wound healing. It is a complex and highly regulated phenomenon, con-
trolled by coordinated molecular and cellular events operating at different levels. When this equilibrium is disrupted
vascularization becomes pathological, as in the cases of chronic inflammatory diseases, vasculopathies, degenerative
disorders, tissue injury occurring in ischemia, and cancer progression [15]. In particular, tumor-derived vessels, which
differ from their ”normal” counterpart in morphology (with irregular diameters, high tortuosity, random branching
and absence of a hierarchical arrangement), permeability and blood flow [4, 12, 32], provide the nutrition and oxy-
gen needed by malignant cells to grow, and give them an access into the circulation, eventually causing metastases
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[13, 15]. The switch to the vascular phenotype is thus a pivotal transition in cancer development, leading to a fast
progression and to a potentially fatal stage of tumors beyond which they become extremely difficult to treat. Existing
therapies are in fact rarely effective and, consequently, the survival rates decrease [14, 74]. The discovery of efficient
anti-angiogenic therapies represents therefore a fundamental issue in biomedical research [16] and has given rise to
multiple experimental models (see reviews [3, 13, 53]), whose aim is to understand the key mechanisms involved in
malignant vascularization and to identify interventions potentially able to disrupt them.

Figure 1:Simplified schematic representation of VEGF signaling cascades in the control of tumor-derived endothelial cell tubu-
logenesis. VEGF tyrosine kinase receptors activate a series of intracellular events inducing the recruitment of phospholipases A2
(PLA2) and eNOS and the subsequent release of arachidonic acid (AA) and nitric oxide (NO) respectively. Both intracellular mes-
sengers are able to activate plasma-membrane calcium channels. Increases in cytosolic calcium levels trigger motility, adhesion and
cytoskeletal reorganization of TECs, crucial events for the capillary-like network formation. The dashed arrows stand for indirect
pathways not completely included in the model.

Among others, classictubulogenicassays analyze the ability of tumor-derived endothelial cells (TECs), cultured
in Matrigel (a commercial product mimicking the extracellular matrix), to autonomously organize in a bidimensional
network, which resembles a primitivein vivo capillary-like plexus [20]. This process, also calledin vitro vasculoge-
nesis, is largely mediated by the activity of diffusible chemical morphogens (such as VEGF isoforms [16]). They in
fact initiate a series of calcium-dependent downstream pathways, which involve a number of intracellular messengers
(such as nitric oxide (NO) and arachidonic acid (AA) [10, 21, 23, 34, 46, 48]) and regulate fundamental biophysical
properties of TECs, such as motility, adhesion and elongation [7, 47, 49, 51, 52, 63], see Fig. 1. Indeed, the complex-
ity of these multilevel mechanisms presents a number components that could be interfered in multiple ways to inhibit
malignant vascular progression. This large combinatorial space of possible therapies is obviously unfeasible to search
using only laboratory-based biological methods, but can be efficiently analyzed with computational simulations real-
istically reproducing the experimental system. With this aim, we propose a multilevel and hybrid search-based model
replicating thein vitro TEC tubulogenesis. As shown in Fig. 2, it integrates:

• at the cellular level, an extended Cellular Potts Model (CPM), a lattice-based Monte Carlo technique which
follows an energy minimization philosophy [25, 26, 29, 39], is the core of the simulation system and describes
the phenomenology of TEC population, capturing the mechanisms of cell migration, polarization and adhesion.
With respect to previous applications of the CPM, the model presented here is characterized by an innovative
and realistic compartmentalized cell approach;
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• at the molecular level a continuous model describes the extracellular VEGF profile, dealing with its production,
diffusion and degradation, while a set of reaction-diffusion equations reproduces simplified intracellular VEGF-
induced cascades, which regulate cytosolic calcium entry and homeostasis.

The interface of these multiple submodels is another novel feature of this work. In fact, differently from previous
similar individual cell-based approaches [6, 41, 42, 43], cells properties, behaviors and mutual interactions are in this
case regulated by the VEGF-induced calcium-dependent molecular dynamics, via reasonable simplified intracellular
cascades, and the whole capillary network thus emerges as a consequence of realistic and relevant biochemical and
biomechanical mechanisms.

Figure 2: Hierarchy of scales and environments, corresponding biological mechanisms and modeling approaches. Information
flows from microscopic biochemical processes to macroscopic phenomenology andvice versa.

The rest of this paper is organized as follows. We first clarify in Section 2 the assumptions on which our cell-based
approach is based. We then show, in Section 3, the model capability to realistically reproduce selected features of
tubulogenicassays. Then, after confirming the efficiency of some currently available therapies, we turn to suggest
novel and experimentally testable strategies, which have the potential to disrupt TEC capillary formation. Finally, in
Section 4, we discuss our results and propose some interesting extensions and improvements of the work.

2 Mathematical Model

Our multilevel model is based on the following set of assumptions, see again Fig. 1 for a diagrammatic representation:

• the TECs release VEGF in the extracellular medium, where it diffuses and degrades at constant rate [6, 24, 41,
43, 68, 76];

• VEGF acts as a chemoattractant for the cells, which move in the direction of increasing chemical concentrations:
in particular, empirical data suggest that, because of the high viscosity of the experimental Matrigel, their motion
is overdamped and the force required is proportional to the velocity, and thus to the chemical gradient [2, 42, 76];

• during migration TECs remodel their cytoskeleton and polarize, differentiating in a leading and a trailing surface.
The resulting elongated morphology causes TEC to have an anisotropic migration (e.g., persistence) in the
direction of their longer axis [2, 31, 59]. Such a shape-dependent motility is essential for cell alignment in
vascular chords, as demonstrated in [31, 42];
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• VEGF mediates the overall process also by binding specific cell surface tyrosine kinase receptors and by initi-
ating a sequence of intracellular cascades, which result in the indirect production of second messengers arachi-
donic acid (AA) and nitric oxide (NO) in the sub plasmamembrane regions [10, 23, 34, 46, 47, 75]. These
biochemical events are triggered, respectively, by enzymes PLA2 and eNOS, whose activity is not explicitly
included in our model, since it does not influence its final outcome;

• NO and AA diffuse and degrade in a finite time, producing eicosanoids [33] and peroxynitrites [57], respectively;

• within cell cytosol NO production is triggered also by AA itself [21, 46, 48];

• NO and AA open the relative and independent calcium channels in the cells’ plasmamembrane, leading to
extracellular calcium entry [20, 21, 46, 47, 75, 78].

• calcium ions, which are reversibly buffered by proteins including calmodulin and others and mitochondria (with
a strong influence in the effective diffusion and a decrease in the overall level [1, 5, 7, 8, 11, 35]), mediates
cell biophysical properties such as motility, adhesion strength, cytoskeletal elasticity, and chemotactic response
[7, 47, 49, 51, 52, 63]. Finally, Ca2+, which also enhances the rates of AA and NO biosynthesis within cell
cytosolic region with a positive feedback mechanism [47], can be subsequently extruded back from cells by
plasmamembrane calcium ATPase and Ca2+-Na+ exchangers [28, 30, 77].

It is useful to stress that TECs phenomenology is mesoscopically described with the discrete Cellular Potts Model,
while both the extracellular VEGF dynamics and the intracellular VEGF-induced calcium-dependent cascades are
approached with standard continuous methods. These different submodels are then interfaced and integrated in a
hybrid environment, and directly impact each others, with a constant interplay and flux of information between the
different levels, as we explicitly clarify in the remainder of this section.

2.1 Cell-Level Model

The natural level defined inin vitro capillary formation is the cell. Accordingly, the core of our simulation framework
is an extended Cellular Potts Model, which naturally handles individual cell behaviors and interactions. The CPM
is a discrete lattice Monte Carlo generalization of the Ising’s model, based on an energy minimization principle. All
CPM applications represents the simulated system on a numerical grid (in this work, since we wish to compare our
simulations to experimental cultures, where the vascular networks are essentially monolayers, we use a bidimensional
domain [41, 42, 43, 68]), where each sitex is labeled with an integer index,η(x). Collection of lattice sites with the
same index represent discrete objects, which can also have an additional attribute, a typeτ(η). The borders between
sites with different spins define objects’ membranes. In classic CPMs the cells are typically treated as undifferentiated
objects, which can rearrange to produce cell motion and shape changes. We here introduce an innovative and realistic
compartmentalized cell extension of the CPM (see Discussion for a more detailed comment): the lattice subdomains
do not represent whole cells, but subcellular compartments which, in turn, form the considered individual cells. In
particular, within the same cell,σ, we differentiate between the nucleus (a central cluster of typeτ = N , whose
location and geometry is estimated from experimental images) and the surrounding cytosolic region ofτ = C, as
shown in Fig. 3. The plasma and the nuclear membranes are defined as the borders between the cytosolic compartment
and, respectively, the medium and the nuclear region. Obviously, this is a more biologically accurate representation
of cells, whose dimensions are given in Table I and reflect the most usual morphologies observed in classical cultures
[20, 54, 75]. The extracellular environment, e.g. the experimental-like Matrigel, is modeled as a special generalized
cell σ = 0 of typeτ = M . It is assumed to be homogenously distributed throughout the simulation domain, forming
no large-scale structures and thus without volume or surface attributes as done in [41, 42, 43]. The extracellular
substrate is also static and passive: cells can only change it by occupying sites that, once abandoned, return to a matrix
state.

The TECs gradually and iteratively rearrange to reduce a pattern effective energy, given by an hamiltonianH. The
functionalH contains a variable number of terms, consisting in cell attributes (e.g. volume, surface), true energies (e.g.
cell-cell adhesions), and terms mimicking energies (e.g., response to external chemical stimuli), and its local gradient
is the ”force” acting in any point of the simulation domain. The energy minimization core algorithm is a modified
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Figure 3:The typical CPM grid and representation of compartmentalized cells and ECM. Each lattice sitex is uniquely charac-
terized by the couple (σ(x), η(x)), denoting, respectively, the cell and the subcompartment it belongs to. In the figure there are two
different cells and their virtual Matrigel, lattice locations labeled with (0,M). The bold lines denote cell boundaries.

Metropolis method for Monte Carlo dynamics [29, 45]. It is able to implement the natural exploratory behavior of
biological individuals, via thermal membrane fluctuations and biased extensions and retractions of their membranes.
Procedurally, a lattice site,xsource, is selected at random and assigns its state (σ, η) to one of its unlike neighbors,
xtarget, which has also been randomly selected. The hamiltonian of the system is computed before and after the
proposed update: ifH is reduced as the result of the copy, the change is accepted, else the Boltzmann probability
function

P (∆H) =

 e−∆H/T ∆H > 0 ;

1 ∆H ≤ 0 ,
(2.1)

is used, where∆H is the net difference in the system energy andT is an effective Boltzmann temperature. A total
of n proposed updates, wheren is the number of sites of the lattice, constitutes a Monte Carlo Step (MCS), which is
the basic iteration and the unit of time used in the model. Classic CPMs use a temperatureT constant for the whole
system, giving the idea of a generic and homogeneous ”culture motility” [41, 42, 43, 65]. We instead defineT as
a sort of agitation rate relative to the moving compartment:T = T (η(xsource)). Specifically, for each TECσ and
for τ(η(xsource)) = N , T (η(xsource)) = TN is a constant low value mimicking the passive motion of the nucleus,
which is dragged by the surrounding cytosolic region. Forτ(η(xsource)) = C, T (η(xsource)) is instead a measure of
the intrinsic motility ofσ, the cell to whichxsource belongs. It in fact qualitatively reproduces the frequency of the
continuous, random extensions and retractions of cytosolic cells’ pseudopods, which is mediated by the intracellular
calcium concentration in a dose-dependent manner, as provided by wound healing experiments [22]:

T = T (η(xsource)) = T0

[
1 + C̃a(σ)

1 + hC̃a(σ)

]
, (2.2)

whereσ is, as seen, the TEC to which cytosolic compartmentη(xsource) belongs to. Moreover, here and in the
following, C̃a(σ) = [Ca(σ)/Ca0]−1 is a positive value, sinceCa(σ) =

∑
x∈σ Ca(x) corresponds to the actual total

calcium concentration ofσ, that must be larger thanCa0, the basal level of the ion in resting TECs (below which the
cells die). The value ofCa0 can be experimentally estimated (see Table I) and used to evaluate, by comparison with
biological cultures, the basal properties of the simulated cells, such as basal motilityT0. The generalization to more
cell populations each with a different calcium dependent motility is straightforward.

The hamiltonian of the TEC culture, whose minimization, as seen, drives the patterning is:

H = Hshape + Hadhesion + Hchemical + Hpersitence. (2.3)
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Hshape takes into account of cell-shape remodeling, which can be active, due to cytoskeletal stresses, or passive, due
to mechanical strains, differential adhesion or as a result of the migration of other cells. Such deformations cause
energy changes, which are written in the following elastic-like form:

Hshape = Harea + Hperimeter =
∑
σ,η

[
µa(σ, η)(aσ,η −Aτ(η))2 + µp(σ, η)(pσ,η − Pτ(η))2

]
, (2.4)

whereaσ,η andpσ,η are, respectively, the actual surface and perimeter of compartmentη of cell σ, while Aτ(η) and
Pτ(η) are their target measures (the dimensions of the nucleus and the cytosol region which a typical TEC would have
in absence of external forces and in the presence of adequate nutrients, see Table I).µa andµp are penalty coefficients
controlling, respectively, the growth and the elasticity of the subcellular compartments (e.g., deviations ofaσ,η and
pσ,η from Aτ(η) andPτ(η) increase the functionalH). In accordance with the observation that the cells do not grow
or divide during tubule formation [41, 42] and that their nuclei maintain the initial circular structure, for anyσ we set
high constant values ofµa(σ, η), η : τ(η) = N,C, and ofµp(σ, η), for η : τ(η) = N , see also Table I. For each TEC
σ, µp(σ, η), whereτ(η) = C, is instead a measure of the ease with which it changes its shape. Since experimental data
suggest that increases in cytosolic calcium facilitate cytoskeletal reorganization, almost in a dose-dependent manner,
we set:

µp(σ, η) = µp,0 exp
(
−kC̃a(σ)

)
, (2.5)

whereµp,0 is the intrinsic cells’ resistance to compression at the same basal calcium concentrationCa0 andC̃a(σ) is
as in Eq. (2.2). In particular, we use an exponential function because for highC̃a(σ), µp(σ, η) → 0: this mimics the
biologically provided fact that very high calcium levels promote continuous and dramatic actin-myosin interactions,
resulting in quick changes in cell organization and shape in response to external stimuli (such as chemotaxis).

Hadhesion phenomenologically implements the general extension of the Steimberg’s differential adhesion hypoth-
esis (DAH) [29, 72, 73]. Specifically, we introduce two hierarchies of contact energies, external and internal: the idea
is to differentiate between the real cell-cell adhesion and the generalized contact energy between nuclei and cytosols
within the same cells:

Hadhesion = Hext
adhesion + Hint

adhesion =

=
∑
x,x′

[
Jext

C,C(x, x′)(1− δσ(x),σ(x′)) + J int
C,N (x, x′)(δσ(x),σ(x′))(1− δσ(x),σ(x′))

]
, (2.6)

wherex, x′ represent two neighboring lattice sites,δx,y = {1, x = y; 0, x 6= y} is the Kronecher delta, and theJs
are binding energies per unit of area. Since, obviously, cells can not break in small fragments, we fix a high negative
bond energyJ int

C,N for each interface nucleus-cytosol.Jext
C,C(x, x′), whereσ(x) 6= σ(x′), models instead the probability

of formation of local intercellular VE-cadherin-VE-cadherin complexes between cellsσ(x) andσ(x′). In particular,
it is the joint probability that the calcium ions in each of the two cells enhances the local cadherins’ avidity (in a
dose dependent manner), biologically either with quantitative changes in their expression or with the activation of the
already exposed molecules. The resulting function is then assumed to be:

Jext
C,C(x, x′) = J0 exp

(
−jC̃a(x)C̃a(x′)

)
, (2.7)

whereC̃a(x) = [Ca(x)/(Ca0/(aσ(x)))]−1 is the local (e.g., per lattice site) mean of̃Ca(σ). J0 represents the typical
adhesive force of resting TECs, estimated by qualitative observations of experimental cultures. Also in this case we
use an exponential function because high calcium levels result inJext

C,C(x, x′) → 0, the computational counterpart
of highly adhesive cells. The dramatic VEGF-induced calcium accumulation in the sub-plasmamembrane regions
generates in fact clusters of VE-cadherins along the cell spreading front and in lamellipodia protrusions, which play
a crucial role in the formation and stabilization of the nascent capillary network. We do not include the case of the
contact between nuclei of different cells because the model will be such that they never touch, as well as we do not
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consider an adhesion energy between the cells and the virtual Matrigel (i.e.,Jext
C,M = 0), since in our approach the

extracellular medium is modeled only as a rigid and passive substratum.
The TEC overdamped chemotactic migration is implemented by including a linear term in the energy function

[64]:

∆Hchemotaxis = µch(σ(xsource)) [Q(xtarget)−Q(xsource)] , (2.8)

wherexsource andxtarget are, respectively, the source and the final lattice sites randomly selected during a trial update
in a MCS: in particularxsource is a cytosolic site of cellσ andxtarget is one of its medium neighbors (i.e.,xsource is
a cell membrane site ofσ). The parameterµch is the strength of the chemotactic response of cellσ:

µch(σ(xsource)) = µch,0C̃a(σ(xsource)), (2.9)

whereµch,0 is a basal chemical sensitivity.µch(σ(xsource)) ≥ 0 becausẽCa(σ(xsource)) ≥ 0 as recalled after Eq.
(2.2). This relation enforces the direct influence of the current calcium level in the avidity of VEGF surface receptors,
whose activity mediates the cell chemotactic force. In particular, (2.9) is a strong improvement of this work w.r.t.
similar models, where all simulated cells are assumed to experience the same chemical response, see [41, 42, 43].Q
is the measure of the local extracellular VEGF concentrationV stimulating cell pseudopod extension:

Q(x, V ) =
∑

x′
V (x′), (2.10)

wherex ∈ {xsource, xtarget} andx′ are all the matrix first-nearest neighbors ofx. However, the cell chemotactic
response is also mediated by the homophilic transmembrane VE-cadherins which, as long as adhesion functions, have
an important signaling role. They in fact act as local inhibitors of VEGF-induced pseudopodal extensions at cell-cell
boundaries: consequently, only the interfaces between the cells and the medium respond to the chemical stimulus.
This process, calledcontact inhibition of chemotaxis, has been widely demonstrated to possibly contribute to ECs’
self organization into capillary networks and is modeled by imposingµch = 0 at cell-cell interfaces [43].

Normal motion in CPMs is Aristotelian: velocity is proportional to the applied force with no inertia, and the cells
typically undergo a random walk with relatively short persistence lengths. While this dynamics is appropriate in several
biological contexts, vascular cells are characterized by a persistent migration in the direction of their longer axis. To
model such a cell-shape-dependent movement, a number of CPM extensions have preassigned target directions or
target velocity components to each individual [39]. We instead derive cells’ inertial motion from their instantaneous
velocity, as a running mean over their past movements (as done also in [25, 65]):

Hpersistence =
∑

σ

µpers(σ)||v(σ, t)− v(σ, t−∆t)||2, (2.11)

where

v(σ, t) =
cm(σ, t)− cm(σ, t−∆t)

∆t
(2.12)

is the instantaneous velocity of the center of mass of cellσ (cm(σ) = a−1(σ)
∑

x:σ(x)=σ x) and∆t is equal to one
MCS. The function for the non-dimensional penalty coefficientµpers controlling the persistence time is:

µpers = µpers,0

[
L(σ)
L0

− 1
]

, (2.13)

whereL(σ) is the current length of cellσ along its longer axis (derived from the inertia tensor approximating the
virtual cells with ellipses) andL0 its initial value (the initial cell diameter, see Table I). ObviouslyL(σ) ≥ L0, since
we assume that the cells deform but do not grow during patterning. Equation (2.13) describes the fact that, after
analogous chemical stimulations, elongated vascular cells have seen to have a longer persistent movement than round
cells [31]. This is due to the increasing time needed by polarized actin filaments to reorient into a new direction. In
particular, ifµpers = 0 cells undergo uncorrelated Brownian motion, while ifµpers is very large the motion is almost
ballistic. In this way, the cells’ movements depend both on their past movement and on their internal state.
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TABLE I

PARAMETERS GOVERNING THE CELLULAR POTTS FRAMEWORK

PARAMETER DESCRIPTION MODEL VALUE [UNIT: 1 PX ≈ 1 µM ] REFERENCE

AN area of nuclear compartment 100 [µm2] [75]
PN perimeter of nuclear compartment 35 [µm] [75]
AC area of cytosolic compartment 1150 [µm2] [75]
PC perimeter of cytosolic compartment 150 [µm] [75]
T0 basal TEC motility 4
h Michaelis-Menten coefficient for T 1/2

µa(σ, N) area elasticity of nuclear compartment -20
µp(σ, N) nuclear membrane elasticity -20
µa(σ, C) volume elasticity of cytosolic compartment -20

µp,0 plasma membrane elasticity 4
k Michaelis-Menten coefficient forµp 1

Jint(C, N) generalized nucleus-cytosol adhesion within the same cell -20
J0 basal level of expression of VE-cadherin 4
j Michaelis-Menten coefficient forJext(( · , C), ( · , C)) 1

µch,0 basal chemotactic strength 4
µpers,0 basal inertia strength 4

2.2 Microscopic Model

As seen, the evolution of the VEGF constitutes the extracellular environment the cells respond to, setting up a chemical
gradient and activating downstream pathways. Mathematically, its spatial profile satisfies the following diffusion
equation:

∂V (x, t)
∂t

= DV∇2V (x, t)− λV V (x, t)−B(x, t, V (x, t)) + S(x, t), (2.14)

whereV (x, t) denotes the local concentration of the peptide. The coefficient of diffusivity,DV > 0, is assumed to
be homogeneous throughout the simulated Matrigel and is derived from previous experimental determinations (even
if the network formation holds over a large range of diffusion coefficients, although with different length scales, as
shown [6, 42, 43]). The degradation rate of VEGF,λV , is also considered constant.S(x, t) describes the autocrine
secretion of the growth factor from cells’ membrane at a constant rateφV per unit of time. The VEGF binding and
uptake by tumor-derived ECs is defined withB(x, t, V (x, t)) and is limited to a maximum rate ofβV > 0 over the
external surface of cells:

B(x, t, V (x, t)) = min{βV , vV (x, t)} (2.15)

wherex are all the extracellular neighbors of a cell site (i.e.,τ(η(x)) = M andτ(η(neighbor ofx)) = C). This
is realistic since the capacity of a cell to locally uptake the growth factor will saturate to a rate-limit,βV , which is
the amount of molecules that can be bound and internalized per unit of time. To computeβV (whose value is given
in Table II), we consider the density of VEGF receptors per unit area and the rate at which their complexes can be
internalized and the receptor recycled, following [6].

As shown in Fig. 1, we include three distinct pathways for VEGF-induced calcium entry: two, shorter, and directly
mediated by second messengers arachidonic acid (AA) and nitric oxide (NO) and another, longer, and mediated by
NO recruitment by the fatty acid itself [46, 75]. The model of such intracellular events starts with equations regulating
AA and NO dynamics, which account for their agonist-induced activation, diffusion with the cytosol, and gradual
degradation. The multiple signal transduction proteins, that are known intermediates in AA and NO generation (such
as, respectively, PLA2 and eNOS enzymes), are not directly included. The current levels of AA and NO at cell location
x are defined, respectively, asAA(x, t) andNO(x, t), and are controlled by the following diffusion equations [54, 66]:

∂AA(x, t)
∂t

= DAA∇2AA(x, t)− λAAAA(x, t) + vAAR(x, t, B) + cAACa(x, t) (2.16)

∂NO(x, t)
∂t

= DNO∇2NO(x, t)− λNONO(x, t) + vNOR(x, t, B) +
vCa−AACa(x, t)AA(x, t)

(cNO + Ca(x, t))(aAA + AA(x, t))
(2.17)
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The coefficients of diffusivity,DAA, DNO > 0, are assumed to be homogeneous within the cells. The degradation
of both the intracellular messengers is also considered constant, at ratesλAA, λNO > 0. The third terms in Eqs.
(2.16) and (2.17) describe the production rate at cells’ membrane of AA and NO, triggered by the sequestrated VEGF
molecules, as

R(x, t) =
∑

x′
B(x′, t), (2.18)

whereB(x′, t) is defined as in (2.15) and, in particular, thex′s form the extracellular first-nearest neighborhood of
the cytosolic sitex (i.e., τ(η(x)) = C andτ(η(x′−neighbor)) = M ). The last term in Eq. (2.16) implements the
calcium-dependent feedback mechanism in AA biosynthesis, while the analogous term in Eq. (2.17) accounts for the
double regulation of NO production (both AA- and Ca-mediated), also depicted in Fig. 1. All these terms work within
the entire cell domain.

For each cellσ, the intracellular level of calcium at sitex, defined asCa(x, t), is generally determined by a balance
of entry, efflux or extrusion from the cytosol, and buffering [19, 54, 66, 70], and it is controlled by the following
reaction-diffusion equation:

∂Ca(x, t)
∂t

=
Koff

Koff + KonbT

[
DCa∇2Ca(x, t) + FAA(x, t) + FNO(x, t)− Fout(x, t)

]
. (2.19)

The coefficient of diffusion,DCa > 0, is assumed to be homogeneous troughout the cell (the diffusion of calcium
across the nuclear envelope is taken to occur through non selective pores, whose permeability is proportional to the
diffusion constant of the ion in the cytosol [18, 54, 66]).Fout describes the extrusion of the ion via plasmamembrane
ATPases and Na-Ca exchangers (respectively PMCAs and NCXs), which are assumed to be restricted and uniformly
distributed over the cells’ surface. According to experimental evidence, the corresponding flux is a function of the
calcium level, with a threshold behavior [19]. There is no flux below the critical concentrationCat, while above this
level the flux grows linearly as a function ofCa itself:

Fout(x, t) = Fout(Ca(x, t)) =

 kCa(Ca(x, t)− Cat) if Ca(x, t) ≥ Cat ;

0 else,
(2.20)

wherex is in the cell membrane,kCa is the constant rate of flux density.
FAA andFNO represent, respectively, the independent and either AA- or NO-activated calcium fluxes from the

extracellular environment, which are passive and follow an electrochemical gradient. We assume a Michaelis-Menten
form for both the distributions, representing the biophysical properties of fixed and uniformly distributed PM channels,
whose permeabilities are proportional to the local concentration of intracellular messengers and exhibit threshold
values experimentally found. In other words, at high concentrations of AA and NO the PM channels saturate, thus
becoming insensitive to a further increase of AA and NO levels:

FAA(x, t) = FAA,max
(AA(x, t)/AA0)m

qAA + (AA(x, t)/AA0)m
, (2.21)

FNO(x, t) = FNO,max
(NO(x, t)/NO0)m

qNO + (NO(x, t)/NO0)m
, (2.22)

x belongs, as now usual, to the cells’ membranes, andAA(x, t) andNO(x, t) are derived by Eqs. (2.16) and (2.17). We
select a quadraticm = 2 sigmoidal activation andqAA = qNO = 1, with maximum fluxes saturating at concentrations
AA(x, t) � AA0 andNO(x, t) � NO0 respectively. Although this is a very simple model, in the absence of more
specific evidence [21, 53], it is acceptable for low agonist concentrations and it is experimentally validated [66, 71].
The scaling factor Koff

Koff +KonbT
models the activity of intracellular endogenous buffers:bT is the total concentration

of buffer sites (considered constant and experimentally estimated in different cell types),Kon is the rate of calcium
uptake, andKoff the rate of its release. This approximation works in the case of immobile buffers, characterized by
low affinity and fast kinetics [70, 71].
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TABLE II

PARAMETERS GOVERNING THE M ICROSCOPICMODEL

PARAMETER DESCRIPTION MODEL VALUE REFERENCE

DV diffusion constant of VEGF 10 [µm2s−1] [68]
λV on-rate constant of VEGF degradation 0.78 [h−1] [68]
φV on-rate constant of VEGF secretion 0.78 [h−1] [66, 68]
βV maximum amount of bound VEGF for unit of time 0.06 [pg/cell/h] [6, 66]
v coefficient of the amount of bound VEGF per unit of time 1 [h−1]

DAA diffusion constant of AA 10 [µm2s−1] [54]
λAA on-rate constant of AA degradation 30 [s−1] [54]
vAA on-rate constant of VEGF-dependent AA release 30 [s−1] [54]
cAA on-rate constant of Ca-dependent AA release 5 [s−1]
DNO diffusion constant of NO 3300 [µm2s−1] [54]
λNO on-rate constant of NO degradation 0.1 [s−1] [54]
vNO on-rate constant of VEGF-dependent NO release 30 [s−1]
cNO dissociation constant between Ca and eNOS 0.3 [µM] [54]
aAA dissociation constant between Ca and eNOS 0.2 [µM] [54]

vCa−AA maximal rate of NO release 1.5 [µMs−1] [54]
DCa diffusion constant of Ca 220 [µm2s−1] [19, 54]
kCa average rate of calcium efflux density 8 [µms−1 ] [19]
Cat threshold concentration for calcium extrusion 0.2 [µM] [19, 65]
C0 basal TEC calcium level 0.2 [µM] [19, 54]

FAA,max Michaelis-Menten constant of AA-induced calcium influx 6 [s−1] [66]
FNO,max Michaelis-Menten constant of NO-induced calcium influx 4.5 [s−1] [66]

AA0 saturation level of AA 5 [µM]
NO0 saturation level of NO 5 [µM]
Koff dissociation constant between endogenous buffers and Cac 2 [µM] [54]
Kon on-rate constant of endogenous Cac buffering 100 [µM−1s−1] [54]
bT total endogenous buffer concentration 450 [µM] [19]

Cext,0 extracellular calcium level 2000 [µM] [7, 54]

3 SIMULATIONS AND RESULTS

Our model framework is implemented with a modified version of the open-source Compucell3D2 environment
[27, 60], which is able to integrate all the proposed biological submodels, while maintaining their modularity. The
grid for the numerical solution of the PDEs is in fact matched with the CPM lattice and, at every time step, each
computational module is used as the initial condition for the others. Procedurally, after the discrete CPM has evolved
through a MCS, the continuous equations are rederived, based on the new distribution of the cells, and solved using a
finite element scheme, characterized by 10 diffusion time steps per MCS. In particular, we fix 1 lattice site≈ 1 µm and
1 MCS≈ 7 seconds: with this setting the simulated TECs move with nearly the experimental velocity of real vascular
cells [62], and the overall patterning has a comparable time scale with respect toin vitro realizations (≈ 24 h [20]).

Initially, we randomly and isotropically distribute 120 virtual quiescent TECs over a square domain of 550 px×
550 px (550µm× 550µm), which mimics a 24-well plate, coated with a virtual Matrigel. The number of cells, which
initially have the target dimensions given in Table I, is proportional to a typical experimental cell density [20]. All
the other model parameters are listed in Tables I and II: in particular, there are no activated intracellular messengers
AA and NO and no extracellular diffusing VEGF. Moreover, the initial calcium level is homogeneous both inside
the cells,C0, and in the external medium,Cext,0. As shown in Fig. 4, the kinetics and the temporal dynamics of
our in silico morphogenesis, as well as the final pattern configuration, clearly resemble experimental cultures (see
also [20]). In particular, the tumor-derived endothelial cells organize into a structured network similar to a capillary
plexus, where cords of cells enclose lacunae. Vascular branches typically are one or two cells wide, while lacunae
reach a roughly uniform size over time, after that the smaller ones shrink and disappear. It is useful to underline
that the pattern emerges autonomously, without prescribed phenomenological rules, as its formation is realistically
driven by the complex and coordinated interplay of multilevel mechanisms: the calcium-dependent increase in cell
motility, adhesion and cytoskeletal remodeling and the VEGF-mediated chemotactic migration. In particular, the
simulated TECs realistically elongate and show the tendency to maintain the direction dictated by their longer axis,

2http://www.compucell3d.org
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Figure 4:Capillary-like network formation in a simulation initiated with 120 quiescent TECs over an area of 550µm× 550µm
(550 px× 550 px). This cell density corresponds to typicalin vitro experiments [20, 53, 68]. Representative images show different
stages of tubule organization at: (A) 0, (B) 2000, (C) 4000, (D) 6000, (E) 9000, and (F) 12000 MCS. 1 MCS≈ 7 seconds. All the
model parameters are listed in Tables I and II. (G) reproduces the final pattern (after≈ 24 h) of an experimental TEC population,
courtesy of LM and of the Department of Animal and Human Biology, Universita degli Studi di Torino. White scale bars: 50µm.
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see Fig. 5. This phenomenology is fundamental for the formation of single immature capillary branches, whose
following coarsening and organization are instead permitted by the cell slower sideaway fluctuations [42, 68], and
has not required anya priori assumption on cell length (as done in similar CPMs [42]). Cell polarization is in fact
the natural result of the interplay between the extracellular chemical stimulus and the intrinsic calcium-dependent cell
elasticity, and it is also facilitated by the accurate compartmentalized representation of TECs.

Figure 5:Figure showing the model’s ability to realistically reproduce the elongation typical of vascular cells. Magnification of
samples of simulated TECs able to polarize during patterning. Representative images at (A) 0 and (B) at 1000 MCS (1 MCS≈ 7
seconds). This phenomenology is a consequence of the interplay between the calcium-induced cell cytoskeletal reorganization and
the VEGF chemotactic stimulus. Scale bar: 50µm (≈ 50 lattice sites).

Figure 6: VEGF-induced calcium signals are down-regulated during TEC capillary-like organization. Representative images
showing different stages of tubulogenic process. (A) 0, (B) 2000, (C) 4000, (D) 6000, (E) 9000, and (F) 12000 MCS (1 MCS≈ 7
seconds). Scale bar: 50µm (≈ 50 lattice sites).

The model permits also a quantitative analysis of intracellular calcium events during the entire capillary-like for-
mation. In particular, our simulations suggest that VEGF evokes calcium signals in the early phases of tubulogenesis,
when TECs are not well connected in a mature network, Fig. 6A-C. Indeed, the mitogen-induced calcium events
are dramatically and significantly reduced in TECs organized in more structured tubules, although they are still de-
tectable, see Fig. 6D-F. These results are in a remarkable agreement with those reported in the literature for TEC
cultures stimulated by AA [20]. The specific role of calcium signals in the first stages of vascular progression is likely
to be associated with differential membrane channel functionality regulated either at the gene or at the protein level
[53].

Having demonstrated the model consistency with experimental observations, we are now in the position to predict
the effect of potential anti-angiogenic therapies. As a quantitative measure characterizing the final pattern (i.e., at
12000 MCS≈ 24 h), we introduce the total rate of tubule length (inµm): it is defined as the sum of the lengths of all
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mature cords, i.e. the structures formed by a minimum of three detectable cells and connected through a node with a
similar one. In the standard parameter setting it is labeled asLT and, on average, is 2.423× 103 ± 5 × 10 µm (≈
2.423× 103 px, mean of 20 simulations± standard deviation), agreeing well with the measurements reported in the
literature for similar cell densities [20, 53, 68].LT is used as the reference value: the effect of the simulated therapies
(whose relative total tubule length values are identified withlT ) is in fact quantified by the percentage of reduction of
LT , i.e. pct= 1− (lT /LT ). Obviously, all the model parameters can theoretically be changed, but we will only detail
biologically reasonable (and therefore most influential and predictive) variations.

Figure 7: Increasing VEGF degradation rate (i.e., doublingλV in (2.14)): (A) down-regulation of network organization at≈ 24
h (12000 MCS), (B) formation of a reduced-in-scale network at≈ 36 h (18000 MCS). (C) disruption of patterning by inhibiting
VEGF uptake by TECs (i.e., imposingB(x, t, V (x, t)) = 0 in Eq. (2.14)). All the other model parameters are the same as the basic
simulation in Fig. 4. Scale bars are 50µm long (≈ 50 lattice sites).

We first test the actual clinically viable biomedical interventions. Most current drugs target the VEGF system,
either by directly attacking VEGF molecules (with antibodies such as Bevacizumab and Ranimizumab or aptamers
such as Pegaptanib), or by preventing the activation of its tyrosine kinase receptors (with small inhibitor molecules
such as sorafenib, sunitinib, and vatalanib) [69]. We implement such interferences with VEGF activity by increasing
its degradation rate (doublingλV in Eq. (2.14)) and, respectively, by reducing the effectiveness of its uptake (i.e.,
imposingB(x, t, V (x, t)) = 0 also in (2.14)). In the first case we observe a phenomenon of high interest: at the
standard final time (i.e.,≈ 24 h) the tubulogenic process is dramatically down-regulated, confirming the effectiveness
of the treatment, aslT ≈ 0.24·LT (pct=0.76), see Fig. 7A. However, at much higher times (� 30 h) a pattern emerges,
formed a number of connected networks characterized by small lacunae and short chords, see Fig. 7B. This is in
somewhat agreement with theoretical results from both previous continuous [2, 24, 68] and discrete models [44]: the
reduced scale of these structures is in fact dictated by the diffusion coefficient of the morphogen, which is affected
by the increment of its degradation rate. However, the delay in the formation of such a reduced-in-length network is
not present in those published works, and is probably due to the fact that in our model VEGF uptake has a threshold
behavior (see Eq. (2.15)): a slower diffusion of the morphogen causes in fact a temporal shift in the full-activation
of the calcium-dependent cascades. The overall inhibition of the activity of cell VEGF receptors results instead in a
complete disruption of vascular progression, aslT ≈ 0.08·LT (pct=0.92), see Fig. 7C. Without sequestrating VEGF
molecules, in fact, the TECs do not completely activate the downstream intracellular cascades and therefore almost
remain in resting conditions, characterized by a typical random movement.

Analogous efficient results are obtained by blocking the overall mitogen-induced calcium entry (withFAA =
FNO = 0 in Eq. (2.19)): this is the model counterpart of the function of carboxyamidotriazole (CAI) compound,
an anti-invasive and anti-angiogenic agent, which is able to inhibit the calcium-mediated signal transduction [20, 50].
Up to now CAI is the only calcium interfering drug successfully employed in the treatment of solid tumors (currently
under investigation as an orally administered agent in phase I and II clinical trials [55]). In particular, a comparison of
experimental observations and numerical results is given in Fig. 8A-B: in both cases we observe a complete disruption
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Figure 8:Complete inhibition of tubule formation in a TEC culture pretreated with saturating amounts of (A) virtual (i.e.,FAA =
FNO = 0 in Eq. (2.19)) and (B) experimental (i.e., 1µM) CAI. Figure (B) courtesy of LM and of the Department of Animal and
Human Biology, Universita degli Studi di Torino. Scale bars 50µm long. (C) pct (i.e., percentage of reduction of the total tubule
length) as a function of the dose of the virtual CAI, asFTOT = FAA + FNO. All the other model parameters are the same as the
basic simulation in Fig. 4. Error bars show standard deviation over 20 simulations.

of tubule formation, as the TECs remain almost scattered (lT ≈ 0.12·LT and, consequently, pct=0.88). This is due to
the fact that a dramatic interference in mitogen-induced calcium machinery results in a clear inhibition of cell adhesive
and migratory properties. Moreover, a modulated reduction of calcium influxes confirms the dose-dependent efficiency
of CAI, see Fig. 8C.

By imposingvAA = cAA = 0 in Eq. (2.16) (similarlyvCa−AA = vNO = 0 in Eq. (2.17)), we simulate
the exclusion of arachidonic acid (nitric oxide) biosynthesis, resembling cells pre-treated with widely used PLA2
(similarly eNOS) inhibitors (AACOCF3, similarly L-NAME or L-NMMA [46, 55]). In both cases, VEGF-mediated
intracellular calcium events are not completely abolished and the relative microscopic mechanisms (i.e., enhancement
of cell adhesion, motility, and chemical sensitivity) still occur, but with a significant delay and a lower intensity.
Consequently, the ultimate pattern morphologies feature an immature network, where several branches have partially
formed, but have not been able to organize in a single structure, see Fig. 9. In particular, the disruption of AA
production leads tolT ≈ 0.61·LT (and thus pct=0.39), while the disruption of NO biosynthesis results inlT ≈
0.73·LT (pct=0.27): this difference is caused by the fact that AA partially regulates the recruitment of NO itself, see
Eq. (2.17).

A potentially more efficient intervention strategy consists in blocking the calcium-dependent cytoskeletal reorgani-
zation of TECs: in the model with a high constantµp(σ, η) for eachσ (whereτ(η) = C, see (2.5)) and, experimentally,
with phalloidin-like compounds. The resulting capillary morphology, illustrated in Fig. 10A, features in fact clumped,
stunted and somewhat shorter and thicker sprouts, aslT is≈ 0.13·LT and pct=0.87. In particular, the vascular cords
are 3-4 cells wide, with larger intervascular spaces. This phenomenology is consistent with typical vascular hyper-
plasia [6] and is caused by the fact that TECs are forced to keep their initial round morphology and, consequently,
loose the capacity to differentiate and polarize. Consequently, the TECs do not have the persistent migration needed
for the formation of a functional network, as they can only form small, disconnected, branches along the gradients
of VEGF concentrations (see [31] for detailed comments). Analogous results are observed with the direct exclusion
of the cell directional persistence (µpers = 0 in (2.11) for all cells), which is counter-intuitive and currently hard
to experimentally handle. The formed sprouts are again immature and swollen, withlT ≈ 0.27·LT and pct=0.73, as
depicted in Fig. 10B. Another strategy of high interest is the disruption of the chemotactic strength (by settingµch = 0
in 2.8). It causes cells to lose their directional guidance cues (they maintain a degree of directional persistence, due
to the term (2.11), but are not influenced by chemical gradients) and to organize in poorly formed ”vascular island”
(lT ≈ 0.14·LT and pct=0.86), see Fig. 10C. This result shows that a stimulation of cell adhesion and motility, with-
out a chemotactic mechanism, does not suffice for the maturation of a capillary-like structure, as also demonstrated
experimentally by extinguish morphogen gradients in [68], and theoretically in other Potts models [42, 43]. A further
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Figure 9: Partial disruption of TEC tubule formation by inhibiting (A) AA production (by imposingvAA = cAA = 0 in Eq.
(2.16), which is the model counterpart of the activity of AACOCF3 compound) and (B) NO biosynthesis (by imposingvCa−AA =
vNO = 0 in Eq. (2.17), which is the model counterpart of the activity of L-NAME or L-NMMA compounds). All the other model
parameters are the same as the basic simulation in Fig. 4. Scale bars are 50µm long (≈ 50 lattice sites).

Figure 10:Example morphologies from proposed anti-angiogenic therapies. A quantitative review is given in Figure 4. Disruption
of (A) cytoskeletal reorganization, (B) persistence, (C) chemotaxis, and (D) adhesion. For each case, all the other model parameters
are the same as the basic simulation in Fig. 4. Scale bars are 50µm long (≈ 50 lattice sites).
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trivial, but possible, anti-angiogenic strategy deals with the interference in the cell adhesive strengths. In particular, a
high spatially homogeneous value ofJext(C,C) is the computational counterpart of the function of anti-VE-cadherin
antibodies, which block VE-cadherin receptors preventing the formation of contact junctions between cells. This inter-
vention produces aggregates of dispersed TECs, which are located in the zones of higher VEGF concentrations (lT ≈
0.06·LT , pct=0.94), as reproduced in Fig. 10D.

Reviewing our results, in Fig. 11, it is satisfying to see that the model has realistically reproduced the effects
of some anti-angiogenic strategies actually in use and has been able to propose unexpected but potentially efficient
therapies, which require further investigations, eventuallyin vitro. In particular, the percentage of reduction of the
total tubule length (i.e., pct) has been compared in the different cases using a one-sided equal-variance t-test with a
Bonferroni correction as a scoring method [61]. The level of significance has been taken P< 0.005.

4 DISCUSSION

Tumor angiogenesis is an important step in cancer development, based on an intricate interaction between multiple
levels of organization: the molecular, the cellular and the tissue scales. The ability of tumor-derived endothelial
cells to organize in a functional capillary plexus is in fact largely mediated by a series of cellular and molecular
mechanisms, regulated by external signals, such as VEGF stimulation, together with cell-cell interactions. However,
the driving components of malignant vascularization are still not fully biologically clarified. The constant challenge of
understanding these mechanisms and, eventually, to propose biomedical therapies able to disrupt them has thus lead
to many continuous [2, 24, 68] and discrete [41, 42, 43] mathematical models.

In particular, previous cell-based models have focused on the effect of a diffusible VEGF and, although without
incorporating the underpinning intracellular biochemical and biophysical dynamics, have provided important new
insights and complete descriptions of the morphology and phenomenology of nascent capillary-like patterns. Our work
has used these approaches as a useful starting point for the construction of an innovative multilevel and hybrid model
that is characterized by a realistic representation of cells and by an accurate derivation of their biophysical properties,
described by standard CPM parameters, from microscopic subcellular mechanisms and relative signalling pathways.
In particular, starting from some other published CPM applications, that use a compartmentalization approach for
biological cells, also included as a standard feature of the CompuCell3D package [25, 40, 79], we have made a further
step forward introducing a set of compartments characterized by their immediate and direct correspondence to real
subcellular elements. Indeed, this is the first time that, in a CPM, the cells are accurately differentiated between the
nucleus and the cytosolic region (see [67] form more details). Furthermore, our model has been able to derive the cells’
biophysical properties, behaviors and phenomenology from biologically consistent VEGF-induced calcium-dependent
subcellular mechanisms, without prescribing a set ofa priori rules, which are often used in similar approaches. Finally,
whenever possible, we have used parameters taken from experiments directly made on tumor-derived endothelial cells,
as reposted in the included references.

Our cell-based approach has been able to capture and reproduce basic and fundamental mechanisms ofin vitro
tubule progression, such as cell elongation, adhesion and preferential migration along chemotactic cues, as well as
more complex events, such as intracellular calcium signaling. Moreover, the model has permitted to identify and to
virtually test specific and biologically reasonable investigations of potential anti-angiogenic strategies. In particular,
reviewing the results, this computational method has confirmed the efficiency of current therapies (focusing on the
interferences with VEGF activity or with calcium machinery), and has quickly suggested novel and interesting cancer
therapies. All the proposed solutions have in fact the potential to dramatically reduce the angiogenic phenotype
of tumor-derived endothelial cells in unexpected multiple ways and have emerged by opportune and biologically
reasonable variations in model parameters. In particular, we have made some predictions about the possible success of
therapies blocking the mechanisms of either cytoskeletal remodeling or increase in cellular adhesion. The development
of interventions inhibiting cell chemotaxis and persistent movement may be also optimal strategies. Even though it
is possible to form apost hocexplanation of each solution’s effectiveness, it is unlikely that these solutions would
have been manually discovered. However, the transition fromin silico to in vitro and, in turn, toin vivo investigations
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Figure 11:Optimal potential anti-angiogenic therapies found by model disruptions (control solution represents the no treatment
case, with no changes in the parameter, and corresponds to simulation of Fig. 4). Top panel: box plot of the total tubule length (in
µm), with 20 simulations for each simulated strategy. Bottom panel: table of the proposed therapies with their relative modified
parameters and, whenever currently available, the existing experimental drugs. Forth column of the table gives a statitistical test for
each intervention: the percentage of reduction of the total tubule length (pct) has has been evaluated with a one-sided equal-variance
t-test with a Bonferroni correction, which tests the hypothesispct > 0 against the alternativepct = 0, wherepct is the mean over
20 simulations of pct, with a level of significance P< 0.005 [61]. In particular, for P< 0.001 we have an optimal solution (labeled
with +++ in the table), for 0.001< P < 0.003 we have a suboptimal solution, ++, while for 0.003< P < 0.005 we have a bad
solution, +.
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implies obvious complications due to the recruitment of cell types other than endothelial cells involved in tumor
vascularization and to potential unexpected side effects.

Our model can be refined by providing a finer degree of the used VEGF-induced cascade as well as by including
other regulatory pathways. Further structural and functional information on calcium channels will also help finding
out more specific ways to interfere with tubule formation. In particular, we cannot exclude the existence of channels
co-modulated by AA and NO and of potential cross regulations between different channel types: for example, several
members of the TRP family (in particular TRPC and TRPV sub-families) can be involved in the angiogenic progression
[36, 53, 54, 56]. Another possible development of the model is the inclusion of active ECM-like substrates, which
can also be differentiated for their mechanical properties, such as concentration, stiffness and elasticity. In the present
version of our approach we in fact neglect cell-matrix interactions and mechanisms of matrix remodeling, like secretion
of protein or degrading enzymes by TECs: however, they are likely important in tubule formation, especially in three
dimensions. A further plausible hypothesis is that ECM is also able to trap VEGF molecules generating shorter, steeper
gradients around the cells: the consequent decrease in morphogen diffusion can ultimately affect tubule formation.
Moreover, relations (2.9) and (2.10) are a model simplifications: new microfluidics quantitative analysis have in
fact suggested that the interdependencies between the gradients of the VEGF, its concentration and the chemotactic
response would be more complicate. In particular, a minimum number of VEGF molecules seems to be necessary for
a chemotactic response, as long as minimum steepness of the VEGF gradients [17]. Finally, we hope to add another
scale to the system by mechanistically linking the quantitative expression of intracellular messengers to a gene network
dynamics. This further level of investigation will be an important consideration for in-depth analysis of the controlling
mechanisms of tumor angiogenesis and could be used as a new point of view for future therapeutic searches.
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