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Performance of CUF Approach to 
Analyze the Structural Behavior of 

Slender Bodies

Erasmo Carrera1; Marco Petrolo2; and Enrico Zappino3

Introduction

Beam theories are extensively used to analyze the structural behav-
ior of slender bodies, such as columns, arches, blades, aircraft 
wings, and bridges. The main advantage of beam models is that 
they reduce the problems in a set of variables that depend only 
on the beam-axis coordinate. The one-dimensional (1D) structure 
elements obtained are simpler and computationally more efficient 
than two-dimensional (2D) (plate/shell) and three-dimensional 
(3D) (solid) elements. This feature means that beam theories are 
still very attractive for the static and dynamic analysis of structures. 

The classical, most employed theories are those by Euler-
Bernoulli (Euler 1744), de Saint-Venant (1856), and Timoshenko 
1921)). The first two do not account for transverse shear deforma-
tions. Timoshenko foresees a uniform shear distribution along the 
cross section of the beam. Mucichescu (1984) made a comparison 
between Eulero-Bernoulli and Timoshenko. None of these are able 
to detect nonclassical effects such as warping, out- and in-plane 
deformations, torsion-bending coupling, and localized boundary

conditions (BCs), both geometrical and mechanical. These kinds 
of effects are usually the result of small slenderness ratios, thin-
walled structures, and the anisotropy of the materials.

Many attempts have been proposed to overcome the limitations 
of classical theories and to permit the application of 1D models to 
any beam geometries subjected to any boundary conditions. Exam-
ples of these models can be found in many well-known books on 
the theory of elasticity (e.g., Novozhilov 1961).

In a recent development, beam models have been obtained 
by means of different approaches; namely, introduction of shear 
correction factors, use of warping functions based on de Saint-
Venat’s solution, variational asymptotic solution (VABS), 
general-ized beam theories (GBT), and higher-order beam models. 
Some of the most relevant contributions are discussed 
subsequently.

A considerable amount of work has been done to try to improve 
the global response of classical beam theories by the use of appro-
priate shear correction factors, as in the books by Timoshenko and 
Goodier (1970) and by Sokolnikoff (1956). Among the many avail-
able articles, the papers by Cowper (1966), Krishna Murthy (1985), 
Pai and Schulz (1999), and Mechab et al. (2008) are of particular 
interest. An extensive effort was made by Gruttmann et al. (1999) 
and Gruttman and Wagner (2001; Wagner and Gruttmann 2002) t o 
compute shear correction factors, and many structural types were 
considered, including torsional and flexural shearing stresses in 
prismatic beams, arbitrary shaped cross sections, wide, thin-walled 
structures, and bridge-like structures.

El Fatmi (2007a, b) introduced an improvement of the displace-
ment models over the beam section by introducing a warping func-
tion ϕ to improve the description of normal and shear stress of the 
beam. By means of this model, end effects as a result of boundary 
conditions were investigated, as in the work by Krayterman and 
Krayterman (1987). The de Saint-Venant solution has been the 
theoretical base of many advanced beam models. The 3D elasticity 
equations were reduced to beam-like structures by Ladevéze and 
Simmonds (1998). The resulting solution was modeled as the sum 
of a de Saint-Venant part and a residual part and applied to
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high aspect ratio beams with thin-walled sections. Further beam 
theories were based on the displacements field proposed by Ieşan 
(1986) and solved by means of a semi-analytical finite element by 
Dong et al. (2001).

Asymptotic type expansion in conjunction with variational 
methods has been proposed by Berdichevsky et al. (1992), in which 
a commendable review of previous works on beam theory develop-
ment is given. This work has been the origin of an alternative 
approach to constructing refined beam theories. A characteristic 
parameter (e.g., the cross-section thickness for a beam) is exploited 
to build an asymptotic series. Those terms that exhibit the same 
order of magnitude as the parameter when it vanishes are retained. 
Some valuable contributions are those by Volovoi and Hodges 
(2000), Yu et al. (2002), and Yu and Hodges (2004).

Generalized beam theories originated with Schardt’s work 
(1966, 1989). GBT improves classical theories by using piece-wise 
beam descriptions of thin-wall sections. It has been extensively em-
ployed and extended in various forms by Silvetre et al. (Silvestre 
and Camotim 2002; Silvestre 2007).

A review was made by Kapania and Raciti (1989), focusing on: 
bending, vibration, wave propagations, buckling, and post-
buckling. Aeroelastic problems of thin-walled beams were consid-
ered in the articles by Librescu and Song (1992) and Qin and 
Librescu (2002).

Many other higher-order theories have been introduced to in-
clude nonclassical effects that are based on enhanced displacement 
fields over the beam cross section. Some considerations on higher-
order beam elements were made by Washizu (1968). An advanced 
model was proposed by Kanok-Nukulchai and Shik Shin (1984); 
they improved classical finite beam elements that introduced 
new degrees of freedom to describe cross-section behavior. The 
previous literature overview clearly shows the interest in further 
developments on refined theories for beams.

The present work is focused on refined theories with only gen-
eralized displacement variables for the static analysis of compact 
and thin-walled, bridge-like sections. Higher-order models are ob-
tained in the framework of the Carrera Unified Formulation (CUF). 
This formulation has been developed over the last decade for plate/
shell models (Carrera 1995, 2002, 2003; Carrera et al. 2008), and it 
has recently been extended to beam modelings (Carrera and Giunta 
2010). The present beam formulation has been exploited for the 
static analyses of compact and thin-walled structures (Carrera et al. 
2010a). Free-vibration analyses have been carried out on hollow 
cylindrical and wing models (Carrera et al. 2011, 2012). A beam 
model with only displacement degrees of freedom has been devel-
oped (Carrera and Petrolo 2011, 2012); it has been concluded that 
full displacement models are required to accurately analyze beams 
with arbitrary sections subjected to combined bending and/or tor-
sion loadings.

CUF is a hierarchical formulation that considers the order of the
model as a free-parameter (i.e., as input) of the analysis; in other
words, refined models are obtained with no need for ad hoc for-
mulations. Beam theories are obtained on the basis of Taylor-type
expansions. Euler-Bernoulli and Timoshenko beam theories are
obtained as particular cases. The finite-element method is used
to handle arbitrary geometries and geometrical and loading condi-
tions. This work is not intended to propose new finite elements but
to propose new higher-order structural models. The finite-element
formulation is used as a tool to test the validity of the proposed
models for a large number of geometrical and mechanical boundary
conditions (BCs) layouts. The FEM approach adopted is a classical
one, and it was preferred to closed-form solutions to carry out
analyses on arbitrary structural configurations. The present paper
considers the accurate evaluation of stress fields in three different

beam configurations: square, C-shaped, and bridge-like sections.
Bending, torsion, and end-effects analyses have been conducted
and displacement and stress fields have been evaluated. The results
are compared with analytical models, 3D finite elements, and data
retrieved from literature. Isotropic and orthotropic materials have
been used. Shear correction factors related to various beam models
are compared.

The paper is organized as follows: Brief descriptions of the
adopted beam theories and the finite element formulation are given
in the first section; after that, the structural problems addressed,
together with the results and discussion, are provided; the main
conclusions are then outlined in the last section.

Advanced Beam Models and Related FE
Formulations

The adopted coordinate frame is presented in Fig. 1. The beam
boundaries over y are 0 ≤ y ≤ L. The displacement vector is:

uðx; y; zÞ ¼ f ux uy uz gT ð1Þ

The superscript T represents the transposition operator. Stress,
σ, and strain, ϵ, components are grouped as follows:

σp ¼ f σzz σxx σzx gT ; ϵp ¼ f ϵzz ϵxx ϵzx gT
σn ¼ f σzy σxy σyy gT ; ϵn ¼ f ϵzy ϵxy ϵyy gT

ð2Þ

The subscript n stands for terms lying on the cross section,
whereas p stands for terms lying on planes that are orthogonal
to Ω. Linear strain-displacement relations are used as follows:

ϵp ¼ Dpu ϵn ¼ Dnu ¼ ðDnΩ þ DnyÞu ð3Þ

with

Dp ¼
0 0 ∂

∂z
∂
∂x 0 0
∂
∂z 0 ∂

∂x

2
664

3
775; DnΩ ¼

0 ∂
∂z 0

0 ∂
∂x 0

0 0 0

2
664

3
775;

Dny ¼
0 0 ∂

∂y
∂
∂y 0 0

0 ∂
∂y 0

2
664

3
775

ð4Þ

x

y

z

Ω

Fig. 1. Coordinate frame of the beam model
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The Hooke law is exploited as

ð5Þσ ¼ Cϵ

According to Eq. (2), the previous equation becomes

σp ¼ ~Cppϵp þ ~Cpnϵn σn ¼ ~Cnpϵp þ ~Cnnϵn ð6Þ

In the case of isotropic material, the matrices ~Cpp, ~Cnn, ~Cpn, and
~Cnp are

~Cpp ¼
~C11

~C12 0

~C12
~C22 0

0 0 ~C66

2
64

3
75; ~Cnn ¼

~C55 0 0

0 ~C44 0

0 0 ~C33

2
64

3
75;

~Cpn ¼ ~CT
np ¼

0 0 ~C13

0 0 ~C23

0 0 0

2
64

3
75

ð7Þ

For the sake of brevity, the dependence of coefficients ½C~�ij versus the Young’s modulus and Poisson’s ratio and the formu-
lation for orthotropic materials are not reported in this paper. It can 
be found in the books by Tsai (1988) and Reddy (2004).

In the framework of the CUF (Carrera 2002, 2003; Carrera and 
Giunta 2010; Carrera et al. 2010a, b; Carrera and Petrolo 2011), the 
displacement field is assumed as an expansion in terms of generic
functions, Fτ as follows:

u ¼ Fτ ðx; zÞuτ ðyÞ; τ ¼ 1; 2;…;M ð8Þ
where Fτ = functions of coordinates x and z on the cross section;
uτ = displacement vector; and M = number of terms of the expan-
sion of order N. According to the Einstein notation, the repeated
subscript τ indicates summation. Eq. (8) consists of a Maclaurin 
expansion that uses as the base the 2D polynomials xizj, where i and 
j are positive integers. A generic N-order displacement field is 
given by

ux ¼
XN
Ni¼0

�XNi

M¼0

xN�MzMuxNðNþ1ÞþMþ1
2

�

uy ¼
XN
Ni¼0

�XNi

M¼0

xN�MzMuyNðNþ1ÞþMþ1
2

�

uz ¼
XN
Ni¼0

�XNi

M¼0

xN�MzMuzNðNþ1ÞþMþ1
2

�
ð9Þ

For example, the second-order displacement field is

ux ¼ ux1 þ xux2 þ zux3 þ x2ux4 þ xzux5 þ z2ux6

uy ¼ uy1 þ xuy2 þ zuy3 þ x2uy4 þ xzuy5 þ z2uy6

uz ¼ uz1 þ xuz2 þ zuz3 þ x2uz4 þ xzuz5 þ z2uz6

ð10Þ

where uxτ , uyτ and uzτ are y-dependent. The Timoshenko beam
model (TBM) can be obtained by acting on the Fτ expansion. Two
conditions must be imposed. The first is a first-order approximation
kinematic field:

ux ¼ ux1 þ xux2 þ zux3 uy ¼ uy1 þ xuy2 þ zuy3

uz ¼ uz1 þ xuz2 þ zuz3
ð11Þ

Second, the displacement components ux and uz must be constant
above the cross section:

ux2 ¼ uz2 ¼ ux3 ¼ uz3 ¼ 0 ð12Þ

The Euler-Bernoulli beam model (EBBM) can be obtained
through the penalization of ϵxy and ϵzy. This condition can be
imposed by using a penalty value χ in the following constitutive
equations:

σxy ¼ χ~C55ϵxy þ χ~C45ϵzy σzy ¼ χ~C45ϵxy þ χ~C44ϵzy ð13Þ

Classical theories and first-order models require the assump-
tion of opportunely reduced material stiffness coefficients to 
correct Poisson’s locking [see Carrera and Brischetto (2008)]. 
Unless differently specified, for classical and first-order models, 
Poisson’s locking is corrected according to Carrera and Giunta 
(2010).

Introducing the shape functions, Ni, and the nodal displacement
vector, qτ i as

qτ i ¼ f quxτ i quyτ i quzτ i gT ð14Þ

the displacement vector becomes

uðx; y; zÞ ¼ NiðyÞFτ ðx; zÞqτ i; i ¼ 1; 2;…;K ð15Þ

where K = number of the nodes on the element. For the sake of 
brevity, the shape functions, Ni, are not reported here. They can be 
found in many books; for instance, in Bathe (1996). Elements with 
four nodes (B4) are herein formulated; that is, a cubic approxima-
tion along the y axis is adopted. It has to be highlighted that, 
although the order of the beam model, N, is related to the expansion 
on the cross section, the number of nodes per each element, K, 
is related to the approximation along the longitudinal axis. These 
two parameters are totally free and not related to each other. An 
N-order beam model is, therefore, a theory that exploits an N-order 
polynomial to describe the kinematics of the cross section. The 
stiffness matrix of the elements and the external loadings, which 
are consistent with the model, are obtained by means of the prin-
ciple of virtual displacements as follows:

δLint ¼
Z
V
ðδϵTpσp þ δϵTn σnÞdV ¼ δLext ð16Þ

where Lint = strain energy; Lext = work of the external loadings; 
and δ = virtual variation. The virtual variation of the strain energy is 
rewritten using Eqs. (3), (6), and (15); in a compact format it 
becomes

δLint ¼ δqTτ iKijτsqsj ð17Þ
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where Kijτs = stiffness matrix in the form of the fundamental nucleus. Its components are

Kijτs
xx ¼ ~C22

Z
Ω
Fτ ;xFs;x dΩ

Z
l
NiNjdyþ ~C66

Z
Ω
Fτ ;zFs;z dΩ

Z
l
NiNjdyþ ~C44

Z
Ω
FτFsdΩ

Z
l
Ni;yNj;ydy

Kijτs
xy ¼ ~C23

Z
Ω
Fτ ;xFsdΩ

Z
l
NiNj;y dyþ ~C44

Z
Ω
FτFs;xdΩ

Z
l
Ni;yNjdy

Kijτs
xz ¼ ~C12

Z
Ω
Fτ ;xFs;z dΩ

Z
l
NiNjdyþ ~C66

Z
Ω
Fτ ;zFs;x dΩ

Z
l
NiNjdy

Kijτs
yx ¼ ~C44

Z
Ω
Fτ ;xFsdΩ

Z
l
NiNj;y dyþ ~C23

Z
Ω
FτFs;xdΩ

Z
l
Ni;yNjdy

Kijτs
yy ¼ ~C55

Z
Ω
Fτ ;zFs;z dΩ

Z
l
NiNjdyþ ~C44

Z
Ω
Fτ ;xFs;x dΩ

Z
l
NiNjdyþ ~C33

Z
Ω
FτFsdΩ

Z
l
Ni;yNj;ydy

Kijτs
yz ¼ ~C55

Z
Ω
Fτ ;zFsdΩ

Z
l
NiNj;ydyþ ~C13

Z
Ω
FτFs;z dΩ

Z
l
Ni;yNjdy

Kijτs
zx ¼ ~C12

Z
Ω
Fτ ;zFs;xdΩ

Z
l
NiNjdyþ ~C66

Z
Ω
Fτ ;xFs;z dΩ

Z
l
NiNjdy

Kijτs
zy ¼ ~C13

Z
Ω
Fτ ;zFsdΩ

Z
l
NiNj;ydyþ ~C55

Z
Ω
FτFs;z dΩ

Z
l
Ni;yNjdy

Kijτs
zz ¼ ~C11

Z
Ω
Fτ ;zFs;z dΩ

Z
l
NiNjdyþ ~C66

Z
Ω
Fτ ;xFs;x dΩ

Z
l
NiNjdyþ ~C55

Z
Ω
FτFsdΩ

Z
l
Ni;yNj;ydy

ð18Þ

It should be noted that no assumptions on the approximation 
order have been done. It is, therefore, possible to obtain refined 
beam models without changing the formal expression of the nu-
cleus components. This is the key point of CUF, which permits, 
with only nine FORTRAN statements, to implement any-order 
beam theories. The shear locking is corrected through the selective 
integration [see Bathe (1996)].

Numerical Analysis and Discussion

The static analysis of different beam models is conducted in this
section. The preliminary analyses are devoted to convergence stud-
ies and are conducted on a simply supported compact section made
of aluminium. Two comparisons with results from literature are
given; the first on the end effects of a cantilevered beam and
the second on a thin-walled section analysis. The rest of the work
is devoted to the investigation of the structural behavior of a bridge-
like beam made of steel. If not differently stated, cubical elements
(B4) are used in the axial discretization; the nodes are uniformly
distributed along the longitudinal axis. Each node presents M × 3
degrees of freedom, where M = number of terms of the N-order
expansion on the cross section.

Simply Supported Compact Section

A simply supported square beam is considered as a preliminary 
assessment of the present beam model. Further results with differ-
ent geometries and boundary conditions have been presented in 
Carrera et al. (2010a). The geometry of the section is shown in Fig. 
2. Two length-to-thickness ratios, L=h, of 100 and 10 are con-
sidered . Therefore, thin and moderately thick structures are con-
sidered. The cross-section edge dimensions, b and h, are equal to 
0.1 m. Young’s modulus, E, is equal to 75 GPa. The Poisson's ratio, 
ν, is equal to 0.33. A concentrated load, Pz, is applied at 0, L=2, 0, 
and is equal to 50 N. A benchmark solution is obtained by means of 
the Euler-Bernoulli beam theory as follows:

uzb ¼
1
48

PzL3

EI
ð19Þ

where I = moment of inertia of the cross section. Tables 1 and 2 
show the vertical displacement, uz, at the loading point for different

Z

Y
h

b

X

Fig. 2. Rectangular cross section

Table 1. Vertical Displacements for Different Beam Theories and Meshes

Number of
elements EBBM TBM N ¼ 1 N ¼ 2

uz × 103 (m), uzb × 103 ¼ 1:667 (m)

2 1.667 1.667 1.667 1.667

6 1.667 1.667 1.667 1.667

10 1.667 1.667 1.667 1.667

40 1.667 1.667 1.667 1.667

Note: L=h ¼ 100; simply supported compact beam loaded with a concen-
trated load.
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beam theories, meshes, and length-to-thickness ratios. B4 elements
are used. The following considerations hold:
1. Two B4 elements are enough to obtain convergence for the

case of a slender beam, whereas 40 cubic elements are needed
for L=h ¼ 10.

2. As far as the theory order is concerned, a slender beam
requires a second-order model (N ¼ 2) to detect the vertical
displacement. The effects of the cubic and fourth-order
terms are appreciable in the case of a moderately thick
beam.

3. The EBBM is able to furnish the same result as the refined
theories for L=h ¼ 100. As the thickness increases, the dif-
ferences between classical theories and higher-order ones also
increase.

4. The TBM and the linear model (N ¼ 1) furnish a larger value
of uy than the EBBM for L=h ¼ 10. This means that shear
effects play a role in the mechanical response of a moderately
thick beam, whereas the effect of the linear terms of the
in-plane displacement components is negligible.
The 40 B4 element mesh will be used for all the following 

analyses because it offers good accuracy. The second assessment 
of the proposed model concerns a comparison with an analytical 
Navier-type solution. The analytical results are taken from Carrera 
and Giunta (2010). A rectangular cross section is considered with
h=b ¼ 100. Two different length-to-thickness ratios (100 and 10)
are adopted. A distributed sinusoidal load, pzðyÞ, is applied to the
top surface, z ¼ h=2, and its expression is

pzðyÞ ¼ Pzz sin

�
πy
L

�
ð20Þ

Three stress components are considered: σyy and σzz at [0, 0,
h=2] and σyz at [0, 0, 0]. Tables 3 and 4 present the results of
the considered L=h values. Excellent agreement is generally found.
It should be pointed out that the detection of σzz requires at least a
second-order beam theory.

End-Effects on Compact Sections

A cantilevered beam is analyzed to investigate the end effects 
caused by the boundary conditions. A rectangular compact section 
is considered. The geometry is shown in Fig. 2; the height h is 
assumed to be equal to 1 m; the ratio b=h is assumed to be equal 
to 0.5; and the aspect ratio L=h is assumed to be six, where L is the 
length of the beam. Two loading settings are considered: a concen-
trated load in the z-direction, Fz, and a concentrated load in the 
y-direction, Fy. Both loads are posed in [0, L, 0] and are equal 
to 1 N. An orthotropic material is considered; its features are shown 
in Table 5. A total of 40 B4 elements are used in the axial discre-
tization. A comparison with higher-order beam models (Ghazouani

and El Fatmi 2010) and a 3D FEM solution is given. Fig. 3(a)
shows the value of the normal tension σyy in the area close to
the constraint for a beam subject to bending load. The diagram
shows the following conclusions:
1. The classical theory, EBBM, does not predict the local effects

due to the boundary conditions.
2. The end-effects on σyy are confined to an area of length equal

to three times the height, h, of the cross section.
3. The results from a third-order beam model agree with those

from literature.
4. At the constrained cross section, the role of higher-order mod-

els is extremely evident. An N ¼ 5 model is able to increase
the accuracy of the model significantly. The adoption of
higher-order CUF beam models is able to improve the solution
from other models and leads to the 3D solution for increasing
beam orders.
In Fig. 3(b), a traction load is considered. The results are given 

in terms of ðσtÞ=ðσyy
SV Þ, where σt is equal to ðσxx þ σzzÞ=2 and σyy

SV

Table 2. Vertical Displacements for Different Beam Theories and Meshes

Number of
elements EBBM TBM N ¼ 1 N ¼ 2 N ¼ 3 N ¼ 4

uz × 106 (m), uzb × 106 ¼ 1:667 (m)

2 1.667 1.712 1.712 1.712 1.719 1.720

6 1.667 1.712 1.712 1.712 1.720 1.722

10 1.667 1.712 1.712 1.713 1.720 1.723

40 1.667 1.712 1.712 1.713 1.720 1.724

Note: L=h ¼ 10; simply supported compact beam loaded with a concen-
trated load.

Table 3. Comparison of Various Stress Components Obtained by Using an
Analytical Model and the Present Beam Formulation

Model EBBM TBM N ¼ 1 N ¼ 2 N ¼ 3 N ¼ 4

σyy
a

Carrera and Giunta (2010) 1.000 1.000 1.000 1.000 1.000 1.000

Present beam 1.000 1.000 1.000 1.000 1.000 1.000

σzz
a

Carrera and Giunta (2010) —b — 0.524 1.012 1.233 1.000

Present beam — — 3,507.8 1.012 1.233 1.000

σyz
a

0.667 0.705 1.000 1.000Carrera and Giunta (2010) — 0.667 
Present beam — 0.667 0.667 0.706 1.000 1.000

Note: L=h ¼ 100; simply supported beam loaded with a distributed sinu-
soidal load.
aσyy ¼ ðπ2=6Þðh2=L2Þðσyy=PzÞ; σzz ¼ σzz=Pz; σyz ¼ ð2π=3Þðh=LÞðσyz=PzÞ.
bResult not provided by the theory.

Table 4. Comparison of Various Stress Components Obtained Via an
Analytical Model and the Present Beam Formulation

Model EBBM TBM N ¼ 1 N ¼ 2 N ¼ 3 N ¼ 4

σyy
a

Carrera and Giunta (2010) 1.000 1.000 0.996 1.000 1.005 1.003

Present beam 1.000 1.000 0.998 0.998 1.004 1.002

σzz
a

— 0.522 1.014 1.233 1.000Carrera and Giunta (2010) —b 

Present beam — — 35.6 1.014 1.233 1.000

σyz
a

Carrera and Giunta (2010) — 0.667 0.667 0.704 0.999 0.999

Present beam — 0.667 0.667 0.704 0.999 0.999

Note: L=h ¼ 10; simply supported beam loaded with a distributed sinusoi-
dal load.
aσyy ¼ ðπ2=6Þðh2=L2Þðσyy=PzÞ; σzz ¼ σzz=Pz; σyz ¼ ð2π=3Þðh=LÞðσyz=PzÞ.
bResult not provided by the theory.
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is equal to the force Fy divided by the area of the cross section. It is
possible to highlight the conclusions as follows:
1. The end-effects on σt are confined to an area of length equal to

the height, h, of the cross section.
2. The first-order beam model results match those from literature.
3. The results from a third-order beam model agree with those

from a 3D FEM analysis.

C-Shaped Thin-Walled Section

A cantilevered C-shaped cross-section beam is considered to evalu-
ate the capabilities of the present beam model in the thin-walled 
structures analysis. The geometric characteristics have been taken 
from Vlasov (1961). Fig. 4 shows the cross-section geometry; the 
height h is considered equal to 5 m; b is equal to 3.5 m; the 
thickness, t, is assumed to be 0.2 m; and the length of the beam, L, 
is 18 m. Young’s modulus, E, is equal to 30 GPa, and the Poisson 
ratio, ν, is equal to 0.33. Two forces, Fx

1 and Fx
2 (see Fig. 4), equal

to 200 kN, are posed in [1.095,�h=2, L], acting in the�x-direction
to reproduce an equivalent torsional moment, Mteq , equal to
1,000 kNm. A total of 10 elements B4 are used in the axial
discretization.

The twisting angle, Θ, is used to give comparisons with results 
from solid elements analysis and from literature (Vlasov 1961; Tralli 
1986; Back and Will 1998; Kim and Kim 2005; E l  Fatmi 
2007c).

In the classical models, on the basis of the displacements’ degree
of freedom, Θ may be defined as

tanðΘÞ ¼ ∂ux
∂z ¼ ∂uz

∂x
Considering Eq. (10), the twisting angle in the CUF formulation
can be written as

tanðΘxÞ ¼
∂ux
∂z ¼ ux2 þ xux5 þ 2zux6 þ � � �

tanðΘzÞ ¼
∂uz
∂x ¼ uz3 þ 2xuz4 þ zuz5 þ � � �

This equation shows that the twisting angle is not a property of the
whole section but a property of the point; also, the equivalence
∂ux=∂z ¼ ∂uz=∂x is not automatically satisfied. To compare the
results with those from literature in this work only, the constant
term is considered in the evaluation of the twisting angle so that
θ has been defined as

Θ ¼ arctanðux2Þ þ arctanðuz3Þ
2

Table 6 shows the value of the twisting angle in many points 
along the y-axis and for various structural models. Fig. 5 shows the 
deformed cross section at beam tip evaluated by means of a differ-
ent structural model; the displacements have been scaled by a ×100 
factor to make the figure clearer. Fig. 6 reports the twisting angle
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Fig. 3. End effects caused by the boundary conditions on a cantilevered
beam with rectangular compact section; comparison of the results
from CUF beam theories and those from Ghazouani and El Fatmi
(2010): (a) bending loading and stresses evaluated in x ¼ 0 and z ¼ 
h=2; (b) traction loading and stresses evaluated in x ¼ 0 and z ¼ 0; σt 
¼ ð σzz þ σxxÞ=2 Fig. 4. C-shaped cross-section geometry and loading

Table 5. Mechanical Properties of the Orthotropic Material

Material property Value

E11 [GPa] 206.80

E22 [GPa] 5.17

E33 [GPa] 5.17

G12 [GPa] 3.10

G13 [GPa] 3.10

G23 [GPa] 2.55

ν12 0.25

ν13 0.25

ν23 0.25
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behavior along the y-axis evaluated by means of different structural
models.

The following considerations hold:
1. A tenth-order beam model is needed to reach a good level of

accuracy in the evaluation of Θ and to match the results from
the solid model.

2. The proposed beam model, with the appropriate order of ex-
pansion, provides better results than those from literature in the
twisting angle.

3. The twisting angle behavior along the y-axis (Fig. 6) is not
linear, as might be expected from the classical torsion theory;
the present model, indeed, takes into account higher-order ef-
fects as a result of normal stresses, torsional-bending coupling,
and section warping.

Bridge-Like Section

A clamped-clamped, bridge-like cross-section beam is considered. 
The geometric characteristics have been taken from Gruttmann and 
Wagner (2001). Fig. 7 shows the geometry of the considered 
model, and Table 7 presents the dimensions of the beam. Young’s 
modulus, E, is equal to 210 GPa. The Poisson's ratio, ν, is equal to

0.3. A total of 40 elements B4 are used in the axial discretization.
An MSC Nastran model is used for comparison purposes, and solid
elements are used.

The bending analysis is first considered. A uniform distributed 
load, PS, is applied to the top surface of the cross section. PS is 
equal to 10,000 Pa, and Fig. 8(a) shows the bending loading con-
dition. Table 8 shows the maximum values of the vertical displace-
ment for different beam theories. The last row reports the value 
obtained in MSC Nastran. The total number of degrees of freedom 
of each model is given in the second column. The position of each 
indicated displacement value is reported in the last two columns. 
The deformed structure is shown in Fig. 9. The maximum values of 
the axial stress, σyy, at different spanwise locations are presented in 
Table 9 with an indication of the related cross-section location. Fig. 
10 shows the vectorial shear stress distribution over the cross
section at y ¼ L=4. Different beam theories are considered. A com-
parison of stress distributions, computed by means of a fourth-order
beam model and solid elements, is presented in Fig. 11.

Table 6. Twisting Angle (Θ) Along the y-Axis of a Beam with C-shaped
Cross Section under Torsional Loading—Comparison of Various 1D and
Solid Models

Model DOFs

y (m)

3 6 9 12 15 18

ΘðradÞ × 10�3

0.163 0.611 1.284 2.124 3.075 4.081

0.193 0.669 1.369 2.234 3.209 4.239

0.188 0.659 1.354 2.215 3.185 4.210

0.193 0.669 1.368 2.233 3.207 4.236

Vlasov (1961)
Tralli (1986)
Back and Will (1998) 
Kim and Kim (2005)
(CASE 4)
El Fatmi (2007c) — — — — — 4.203

CUF N ¼ 4 1,395 0.136 0.444 0.875 1.392 1.970 2.708

CUF N ¼ 6 2,604 0.115 0.531 1.163 1.963 2.939 4.268

CUF N ¼ 10 6,138 0.192 0.723 1.541 2.573 3.777 5.136

Nastran 22,200 0.229 0.785 1.603 2.618 3.704 4.966

Undeformed
Solid

CUF N=6
CUF N=10

Fig. 5. Deformation of C-shaped cross-section beam at y ¼ L for
different structural models; displacements amplification × 100

0
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3

4
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6

0 2 4 6 8  10  12  14  16  18

Θ
 x

 1
03  [r

ad
]

y[m]

CUF=N4
CUF=N6

CUF=N10
Solid model

Vlasov (1961)
Kim and Kim (2005)

Fig. 6. Twisting angle of the C-shaped cross-section beam along the
y-axis; comparisons between different models

Z

Y

Fig. 7. Bridge-like cross section

Table 7. Bridge-like Cross-Section Dimensions

Dimension (m)

a 15.200

b 7.300

c 3.450

d 2.155

e 1.295

L 100
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A torsion analysis is considered as the second assessment of
the bridge-like structure. A uniform distributed linear load, PL,
is applied to the top surface edges of the cross section. PL is equal 
to 100;000 N=m. Fig. 8(b) shows the torsion loading condition.
The maximum displacement values at y ¼ L=2 are reported in 
Table 10. The deformed structure is shown in Fig. 12. Vectorial
shear stress distributions at y ¼ L=4 are shown in Fig. 13 for 
differ-ent beam theories. Shear stress distributions, computed by 
means of

a fourth-order beam model and MSC Nastran, are presented in 
Fig. 14. Fig. 15 shows the comparisons between a fourth-order 
theory and the solid model in shear stress along some paths 
obtained on section reported in Figs. 11 and 14. The following 
comments can be made:

Y

Z

Y

Z

(a)

(b)

Fig. 8. Loading conditions of the bridge-like structure: (a) bending;
(b) torsion

Table 8. Value and Position of the Maximum Vertical Displacement, uz,
for Different Beam Models and Comparison with Solid Elements; Bending
Loading

Model DOFs uz × 101 ðmÞ x z

EBBM 605 �0:989 —a —
TBM 605 �1:010 — —
1 1,089 �1:010 �a=2 < x < a=2 e

2 2,178 �1:000 �a=2 < x < a=2 0.994

3 3,630 �1:030 �a=2 0.994

4 5,445 �1:040 �a=2 0.994

Solid 351,288 �1:070 �a=2 0.994

Note: y ¼ L=2.
aConstant along the section.

Fig. 9. Deformed bridge-like beam, bending loading; N ¼ 4

Table 9. Value and Position of Maximum Normal Stress, σyy, at Different
Spanwise Locations; Bending Loading Case

Model σyy × 107 (Pa) x z

y ¼ L=2

EBBM 0.716 �b=2 < x < b=2 �d

TBM 0.716 �b=2 < x < b=2 �d

N ¼ 1 0.716 �b=2 < x < b=2 �d

N ¼ 2 0.706 �b=2 < x < b=2 �d

N ¼ 3 0.714 �b=2 �d

N ¼ 4 0.712 �b=2 �d

y ¼ L=4

EBBM 0.179 �b=2 < x < b=2 �d

TBM 0.179 �b=2 < x < b=2 �d

N ¼ 1 0.178 �b=2 < x < b=2 �d

N ¼ 2 0.168 �b=2 < x < b=2 �d

N ¼ 3 0.177 �b=2 �d

N ¼ 4 0.176 �b=2 �d

y ¼ 0

EBBM �1:432 �b=2 < x < b=2 �d

TBM �1:432 �b=2 < x < b=2 �d

N ¼ 1 �1:433 �b=2 < x < b=2 �d

N ¼ 2 �1:681 �b=2 < x < b=2 �d

N ¼ 3 �2:446 �b=2 �d

N ¼ 4 �3:067 �b=2 �d

(a)

(b)

(c)

Fig. 10. Vectorial shear stress distribution at y ¼ L=4 for different
beam theories; bending loading case: (a) σxy þ σzy, TBM;
(b) σxy þ σzy, N ¼ 2; (c) σxy þ σzy, N ¼ 4
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1. The use of higher-order theories significantly enhances the pre-
diction capability of the 1D beam model. This is true for both
displacement and stress-fields.

-6e+06
-4e+06
-2e+06
0
 2e+06
 4e+06
 6e+06
 8e+06

800000
600000
400000
200000
0

1e+06

1.2e+06

1.4e+06

800000
600000
400000
200000
0

1e+06
1.2e+06
1.4e+06
1.6e+06
1.8e+06

-6e+06
-4e+06
-2e+06
0
 2e+06
 4e+06
 6e+06
 8e+06

(a)

(b)

(c)

(d)

Fig. 11. Comparison of stress-fields (Pa) between the fourth-order
beam and solid elements; y ¼ L=2: (a) σyy, N ¼ 4; (b) σyy, solid;
(c) σxy þ σzy, N ¼ 4; (d) σxy þ σzy, solid

Table 10.Value and Position of the MaximumDisplacements for Different
Beam Theories and Comparison with Solid Elements; Torsion Loading
Case

Model DOFs u × 10�3 (m) x z

ux

EBBM 605 0 — —
TBM 605 0 — —
N ¼ 1 1,089 þ0:270 �b=2 �d

N ¼ 2 2,178 þ0:559 �b=2 �d

N ¼ 3 3,630 �0:865 �a=2 e

N ¼ 4 5,445 �0:906 �a=2 e

Solid 351,288 �1:100 �a=2 0.994

uz

EBBM 605 0 — —
TBM 605 0 — —
N ¼ 1 1,089 �0:955 �a=2 e

N ¼ 2 2,178 �2:431 �a=2 e

N ¼ 3 3,630 �3:176 �a=2 e

N ¼ 4 5,445 �3:540 �a=2 e

Solid 351,288 �5:000 �a=2 e

Note: y ¼ L=2.

Fig. 12. Deformed bridge-like beam; torsion loading; N ¼ 4

(a)

(b)

(c)

Fig. 13. Vectorial shear stress distribution at y ¼ L=4; torsion loading
case: (a) σxy þ σzy, N ¼ 1; (b) σxy þ σzy, N ¼ 2; (c) σxy þ σzy, N ¼ 4

500000

0
(a)

(b)

1.5e+06

1e+06

2.5e+06

2e+06

500000

0

1.5e+06

1e+06

3e+06

2.5e+06

2e+06

Fig. 14. Comparison of the shear stress field (Pa) between the fourth-
order beam and solid elements; y ¼ L=4: (a) σxy þ σzy, N ¼ 4;
(b) σxy þ σzy, solid
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2. As far as the bending analysis is concerned, a third-order beam
model is able to detect the right position of the points along the
cross section that are affected by the maximum displacement
and axial stress values.

3. The use of a fourth-order model permits the establishment of
the distribution of stress fields along the cross section, and
a significant match is found with the solid element model.
The ability of the refined model to respect the boundary value
conditions of the shear stress should be pointed out, whereas
classical models fail.

4. The torsion analysis has shown an even more important role
of higher-order terms than in the bending case. At least a
third-order model is needed to detect the right positions of
the most deformed and stressed points along the cross section.
The use of refined theories appears to be mandatory to furnish
significant improvements in the prediction of the torsional
structural behavior by means of beam modeling.

5. An N ¼ 4 model could fail in detecting the 3D solution in case
of torsion. This is a known result from previous CUF works by
Carrera et al. (2011), in which up to N ¼ 11 were needed to

detect the accurate 3D solution in the case of thin-walled
structures.

6. The computational costs of the presented beam model are
much lower than those necessary for the use of solid elements.

Discussion on Shear Correction Factors for Various
Beam Sections

In this paper, shear correction factors are computed for different 
beam models and cross section geometries. Two different defini-
tions of shear correction factors are used. The first one has been 
proposed by Cowper (1966), and the second one has been used 
by Gruttmann and Wagner (2001) and was introduced by Bach 
and Baumann (1924) and Stojek (1964). Cowper’s formulation 
considers the mean deflection of the cross section, W; the mean
angle of rotation of the cross section around the neutral axis, Φ;
and the total transverse shear force acting on the cross section,
Q, as follows:

W ¼ 1
A

Z Z
uxdxdz ð21Þ

A A

B

B C C

D D
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Fig. 15. Behavior of the in-plane shear (σxy þ σzy) along some sections; comparisons between fourth-order beam model and solid model: (a) sections
in bending loading case, y ¼ L=2; (b) sections in torsion loading case, y ¼ L=4; (c) σxy þ σzy, section A-A, bending loading case; (d) σxy þ σzy,
section C-C, torsion loading case; (e) σxy þ σzy, section B-B, bending loading case; (f) σxy þ σzy, section D-D, torsion loading case
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Φ ¼ 1
I

Z Z
xuydxdz ð22Þ

Q ¼
Z Z

σxydxdz ð23Þ

where A = cross-section area; and I = moment of inertia of the cross
section. The shear correction factor, KC, is computed by exploiting
the following equation:

∂W
∂y þ Φ ¼ Q

KCAG
ð24Þ

where G = shear modulus. Subscripts x and z will be used to
indicate whether KC is related to a load acting along the x- or
z-direction, respectively. The second method adopted for the com-
putation of the shear correction factor uses the following formula:

Z Z
ðσ2

yx þ σ2
yzÞdxdz ¼

F2
x

KG
x A

þ F2
z

KG
z A

ð25Þ

where the shear correction factors, KG
x and KG

z , are computed by
letting Fz and Fx be equal to zero, respectively.

A square cross-section clamped beam is first considered. A con-
centrated force, Fz, is applied at the center point of the free tip. 
Table 11 shows the shear correction factors for different Poisson's 
ratio values. A bridge-like cross section is then considered. The 
geometry of the structure is shown in Fig. 7. The Poisson's ratio,
ν, is as high as 0.2. The obtained shear correction factors are 
reported in Table 12. The following statements hold:
1. The analysis of the square cross section shows excellent agree-

ment with the data retrieved from literature. This represents a
further validation of the proposed beam model.

2. A third-order, N ¼ 3 beam theory is sufficient to detect the
shear correction factors; that is, a cubic beam model is able
to obtain the correct shear distribution on a square cross
section.

3. The analysis of the bridge-like cross section highlights the
improvements obtained by the refined models when com-
puting the shear correction factors; both formulations seem 
to converge to the results derived by Gruttmann and Wagner 
(2001).

4. No significant differences were found when the shear correc-
tion factor computation approach is changed; that is, both the

Cowper and Gruttmann approaches lead to similar values of
correction factors.

Conclusions

This work has presented the static analysis of compact and bridge-
like structural models by means of refined beam theories. Higher-
order models have been obtained by employing the Carrera Unified
Formulation, which permits us to deal with any order of beam
theories without need of ad hoc implementations. In other words,
the order of the theory is considered as an input of the analysis.
The finite-element method has been adopted to deal with arbitrary
geometries, loadings, and boundary conditions. Compact square
cross sections and bridge-like geometries have been considered.
Bending and torsion loading conditions have been addressed.
Isotropic materials have been used. The obtained results have been
compared with those available from literature, with analytical ap-
proaches, and with solid finite-element models.

The proposed model appears to be able to consider any
deformation/stress state of the considered compact and bridge-like
sections, leading to quasi-3D stress states. The adoption of refined
theories is mandatory whenever
• The slenderness ratio is not high;
• The cross-section geometry is not compact;
• Torsion behavior has to be investigated;
• End effects caused by boundary conditions have to be studied.
CUF has shown its capacity to deal with each of these issues with
acceptable computational efforts.

The use and the definition of shear correction factors appears
very much questionable, as has been pointed out by many authors;
its definition is a problem-dependent parameter. The adoption of
refined theories, in fact, offers a more flexible approach that is in-
dependent of the features of the addressed structural problem. This
work does not propose new correction factors; the analysis was
carried out to underline how the use of higher-order beam models
can be a valid alternative to the use of such factors, the definition
of which is extremely difficult to assess for general problems. CUF
makes this approach particularly attractive because its hierarchical
capabilities, together with the possibility of addressing arbitrary
geometries, make it easy to obtain results that are usually furnished
by more cumbersome 2D or 3D models. Future investigations
could be directed towards considering anisotropic and non homo-
geneous sections and dynamic responses.

Table 11. Shear Correction Factors for a Square Cross Section

Model υ ¼ 0 υ ¼ 0:25

KC
z

N ¼ 1 1.001 1.001

N ¼ 2 1.001 1.001

N ¼ 3 0.834 0.848

N ¼ 4 0.834 0.848

Cowper (1966) 0.833 0.847

KG
z

N ¼ 1 1.000 1.000

N ¼ 2 1.000 0.987

0.833 0.829

0.833 0.829

N ¼ 3
N ¼ 4
Gruttmann and Wagner (2001) 0.833 0.830

Table 12. Shear Correction Factors for the Bridge-like Cross Section

Model Kz Kx

KC

N ¼ 1 1.000 1.000

N ¼ 2 0.681 0.961

N ¼ 3 0.338 0.707

N ¼ 4 0.320 0.689

N ¼ 5 0.308 0.625

KG

N ¼ 1 1.000 1.000

N ¼ 2 0.672 0.963

N ¼ 3 0.330 0.699

N ¼ 4 0.317 0.681

0.301 0.619N ¼ 5
Gruttmann and Wagner 
(2001)

0.231 0.599
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