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Abstract. Microarray technology provides a simple way for collectinghuge amounts of data on
the expression level of thousands of genes. Detecting similarities among genes is a fundamental
task, both to discover previously unknown gene functions, and to focus the analysis on a limited
set of genes rather than on thousands of genes. Similarity between genes is usually evaluated
by analyzing their expression values. However, when additional information is available (e.g.,
clinical information) it may be beneficial to exploit it. In this paper, we present a new similarity
measure for genes, based on their classification power, i.e., on their capability to separate samples
belonging to different classes. Our method exploits a new gene representation which measures the
classification power of each gene and defines the classification distance as the distance between
gene classification powers. The classification distance measure has been integrated in a hierarchi-
cal clustering algorithm, but it may be adopted also by otherclustering algorithms. The result of
experiments run on different microarray datasets supportsthe intuition of the proposed approach.

Keywords: Similarity measure; Microarray; Clustering; Data mining

1. Introduction

Genome wide expression analysis with DNA microarray technology has become a fun-
damental tool in genomic research (El Akadi et al, 2010; Golub et al, 1999; Thompson
et al, 2007; Jiang et al, 2004). An important goal of bioinformatics is the development of
algorithms that can accurately analyze microarray data sets. Clustering algorithms are
often used to detect functionally related genes by groupingtogether genes with similar
patterns of expression (Datta and Datta, 2006). Many works consider the application or
the adaptation of conventional clustering algorithms to gene expression data (see Jiang
et al, 2004 and Thalamuthu et al, 2006 for a review) and new algorithms have recently
been proposed (Bouguessa and Wang, 2009; Chu et al, 2010; Fu and Medico, 2007; Fu
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and Banerjee, 2008; Gu and Liu, 2008; Jiang et al, 2006; Wang et al, 2009). All cluster-
ing algorithms need to define the notion of similarity between elements.

Since microarray data are continuous values, several classical distance measures
(such as Euclidean, Manhattan, Chebyshev, etc.) have been exploited to compute the
distance between pairs of genes. However, such distance functions are not always ad-
equate, because strong correlations may exist among genes even if they are far from
each other as measured by these distance functions. The overall gene expression profile
may be more interesting than the individual magnitude of each feature and traditional
distance measures do not score well for shifting or scaled patterns (Zhao et al, 2006).

Other widely used schemes for determining the similarity between genes use the
Pearson or Spearman correlation coefficients, which measure the similarity between two
expression profiles. They have proved effective as similarity measures for gene expres-
sion data, but they are not robust with respect to outliers. Furthermore, they are a macro-
scopic metric and strong correlation may only exist on a subset of conditions (Zhao et
al, 2006). The cosine correlation is more robust to outliers, because it computes the co-
sine of the angle between the expression gene value vectors.A comparison of several
distance and correlation measures is provided in Zapala andSchork (2006).

Other kinds of similarity measures include pattern based (Wang et al, 2002) (which
considers also simple linear transformation relationships) or tendency based (Liu and
Wang, 2003) (which considers synchronous rise and fall of expression levels in a sub-
set of conditions). In Zhao et al (2006) the authors focus on the problem of grouping
also negative co-regulation patterns, while in Mitra and Majumder (2004) a maximal
information compression index is used to measure dissimilarity between the expression
levels of genes.

The common characteristics of these approaches is that theycluster genes only by
analyzing their continuous expression values. These approaches are appropriate when
there is no information about sample classes and the aim of clustering is to identify a
small number of similar expression patterns among samples.However, when additional
information is available (e.g., biological knowledge or clinical information), it may be
beneficial to exploit it to improve cluster quality (Huang and Pan, 2006).

In this work, we address the problem of measuring gene similarity by combining
the gene expression values and the sample class information. To this aim, we define the
concept ofclassification powerof a gene, that specifies which samples are correctly
classified by a gene. A gene classifies correctly a sample if, by considering the sample
expression level, it assigns the sample unambiguously to the correct class. Thus, instead
of discovering genes with similar expression profiles, we identify genes which play an
equivalent role for the classification task (i.e., genes that give a similar contribution for
sample classification). Two genes are considered equivalent if they classify correctly the
same samples. The classification power of a gene is represented by a string of 0 and 1,
that denotes which samples are correctly classified. This string is namedgene mask.

To measure gene similarity, we define a novel distance measure between genes, the
classification distance, which computes the distance between gene masks. The classifi-
cation distance has been integrated in a hierarchical clustering algorithm, which itera-
tively groups genes or gene clusters through a bottom up strategy (Everitt et al, 2009). To
allow the computation of inter-cluster distance by means ofthe classification distance,
the concept ofcluster mask(i.e., the total classification power of genes in a cluster) was
also defined. Besides hierarchical clustering, the classification distance measure may be
integrated in clustering algorithms based on different approaches (e.g., DBSCAN Ester
et al, 1996, or PAM Kaufman and Rousseeuw, 2005).

To our knowledge, there are no works which address the issue of measuring the
similarity between genes by considering both their expression values and the informa-
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tion about each sample class. Some works address the complementary problem, i.e.,
grouping samples by analyzing their gene expression values(Bushel et al, 2007; Song
et al, 2008), or combining clinical and microarray data to build a model for tumor clas-
sification (Gevaert et al, 2006). Differently from sample clustering, gene clustering does
not provide an easy validation procedure, because the gene class labels are unknown,
and clustering accuracy cannot be computed by counting the genes correctly assigned
to each cluster.

Since gene expression data is typically affected by outliers, we also introduce a
new density based approach to reduce the influence of values far from the concentra-
tion core (i.e., outlier values). A popular procedure specifically used in microarray data
analysis (Yang et al, 2002) for removing outliers is the Hampel identifier (Davies and
Gather, 1993), also called the median absolute deviation (MAD) method. The MAD
estimator smooths the effect of values far from the median value, independently of their
density.

To take into account also the density distribution of values, we propose theweighted
mean deviation(or WMD) method to reduce the influence of outliers in the definition
of the gene expression intervals. In particular, mean and standard deviation are replaced
by their weighted versions. A weight is assigned to each datavalue by considering the
number of its neighbors belonging to the same class. Thus, a higher weight is assigned
to values with many neighbors and a lower weight to isolated values.

We validated our method on different microarray datasets bycomparing our dis-
tance measure with the widely used Euclidean distance, Pearson correlation and cosine
distance measures. The experimental results confirm the intuition of the proposed ap-
proach and show the effectiveness of our distance measure inclustering genes with
similar classification behavior.

The paper is organized as follows. Section 2 describes the steps to compute the clas-
sification distance between gene (or cluster) masks. Section 3 presents the integration of
our distance measure in a hierarchical clustering approach. Section 4 discusses the ex-
perimental evaluation of the proposed approach and finally Section 5 draws conclusions
and presents future works.

2. Measuring gene similarity

When all the samples whose gene expression value is in a givenrange belong to a single
class, the gene can assign unambiguously these samples to the correct class. We propose
a method to define the similarity between genes by measuring their classification power
(i.e., their capability to correctly classify samples), which performs the following steps.

– Core expression interval definition.Definition of the range of expression values for
a given gene in a given class. To address the problem of outliers, a density based
weight is exploited in the core expression interval definition.

– Gene mask and cluster mask generation.Definition of thegene maskand theclus-
ter maskas representatives of gene and cluster classification power. The gene mask
is generated by analyzing the gene core expression intervals, while the cluster mask
is generated by analyzing the gene masks of genes in the cluster.

– Classification distance computation.Definition of theclassification distancemea-
sure to evaluate the dissimilarity between the classification power of genes (or clus-
ters). The Hamming distance is exploited to measure the distance between masks.

These steps are described in details in the following subsections.
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In general, microarray dataE are represented in the form of a gene expression ma-
trix, in which each row represents a gene and each column represents a sample. For
each sample, the expression level of all the genes under consideration is measured. Ele-
menteis in E is the measurement of the expression level of genei for samples, where
i = 1, . . . , N ands = 1, ..., S . Each sample is also characterized by a class label,
representing the clinical situation of the patient or tissue being analyzed. The domain
of class labels is characterized byC different values and labelks of samples takes a
single value in this domain.

2.1. Core expression interval definition

The core expression interval of a gene in a class represents the range of gene expression
values taken by samples of the considered class. Since microarray data may be noisy, we
propose a density based approach to reduce the effect of outliers on the core expression
interval definition, theWeighted Mean Deviation(or WMD). WMD is a variation of
the MAD estimator (Hampel, 1974; Daszykowski et al, 2007). The MAD estimator first
computes the median of the data and defines the set of absolutevalues of differences
between each data value and the median. Then, the median of this set is computed. By
multiplying this value by 1.4826 (i.e., the scale factor fornormally distributed data), the
MAD unbiased estimate of the standard deviation for Gaussian data is obtained. The
MAD estimator smooths the effect of values far from the median value, independently
of their density. In WMD the mean is replaced by the weighted mean and the standard
deviation by the weighted standard deviation. The weights are computed by means of a
density estimation. A higher weight is assigned to expression values with many neigh-
bors belonging to the same class and a lower weight to isolated values. A comparison
between WMD and MAD is presented in Section 4.2.

Consider an arbitrary samples belonging to classk and its expression valueeis for
an arbitrary genei. Let the expression values be independent and identically distributed
(i.i.d) random variables andσi,k be the standard deviation for the expression values of
genei in classk. The density weightwis measures, for a given expression valueeis, the
number of expression values of samples of the same class which belong to the interval
±σi,k centered ineis.

The density weight for the expression valueeis for a genei and a samples belonging
to classk is defined as

wis =
S
∑

m=1,m 6=s

δim (1)

whereδim is a function defined as

δim =







1 if samplem belongs to classk ∧

eim ∈ [eis − σi,k; eis + σi,k]

0 otherwise
(2)

If an expression value is characterized by many neighboringvalues belonging to
the same class, its density weight is higher. For example, inFigure 1 the expression
values of an arbitrary genei with four samples of class 1 (labeled asw, x, y, andz)
and seven of class 2 (labeled asa, b, c, d, e, f, andg) are shown. For samplea, the
expression level (denoted aseia in Figure 1) is characterized by a density weightwia
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Fig. 1.Genei: Density weight computation for samplesa andb.

equal to 0, because for genei there are no other expression values of class 2 in the
intervaleia ± σi,2 (represented by a curly bracket). For sampleb, the expression value
(eib) is characterized instead by a density weightwib equal to 3, because three other
samples of class 2 belong to the intervaleib ± σi,2.

The core expression interval of an arbitrary genei in classk is given by

Ii,k = µ̂i,k ± (2 · σ̂i,k) (3)

where the weighted mean̂µi,k and the weighted standard deviationσ̂i,k are based on
the density weights and are computed as follows1.

The weighted mean̂µi,k is defined as

µ̂i,k =
1

Wi,k

S
∑

s=1

δis · wis · eis (4)

whereδis is a function defined as

δis =

{

1 if samples belongs to classk
0 otherwise

(5)

andWi,k is the sum of density weights for genei in classk (i.e.,
∑S

s=1
δis · wis).

The weighted standard deviationσ̂i,k is given by

σ̂i,k =

√

√

√

√

1

Wi,k

S
∑

s=1

δis · wis · (eis − µ̂i,k)
2 (6)

In the upper part of Figure 2, an example of the core expression intervals for a gene

1 The term2∗σ̂i,k covers about 95% of expression values. Higher (or lower) values of the weighted standard
deviation multiplicative factor may increase (or decrease) the number of included values.
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Fig. 2.Core expression interval computation for classes 1 and 2 andgene mask computation for genegi.

with samples belonging to two classes is shown. Since the first sample of class 2 (i.e.,
samplea) has a low density weight (equal to zero), its value providesno contribution to
the weighted mean and standard deviation computation. Thus, the class 2 core expres-
sion interval is less affected by outliers

2.2. Gene mask and cluster mask generation

For each gene we define a gene mask, which is an array ofS bits, whereS is the number
of samples. It represents the capability of the gene to classify correctly each sample, i.e.,
its classification power. Consider an arbitrary genei and two arbitrary classesc1, c2 ∈
{1, . . . , C}. Bit s of its mask is set to 1 if the corresponding expression valueeis belongs
only to the core expression interval of a single class (e.g.,Ii,c1 ) and does not belong to
the core expression interval of any other class (e.g.,Ii,c2 with c1 6= c2). Otherwise it is
set to 0. Formally, bits of the gene mask is computed as follows.

maskis =

{

1 if (eis ∈ Ii,c1) ∧ 6 ∃c2 6= c1 | eis ∈ Ii,c2
0 otherwise

(7)

A sample might not belong to any core expression interval (i.e., it is an outlier). In
this case, the value of the corresponding bit is set to 0 according to (7).

Figure 2 shows the gene mask associated to an arbitrary genei after the computation
of its core expression intervalsIi,1 and Ii,2. The samplesg, w, andx belong to the
expression interval of a single class, thus their corresponding mask bits are set to 1. The
bits corresponding to the other samples are set to 0.

The notion of classification power may be extended to clusters of genes. Given an
arbitrary gene cluster, itscluster maskis the logical OR between the masks of the genes
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in the cluster. It represents the total classification powerof the cluster, i.e., the samples
that can be correctly classified by considering all the genesin the cluster.

2.3. Classification distance computation

The classification distance measure captures the dissimilarity between genes (or clus-
ters) by analyzing their masks. It evaluates the classification power of each object, rep-
resented by its mask, and allows the identification of objects which provide similar
information for classification.

Given a pair of objects(i, j), the classification distance between them is defined as
follows

dij =
1

S

S
∑

s=1

maskis ⊕maskjs (8)

whereS is the number of samples (bits) of the mask,maskis is bit s of maski, and⊕ is
the EX-OR operator which yields 1 if and only if the two operands are different. Hence,
the classification distance is given by the Hamming distancebetween masks.

When two genes (or clusters) classify in the same way the samesamples, their dis-
tance is equal to 0 because their masks are identical. On the other extreme, if two objects
have complementary masks, their distancedij is maximum and equal to 1, because the
sum of complementary bits is equal to the number of samplesS.

The classification distance is a symmetric measure that assesses gene similarity by
considering both correct and uncertain classification of samples. We also considered, as
an alternative, an asymmetric distance measure similar to the Jaccard coefficient (Cox
and Cox, 2001). This asymmetric measure considered the contribution of correctly clas-
sified samples (i.e., both 1 in the mask) and disregarded the contribution of samples for
which classification is uncertain, due to interval overlap (i.e., both 0 in the mask). An
experimental evaluation (not reported in the paper) of thisalternative showed a worse
performance, thus highlighting that also the similarity for uncertain classifications is
important to group genes with similar behavior.

3. Integration in clustering algorithms

The classification distance measure may be integrated in various clustering approaches.
To validate its effectiveness, we integrated it into a hierarchical clustering algorithm (Everitt
et al, 2009). Agglomerative hierarchical clustering iteratively analyzes and updates a
distance matrix to group genes or gene clusters through a bottom up strategy.

Consider an arbitrary setG of N genes. The triangular distance matrixD can be
computed onG by means of the classification distance measure defined in (9). An arbi-
trary elementdij in D represents the distance between two objectsi andj, which may
be either genes or gene clusters. MatrixD is iteratively updated each time a new cluster
is created by merging genes or gene clusters. The process is repeatedN − 1 times, until
only one single element remains.

At each iteration, the two objects to be merged are selected by identifying inD the
element with the lowest valuedij , which represents the most similar pair of objects
(genes or clusters)i andj. If more object pairs are characterized by the same minimum
distance, the element with the maximum average variance is selected, because variance
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Table 1.Dataset characteristics: name, number of samples, number of genes, and number of classes

Dataset Samples Genes Classes

Tumor9 60 5726 9
Brain1 90 5920 5
Lung 203 12600 5
Leuk1 72 5327 3
Leuk2 72 11225 3
Colon 62 2000 2
Prostate 102 10509 2
SRBCT 83 2308 2
DLBCL 77 5469 2

is the simplest unsupervised evaluation method for gene ranking (He et al, 2006). In
particular, genes with high variance are usually ranked higher because their expression
values significantly change over conditions (He et al, 2006). Average variance of an
element is given by the average over the variance of the expression levels of all genes
belonging to the two objectsi andj concurring to the new (cluster) element.

The classification distance measure may be integrated in other clustering approaches.
For example, density-based clustering methods, such as DBSCAN (Ester et al, 1996),
consider the Euclidean distance among elements to compute the reachability relation-
ship needed to define each element neighborhood. The proposed distance measure may
replace the Euclidean distance, whileǫ may be defined in terms of the maximum num-
ber of mismatching bits between the two masks (i.e., the maximum number of bits set to
1 after the EX-OR computation). Similar considerations hold for partition-based clus-
tering algorithms (e.g., PAM (Kaufman and Rousseeuw, 2005)).

4. Experimental results

We validated our method on 9 microarray datasets, publicly available on (Statnikov
et al, 2005) and (Alon et al, 1993). Table 1 summarizes their characteristics. The data
distribution and cardinality of these datasets are rather diverse and allowed us to validate
our approach under different experimental conditions.

We performed a set of experiments addressing the following issues.

– Classification distance evaluation.To evaluate the effectiveness of the classification
distance in measuring the classification power of genes we compared the accuracy
and the sensitivity provided by neighboring genes. Furthermore, the biological rele-
vance of our results has been assessed by verifying if neighboring genes are reported
with similar biological meaning in tumor literature.

– Core expression interval comparison.The Weighted Mean Deviation (WMD) and
the Hampel identifier (MAD) for detecting the core expression intervals have been
compared in terms of both accuracy and interval characteristics.

– Cluster characterization.The characteristics of the clusters yielded by hierarchical
clustering exploiting the classification distance have been investigated.

4.1. Classification distance evaluation

Accuracy and sensitivity.
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Accuracy is defined as the number of samples correctly associated to their class over
the total number of samples. It provides an overall classification performance measure.
We also analyzed the classification performance separatelyfor each class by computing,
for each class, the true positive rate (i.e., the rate of correctly assigned samples over the
total number of samples belonging to the class). The true positive rate is also called
sensitivity or recall.

In the context of tumor classification, to which the datasetsin Table 1 are devoted,
the most interesting genes are those which play a role in the disease. We focused our
analysis on these genes, which are commonly selected by means of feature selection
techniques (Mukkamala et al, 2006). In our experiments, we computed the accuracy
provided by the set of top ranked genes selected by means of a supervised feature se-
lection technique. Then, we substituted in turn a single gene with the most similar gene
according to various distance metrics. We computed the new accuracies and we com-
pared the obtained results to the previous accuracy value.

In particular, to avoid biasing our analysis by consideringa single feature selection
technique, we performed supervised feature selection by means of the following pop-
ular techniques (Statnikov et al, 2005): (i) Analysis of variance (ANOVA), (ii) signal
to noise ratio in one-versus-one fashion (OVO), (iii) signal to noise ratio in one-versus-
rest fashion (OVR), (iv) ratio of variables between categories to within categories sum
of squares (BW). New feature selection techniques have beenrecently developed (Liu
and Motoda, 2007), but since the selection of a feature selection algorithm is not very
critical and it is done only to avoid biasing the analysis by using only one of them,
we limit the analysis to these four methods. Feature selection has been performed sep-
arately for each dataset. We considered the first ten genes ranked by each feature se-
lection technique. These small gene subsets only contain genes which are relevant for
discriminating among sample classes.

In each of the 10-gene sets obtained from feature selection,we substituted in turn a
single gene with the most similar gene according to a distance measure. In particular, we
considered the Euclidean distance, the Pearson correlation, the cosine correlation, and
the classification distance. Thus, for each 10-gene set and for each distance measure,
we created ten new different gene sets, each of which with onesubstituted gene. The
accuracy and the sensitivity provided by these new sets havefinally been computed and
compared.

Classification has been performed by means of the LibSVM classifier (Chang and
Lin, 2001), with parameters optimized by using the grid search in the scripts down-
loaded with the LibSVM package. Ten fold cross-validation has been exploited to avoid
selection bias. The reported accuracy is the overall value computed on all the splits. The
considered feature selection methods are available in the GEMS software (Statnikov et
al, 2005).

Table 2 shows the accuracy results of the experiments on the Brain1 dataset. Simi-
lar results hold for the other datasets. The accuracy of the original setting (i.e., the ten
original genes selected by the feature selection methods) is reported in the first column.
For each feature selection method, rows labeled 1-10 reportthe accuracy difference be-
tween the original set and each of the modified sets (each one with a different substituted
gene), while the last two rows report the average value over the 10 modified settings and
the standard deviation. For three out of four feature selection methods the classification
distance selects the best substituted gene with respect to the other distance measures.
In the case of OVO and ANOVA, the substitution even improves accuracy with respect
to the original setting (i.e., it selects a better gene with respect to that selected by the
supervised feature selection method).

The different overall accuracy increase/decrease dependson the intrinsic nature of
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Table 2.Differences between the accuracy of the original subset andthe modified ones on the Brain1 dataset
for different feature selection methods and distance measures

Method Gene Euclidean Pearson Cosine Classification

1 -1.11 0.00 1.11 -2.22
2 2.22 1.11 -1.11 4.44

ANOVA 3 2.22 -1.11 -2.22 -1.11
81.11 4 3.33 2.22 3.33 2.22

5 -2.22 -3.33 -2.22 1.11
6 -1.11 2.22 -1.11 1.11
7 2.22 1.11 1.11 3.33
8 -1.11 0.00 1.11 1.11
9 -2.22 -3.33 -3.33 -2.22

10 1.11 -2.22 -1.11 -2.22
Mean 0.33 -0.33 -0.44 0.56

Std 2.10 2.04 1.34 2.41

1 2.22 -8.89 -3.33 -1.11
2 -2.22 -3.33 -3.33 -1.11

BW 3 -4.44 -3.33 -1.11 -5.56
74.45 4 7.78 -4.45 0.00 -1.11

5 -2.22 -5.56 -3.33 -3.33
6 -4.44 -6.67 -4.44 -5.56
7 -5.56 -5.56 -3.33 -4.45
8 -5.56 -5.56 -3.33 -1.11
9 -3.33 -3.33 -3.33 -2.22

10 -2.22 -7.78 -5.56 -3.33
Mean -3.56 -5.44 -3.11 -2.89

Std 2.71 1.55 2.20 1.83

1 2.22 2.22 1.11 0.00
2 0.00 -1.11 0.00 3.33

OVO 3 3.33 5.56 6.67 2.22
74.45 4 -4.45 5.55 4.44 5.56

5 3.33 1.11 0.00 3.33
6 -1.11 1.11 1.11 1.11
7 1.11 0.00 1.11 0.00
8 3.33 2.22 2.22 -1.11
9 -2.22 -1.11 -1.11 -3.33

10 2.22 2.22 3.33 5.56
Mean 0.78 1.78 1.89 1.67

Std 2.67 2.35 2.69 2.88

1 -6.67 -6.67 -7.78 -4.44
2 -10.00 -6.67 -7.78 -5.56

OVR 3 -5.56 -3.33 -5.56 0.00
73.34 4 -3.33 -4.45 -2.22 -3.33

5 -3.33 -4.45 -4.45 -2.22
6 -5.56 -3.33 0.00 -4.45
7 -1.11 1.11 1.11 0.00
8 -7.78 -4.45 -3.33 -2.22
9 -5.56 -2.22 -5.56 -2.22

10 -1.11 -5.56 -5.56 -8.89
Mean -5.00 -4.00 -4.11 -3.33

Std 2.83 3.01 2.29 2.67
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Table 3.Average sensitivity (i.e., true positive rate) in percentage over the ten substitutions for each class (1 to
5) and the total accuracy (row All) on the Brain1 dataset for different feature selection methods and distance
measures

Method Class Euclidean Pearson Cosine Classification

1 94.17 94.50 94.00 94.83
2 72.00 73.00 74.00 73.00

ANOVA 3 64.00 58.00 59.00 61.00
4 65.00 62.50 60.00 67.50
5 8.33 6.67 6.67 8.33

All 81.44 80.78 80.67 81.67

1 93.17 91.17 91.00 91.67
2 30.00 26.00 27.00 33.00

BW 3 21.00 19.00 19.00 31.00
4 67.50 70.00 70.00 67.50
5 1.67 1.67 1.67 5.00

All 70.89 69.01 71.34 71.56

1 95.33 96.83 97.00 95.67
2 57.00 56.00 58.00 59.00

OVO 3 11.00 12.00 12.00 16.00
4 92.50 92.50 95.00 90.00
5 0.00 0.00 0.00 0.00

All 75.23 76.23 76.34 76.12

1 88.67 89.50 90.17 89.67
2 46.00 50.00 45.00 47.00

OVR 3 8.00 8.00 9.00 14.00
4 72.50 67.50 70.00 72.50
5 0.00 3.33 1.67 3.33

All 68.34 69.34 69.23 70.01

each feature selection method. For the ANOVA and OVO methods, the original gene
masks are characterized by more bits set to 1 (on average 20 over 90 samples) than the
other two methods (on average 8). The highly selective genes(i.e., with few 1 in their
mask) chosen by BW and OVR may be more difficult to replace appropriately. In this
context, the classification distance selects a gene with a classification behavior more
similar to the gene to be substituted than the other distancemeasures. Finally note that
highly selective genes do not necessarily imply high accuracy.

Table 3 provides details on the percentage of correctly classified samples for each
class (1 to 5) in the Brain 1 dataset. The average sensitivity(i.e., true positive rate) in
percentage over the ten substitutions for each class and thetotal accuracy (row All) for
different feature selection methods and distance measuresis reported. The cardinality
of the classes are 60, 10, 10, 4, and 6 samples respectively. The sensitivity of the classi-
fication distance is typically higher than the sensitivity provided by the other distances.
In particular, the classification distance provides the best sensitivity for at least three
classes for all feature selection methods. Furthermore, the highest sensitivity usually
characterizes the classes with low cardinality. Thus, our method is particularly suited to
rare classes (i.e., classes with a low cardinality).

Experiments performed with larger gene sets (i.e., 50 genes) showed a similar be-
havior. The original accuracy is higher (for example, it is 77.78% for BW when a set
of 50 genes is considered) and the average difference in accuracy is lower (about 0.5%
for the classification distance and -0.3% for the cosine distance). When the number of
considered genes increases, the effect of a single gene on the classification performance
becomes less evident. Hence, these experiments are less effective in evaluating the char-
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acteristics of the classification distance.

Biological investigation.
To assess the biological meaning of similar genes, we focused on the Colon and Prostate
datasets, which have been widely studied in previous works.Two genes that are known
to play a role in the colon tumor progression are J02854 (Myosin regulatory light chain
2, smooth muscle isoform) and M76378 (Cysteine-rich protein gene). According to the
classification distance, the genes nearest to J02854 are M63391, T92451, R78934, and
T60155. Gene M63391 is listed in the top relevant genes for colon cancer in (Chen
et al, 2007; Yu et al, 2004; Bo and Jonassen, 2002; Ben-Dor et al, 2000), while gene
T60155 is cited in (Ben-Dor et al, 2000) and (Yu et al, 2004). Furthermore, the genes
nearest to M76378 are M63391 and J02854, both relevant for colon cancer. We also
analyzed the performance of other distance measures on the Colon dataset. The cosine
correlation shows a similar behavior. For example, in the case of gene J02854, it detects
as nearest three of the genes detected by the classification distance (R78934, T60155,
T92451). On the contrary, there is no intersection between the nearest genes yielded by
the classification and Euclidean distances. For example, for the Euclidean distance, the
nearest to gene J02854 are genes R87126, X12369, R46753 and R67358. Among them,
only gene X12369 shows a correlation to the colon cancer (Yang and Zhang, 2007).

In the prostate cancer the ETS-related gene (ERG), a member of the ETS transcrip-
tion factor family, is the most frequently overexpressed proto-oncogene in the transcrip-
tome of malignant prostate epithelial cells (Petrovics et al, 2005; Gregg et al, 2010). The
classification distance detects as the most similar genes the Lys-Asp-Glu-Leu endoplas-
mic reticulum protein retention receptor 3 (KDELR3), the fibroblast growth factor bind-
ing protein 1 (FGFBP1), the TNF receptor-associated factor2 (TRAF2) and the annexin
A7 (ANXA7) which show an overexpression and play an important role in the prostate
cancer proliferation as reported in (Aicha et al, 2007; Royuela et al, 2008; Rosini et
al, 2002; Torosyan et al, 2002).

These results show that our distance metric groups genes with both comparable clas-
sification accuracy and similar biological meaning. Hence,our method can effectively
support further investigation in biological correlation analysis.

4.2. Core expression interval comparison

Recall from Section 2.1 that the MAD estimator smooths the effect of values far from
the median value, independently of their density. Instead,WMD takes into account the
density of values and smooths the effects of isolated values. The core expression in-
tervals defined by MAD are usually narrower than those definedby WMD. Thus, the
number of ones in the masks is generally larger for MAD, because the intervals are less
overlapped. Figure 3 reports the boxplots of the distributions of the number of ones in
the masks corresponding to intervals generated by means of WMD and MAD.

For each genei, we computed the similarity between the masks generated by the
two approaches (both characterized byS bits) by means of the following formula:

Similarity(maski,MAD,maski,WMD) =
1

S

S
∑

j=1

maskij,MAD ⊕maskij,WMD (9)

Figure 4 shows the boxplot of the distribution of the similarity values. The masks agree
in roughly 90% of cases (i.e., gene/class pairs).
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Fig. 3. Boxplots of the distributions of ones in the gene masks created by using the WMD (left) and MAD
(right) methods for outlier detection.
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Fig. 4. Boxplot of the similarity between the gene masks created by using the WMD and MAD methods for
outlier detection.
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We also analyzed the classification accuracy yielded by the gene mask represen-
tations provided by the MAD and the WMD methods. The same experimental design
described in Section 4.1 has been used for these experiments. In most cases WMD pro-
vided a better accuracy than MAD. For example on the Brain1 dataset, the difference
in accuracy between the original subset and the modified subset obtained by exploiting
the MAD technique is -0.22±1.74 with ANOVA, 3±3.07 with BW, 1.56±2.24 with
OVO, and -6.33±1.74 with OVR. Thus, for ANOVA, OVO and OVR, WMD accuracy
(see Table 2) is higher than MAD accuracy. Furthermore, the standard deviation of the
accuracy difference of MAD is, on average, larger than the standard deviation of WMD,
thus showing a less stable behavior. Similar results are obtained for the other datasets.

This behavior may be due to an overestimation of the gene classification power
when intervals are defined by means of MAD. In particular, since the core expression
intervals defined by MAD are narrower, they are also less overlapped. Hence, the result-
ing masks are characterized by a larger number of ones, whichrepresent a higher gene
discriminating capability.

4.3. Cluster characterization

We evaluated the characteristics of the hierarchical clustering algorithm presented in
Section 3, which integrates the classification distance measure. Since sample class la-
bels are available, but gene class labels are unknown, the result of gene clustering can-
not be straightforwardly validated. To evaluate the characteristics of our approach, we
(i) compared by means of the Rand Index (Rand, 1971) the clustering results obtained
by using our measure, the cosine, and the Euclidean metrics,(ii) analyzed the variation
of the cluster size when varying the cluster number, and (iii) evaluated the homogeneity
of the clusters by analyzing the classification behavior of genes included into the same
cluster. Clustering results, together with a tool to navigate the dendrogram and explore
the clusters, are available on our website.2

Rand Index
To measure the agreement between the clustering results obtained with different met-
rics, we computed the Rand Index (Rand, 1971). It measures the number of pairwise
agreements between a clusteringK and a set of class labelsC over the same set of
objects. It is computed as follows

R (C,K) =
a+ b
(

N
2

) (10)

wherea denotes the number of object pairs with the same label inC and assigned to the
same cluster inK, b denotes the number of pairs with a different label inC that were
assigned to a different cluster inK andN is the number of objects. The values of the
index are in the range0 (totally distinct clusters) to1 (exactly coincident clusters). The
Rand Index is meaningful for a number of clusters in the range[2;N − 1], whereN is
the number of objects. Clusters composed by a single elementprovide no contribution
to the Rand Index evaluation (Rand, 1971).

To perform a pairwise comparison of the clustering results obtained by different dis-
tance metrics, we selected one metric to generate the clustering K and used as labels

2 https://dbdmg.polito.it/twiki/bin/view/Public/ClassificationDistance
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Fig. 5. Pairwise Rand index evaluation between classification, Euclidean, and cosine distance metrics on the
Colon dataset.

C the cluster identifiers obtained by clustering with the samehierarchical algorithm
and a different distance metric. We repeated the process to perform the pairwise com-
parison of all three metrics. The results for the Colon dataset are shown in Figure 5.
Similar results are obtained on the other datasets. Hierarchical clustering based on the
classification distance shows a good agreement (ca. 70%) with cosine correlation clus-
tering. Instead, the Rand Index between classification distance clustering and Euclidean
distance clustering is very low. This last behavior is similar to that between Euclidean
distance clustering and cosine correlation clustering.

Cluster size
We evaluated the trend of the maximum cluster size when increasing the number of
final clusters (from 1 to 150 clusters) for the Euclidean distance, Pearson correlation
and Classification distance metrics. Figure 6 shows the results on the Brain1 dataset
(characterized by 5920 genes). The other datasets showed a similar behavior.

The Euclidean distance typically yields one big cluster containing the majority of
genes and a number of small clusters with few genes. The maximum size is stable
around 5740 genes and remains constant until 554 clusters, where it falls to 4810. Pear-
son correlation also creates one very large cluster (the number of elements is roughly
4800), whose size abruptly changes to roughly half of the genes (around 2500 elements)
around 60 clusters. Cosine correlation shows a behavior similar to the Pearson correla-
tion, but the maximum size abruptly changes around 25 clusters. Classification distance
yields a decrease in the cluster size until a maximum size around 1000 genes. Hence,
it partitions data in smaller clusters, while the other distance measures typically yield a
very large cluster, which behaves as a generic gene container.
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Fig. 6.Maximum cluster size for an increasing number of clusters for Euclidean distance, Pearson correlation
and classication distance.

Cluster homogeneity
To evaluate cluster homogeneity, we compared the classification accuracy of genes be-
longing to the same cluster. To this aim, we defined two genes as representatives of each
cluster, i.e., the one with the minimum (named central) and the one with the maximum
(named border) classification distance to the cluster mask.

We only considered informative clusters, i.e., clusters containing relevant informa-
tion for classification purposes, thus ignoring noise clusters. Informative clusters are
selected by (i) identifying relevant genes, denoted as original genes in the following, by
means of feature selection methods, (ii) selecting clusters such that each cluster contains
a single original gene. More specifically, for the ANOVA, BW,OVO, and OVR feature
selection methods, we selected the 10, 50 and 100 top ranked genes in a given dataset.
For each original gene (i.e., gene in the rank), the largest cluster containing this gene
and no other original gene is selected. In this way, three subsets of clusters are defined:
(i) with 10 clusters, (ii) with 50 clusters, and (iii) with 100 clusters. For a larger number
of clusters, the cluster size became too small and the analysis was not relevant.

Three different classification models have been built by considering (a) all original
genes, (b) the substitution of each original gene with the central gene in its cluster, and
(c) the substitution of each original gene with the border gene in its cluster. Classifi-
cation accuracy has been computed in all three settings for each dataset, each feature
selection method and each gene subset (i.e., 10, 50, and 100 genes).

Table 4 reports the original accuracy values (setting (a)) and the difference with
respect to settings (b) and (c) for the OVO feature selectionmethod on all datasets. The
average size of the pool from which equivalent genes are drawn (i.e., the average cluster
size) is reported in Table 5. Similar results have been obtained for the other feature
selection methods.
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Table 4.Differences from the original OVO rank accuracy on all datasets by using the central and the border
genes

Dataset N Original Diffcentral Diff border

Brain1 10 74.45 0.00 0.00
50 85.56 2.22 0.00

100 84.45 2.22 1.11

Leuk1 10 94.44 0.00 -1.38
50 97.22 0.00 2.17

100 95.83 0.00 0.00

Lung 10 86.21 -1.97 -4.93
50 94.09 0.00 0.98

100 97.04 -1.47 0.00

Tumor9 10 54.89 7.72 1.54
50 70.12 1.78 -3.33

100 66.40 -1.11 -1.11

Leuk2 10 93.06 -1.39 -2.78
50 94.44 0.00 0.00

100 93.06 2.77 1.38

SRBCT 10 93.98 -1.21 -7.23
50 100.00 0.00 0.00

100 100.00 0.00 0.00

Prostate 10 93.14 0.00 0.00
50 91.18 0.00 0.00

100 92.16 0.00 0.98

DLBCL 10 85.71 2.60 1.30
50 94.81 0.00 0.00

100 96.10 1.30 1.30

Colon 10 81.97 0.00 0.00
50 86.89 0.00 0.00

100 86.89 0.00 0.00

Mean±Std 10 0.64n±2.96 -1.50n±2.96
50 0.44n±0.89 -0.02n±1.45

100 0.41n±1.42 0.41n±0.83

Differences from the original classification accuracy are low. Clusters formed by
a single gene (e.g., for the Colon and Prostate datasets) arenot significant, because
obviously the difference in accuracy is equal to zero. For larger clusters the differences
are always limited to few percentage points. For example, for the ten cluster case on
the Brain1, Leuk1, Leuk2 and DLBCL (cluster size range from about 3 to 6 genes) the
difference in accuracy varies from -2.78 to 2.60. Always in the ten cluster case, the bad
performance of SRBCT is due to the fact that one of the selected genes is located in
a big cluster (average cluster size 124.90 genes). Thus, theborder gene might be very
different from the original gene.

On average, the obtained clusters provide a good quality gene pool from which
equivalent genes may be drawn. The substitution with the central gene usually provides
better results with respect to the substitution with the border gene. This difference is
more significant for the larger clusters obtained for the 10 gene subset, than for the
smaller, more focused clusters obtained in the case of the 50or 100 gene subsets.



18 E. Baralis et al

Table 5.Average cluster size for the experiment reported in Table 4
N Brain1 Leuk1 Lung Tumor9 Leuk2 SRBCT Prostate DLBCL Colon
10 4.20 6.20 17.00 20.90 3.60 124.90 1.00 6.30 1.00
50 8.00 15.10 2.06 1.92 1.58 1.90 1.00 1.00 1.00
100 1.48 1.25 1.24 1.06 7.98 1.38 1.54 5.45 1.00

5. Conclusions

In this paper we propose a new similarity measure between genes, theclassification
distance, that exploits additional information which may be available on microarray
data (e.g., tumor or patient classification). The discrimination ability of each gene is
represented by means of a gene mask, which describes the geneclassification power,
i.e., its capability to correctly classify samples. The classification distance measures
gene similarity by analyzing their masks, i.e., their capability of correctly classifying
the same samples.

The classification distance measure can be integrated in different clustering ap-
proaches. We have integrated it into a hierarchical clustering algorithm, by introducing
the notion of cluster mask as representative of a cluster anddefining as inter-cluster dis-
tance the distance between cluster masks. We validated our method on both binary and
multiclass microarray datasets. The experimental resultsshow the ability of the classi-
fication distance to group genes with similar classificationpower and similar biological
meaning in the tumor context.

Currently, we are considering to integrate our distance metric in a (supervised) fea-
ture selection algorithm. By clustering genes which correctly classify the same samples
and then selecting a single gene from each cluster, redundant genes are disregarded and
both model coverage and classification accuracy may be improved.

We believe that the classification distance measure may be applied also in other
application domains with the same characteristics (e.g., user profiling, hotel ranking,
etc.), to improve the clustering results by exploiting additional information available on
the data being clustered.
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