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Politecnico di Torino - Torino, Italy
Email: {gianpiero.cabodi, sergio.nocco, stefano.quer}@polito.it

Abstract—This work revisits the formulation of interpolation
sequences, in order to better understand their relationships with
Bounded Model Checking and with other Unbounded Model
Checking approaches relying on standard interpolation.

We first focus on different Bounded Model Checking schemes
(bound, exact and exact-assume), pointing out their impact on the
interpolation-based strategy. Then, we compare the abstraction
ability of interpolation sequences with standard interpolation,
highlighting their convergence at potentially different sequential
depths. We finally propose a tight integration of interpolation
sequences with an abstraction-refinement strategy.

Our contributions are first presented from a theoretical stand-
point, then supported by experimental results (on academic and
industrial benchmarks) adopting a state-of-the-art academic tool.

I. INTRODUCTION

Craig interpolants (ITPs for short) [1], [2], introduced by
McMillan [3] in the Unbounded Model Checking (UMC) field,
have shown to be effective on difficult verification instances.
Among the attempts that have been made to improve the
initially proposed scheme [4], [5], [6], [7], [8], interpolation
sequences (ITPSEQs) [9] represent an interesting new idea.

ITPSEQs stress the affinity of ITP-based methods to stan-
dard Bounded Model Checking (BMC), as they basically
propose a single-loop scheme, generating several interpolants
(a sequence) from a single refutation proof. Interpolants are
then virtually stored in a matrix-like data structure, which is
exploited to evaluate over-approximate reachable state sets.
ITPSEQs may have an edge over standard ITPs as their affinity
with BMC turns out to be convenient for falsification and for
some proved properties.

Starting from theoretical considerations and experimental
analysis, we observed the following weaknesses of standard
ITP-based verification, compared with BMC:

∙ ITPs intrinsically rely on SAT calls looking for states
violating the property at any depth (bound-k checks).
Unsatisfiable instances are thus harder to prove, and, as a
consequence, they produce larger refutation proofs (and
interpolants).

∙ ITPs can benefit from other abstraction techniques (e.g.,
localization abstraction [10]), but they require ad-hoc
formulations and implementations.

Given the above observations, ITPSEQs can be attractive
for the following reasons:
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∙ ITPSEQs do not require bound-k checks, as they are
based on the computationally lighter formulations. To
this respect, alternative schemes [11] may deserve further
investigation.

∙ The affinity of ITPSEQs to BMC may be used to tightly
integrate ITPSEQs with Counterexample Based Abstrac-
tion schemes (CBA) [12], [13].

The convergence speed of ITPSEQs, versus the one of pure
ITP-based methods, is another issue that we will discuss.
To this respect, we partially contrast one of the conclusions
of [9], by showing that standard interpolation can converge
at shorter depths than ITPSEQs. Furthermore, to increase
the convergence speed, we introduce an intermediate strategy,
which we call Serial Interpolation Sequence (SITPSEQ). The
resulting engine, albeit not as mature as standard interpola-
tion, and not competitive in a broad sense, shows interesting
results on specific properties on both academic and industrial
benchmarks.

II. BACKGROUND

A. Bounded Model Checking

Given a sequential system 𝑀 and an invariant property
𝑝, SAT-based BMC [14] is an iterative process to check the
validity of 𝑝 up to a given bound. To perform this task, the
system transition relation 𝑇 is unrolled 𝑘 times

𝑇 𝑘(𝑉 0..𝑘) =
⋀𝑘−1

𝑖=0 𝑇 (𝑉 𝑖, 𝑉 𝑖+1)

to implicitly represent all state paths of length 𝑘. After that,
BMC tools may implement different checks, characterized by
decreasing complexity:

𝑏𝑚𝑐𝑘𝐵(𝑉
0..𝑘)=𝑆0(𝑉

0) ∧ 𝑇 𝑘(𝑉 0..𝑘) ∧⋁𝑘
𝑖=1 ¬𝑝(𝑉 𝑖)

𝑏𝑚𝑐𝑘𝐸(𝑉
0..𝑘)=𝑆0(𝑉

0) ∧ 𝑇 𝑘(𝑉 0..𝑘) ∧ ¬𝑝(𝑉 𝑘)

𝑏𝑚𝑐𝑘𝐴(𝑉
0..𝑘) =𝑆0(𝑉

0) ∧ 𝑇 𝑘(𝑉 0..𝑘) ∧⋀𝑘−1
𝑖=1 𝑝(𝑉 𝑖) ∧ ¬𝑝(𝑉 𝑘)

The first one, referred to as bound-k, looks for counterexam-
ples falsifying 𝑝 at any distance from the initial states 𝑆0.
The second one, called exact-k, looks for paths in which a
state violating 𝑝 appears after exactly 𝑘 steps (but violation is
allowed at shorter distances as well). The third one, referred
to as exact-assume-k (or simply assume-k), looks for paths of
length 𝑘 strictly reaching ¬𝑝 only in the last time frame.

If we just look at the SAT solver run time, 𝑏𝑚𝑐𝑘𝐴 usually
offers the best performance [11].



B. Craig Interpolants

Definition 1: Let 𝐴 and 𝐵 be two inconsistent Boolean
formulas, i.e., such that 𝐴 ∧ 𝐵 ≡ ⊥. An ITP 𝐼 for (𝐴, 𝐵)
is a formula such that: 1) 𝐴 ⇒ 𝐼 , 2) 𝐼 ∧ 𝐵 ≡ ⊥, and
3) 𝑠𝑢𝑝𝑝(𝐼) ⊆ 𝑠𝑢𝑝𝑝(𝐴) ∩ 𝑠𝑢𝑝𝑝(𝐵).

An interpolant 𝐼 = ITP(𝐴,𝐵) can be derived, as an
AND/OR circuit, from the refutation proof of 𝐴 ∧𝐵 [3].

Consider now the Boolean formula 𝑏𝑚𝑐𝑘𝐵 , representing the
bound-k BMC check for depth 𝑘. If 𝑏𝑚𝑐𝑘𝐵 ≡ ⊥, then an ITP
𝐼1 can be computed by partitioning 𝑏𝑚𝑐𝑘𝐵 into:

𝐴 = 𝑆0(𝑉
0) ∧ 𝑇 (𝑉 0, 𝑉 1)

𝐵 =
⋀𝑘−1

𝑖=1 𝑇 (𝑉 𝑖, 𝑉 𝑖+1) ∧⋁𝑘
𝑖=1 ¬𝑝(𝑉 𝑖)

(1)

By definition, 𝐼1 represents an over-approximation of the states
𝑆1 reachable in one step from 𝑆0, with the property that it does
not contains states on paths of length 𝑘 − 1 to a failure state.
If we replace 𝑆0 with 𝐼1 in 𝑏𝑚𝑐𝑘𝐵 , it is possible to find a new
ITP 𝐼2. The process can be iteratively extended to produce
an over-approximate traversal, where, at the 𝑗-th iteration,
𝐼𝑗 and 𝐼𝑗+1 represent the domain and co-domain states of
image computations. If a fixed-point is reached, the property
is true. Otherwise, if a satisfiable instance is found during
the approximate traversal, the value of 𝑘 is increased, and the
traversal restarted. Figure 1 provides a high-level pseudo-code
implementing the ITP-based algorithm.

ITPVERIF (𝑆0, 𝑇 , 𝑝)
for (𝑘 = 1; ; 𝑘++)
𝐴 = 𝑆0 ∧ 𝑇

𝐵 =
⋀𝑘−1

𝑖=1 𝑇 ∧⋁𝑘
𝑖=1 ¬𝑝

cex = SAT(𝐴 ∧𝐵)
if (cex ∕= ∅) return FAIL
𝑅0 = 𝑆0

for (𝑗 = 1; cex = ∅; 𝑗++)
𝐼𝑗 = ITP(𝐴, 𝐵)
if (𝐼𝑗 ⇒ 𝑅𝑗−1) return PASS
𝑅𝑗 = 𝑅𝑗−1 ∨ 𝐼𝑗
𝐴 = 𝐼𝑗 ∧ 𝑇
cex = SAT(𝐴 ∧𝐵)

Fig. 1. Interpolant-based verification.

C. Interpolation Sequences

Definition 2: Let Γ1..𝑛 = {𝐴1, 𝐴2, . . . , 𝐴𝑛} be a set of
formulas such that

⋀
𝑖 𝐴𝑖 ≡ ⊥. An ITPSEQ 𝐼0..𝑛 for Γ1..𝑛

is an ordered set (𝐼0, 𝐼1, . . . , 𝐼𝑛) such that: 1) 𝐼0 ≡ ⊤ and
𝐼𝑛 ≡ ⊥, 2) 𝐼𝑖 ∧ 𝐴𝑖+1 ⇒ 𝐼𝑖+1 for every 0 ≤ 𝑖 < 𝑛, and
3) 𝑠𝑢𝑝𝑝(𝐼𝑖) ⊆ 𝑠𝑢𝑝𝑝(𝐴𝑖) ∩ 𝑠𝑢𝑝𝑝(𝐴𝑖+1) for any 0 < 𝑖 < 𝑛.

Given a refutation proof Π for
⋀

𝑖 𝐴𝑖, the computation of a
sequence 𝐼0..𝑛 = ITPSEQ(Γ1..𝑛) can be achieved through the
following relation for any 0 < 𝑗 < 𝑛:

𝐼𝑗 = ITP(
⋀𝑗

𝑖=1 𝐴𝑖,
⋀𝑛

𝑖=𝑗+1 𝐴𝑖) (2)

That is, each 𝐼𝑗 is a Craig interpolant extracted from the same
proof Π by simply changing the role played by the terms in
Γ1..𝑛 during the computation.

Given an unsatisfiable formula 𝑏𝑚𝑐𝑘𝐸 , an ITPSEQ
𝐼𝑘0..𝑘+1 can be computed by partitioning 𝑏𝑚𝑐𝑘𝐸 into a set

Γ1..𝑘+1(𝑏𝑚𝑐𝑘𝐸) = {𝐴1, . . . , 𝐴𝑘+1}, such that:

𝐴1 = 𝑆0(𝑉
0) ∧ 𝑇 (𝑉 0, 𝑉 1)

𝐴𝑖 = 𝑇 (𝑉 𝑖−1, 𝑉 𝑖) 𝑓𝑜𝑟 𝑎𝑙𝑙 2 ≤ 𝑖 ≤ 𝑘
𝐴𝑘+1 = ¬𝑝(𝑉 𝑘)

Then, by Definition 1, we have that each 𝐼𝑘𝑗 is an over-
approximation of 𝑆𝑗 , i.e., 𝑆𝑗 ⊆ 𝐼𝑘𝑗 . Furthermore, by Defini-
tion 2, all states in 𝐼𝑘𝑘 do not violate 𝑝 (since 𝐼𝑘𝑘 ∧ ¬𝑝 ≡ ⊥).
Finally, we also have that each 𝐼𝑘𝑗+1 represents an over-
approximate image of 𝐼𝑘𝑗 for all 0 < 𝑗 < 𝑘, as 𝐼𝑘𝑗 ∧𝑇 ⇒ 𝐼𝑘𝑗+1.

By the observations above, if we define ℐ𝑗 =
⋀𝑘

𝑖=𝑗 𝐼
𝑖
𝑗 , with

each 𝐼𝑖𝑗 computed by partitioning the BMC formulae generated
for smaller depths, it holds that ℐ𝑗 is an approximated image of
𝑆𝑗 not including states leading to a failure in 𝑘− 𝑗 steps. This
means that the ℐ state sets can be exploited in a very similar
way to the ITPs used by procedure ITPVERIF in Figure 1.

Figure 2 reports an UMC algorithm based on ITPSEQs.

ITPSEQVERIF (𝑆0, 𝑇 , 𝑝)
for (𝑘 = 1; ; 𝑘++)

cex = SAT(𝑏𝑚𝑐𝑘𝐸 )
if (cex ∕= ∅) return FAIL
𝑅0 = 𝑆0

𝐼0..𝑘+1 = ITPSEQ(Γ1..𝑘+1(𝑏𝑚𝑐𝑘𝐸))
for (𝑗 = 1; 𝑗 < 𝑘; 𝑗++)

ℐ𝑗 = ℐ𝑗 ∧ 𝐼𝑗
if (ℐ𝑗 ⇒ 𝑅𝑗−1) return PASS
𝑅𝑗 = 𝑅𝑗−1 ∨ ℐ𝑗

ℐ𝑘 = 𝐼𝑘
if (ℐ𝑘 ⇒ 𝑅𝑗−1) return PASS

Fig. 2. Unbounded Model Checking based on interpolation sequences.

The verification process is pictorially represented in Fig-
ure 3. During the first iteration (Figure 3(a)), the formula
𝑏𝑚𝑐1𝐸 is checked: if it is unsatisfiable, then the interpolation
sequence 𝐼10..2 is computed as (𝐼10 = ⊤, 𝐼11 = ITP(𝑆0 ∧
𝑇 ,¬𝑝), 𝐼12 = ⊥). 𝐼11 is also assigned to ℐ1 and checked
against 𝑆0: if ℐ1 ⇒ 𝑆0 the process is immediately stopped
with a PASS result, otherwise a new iteration is started.
Upon an unsatisfiable result for 𝑏𝑚𝑐2𝐸 (Figure 3(b)), 𝐼20..3
is generated, being 𝐼20 = ⊤, 𝐼12 = ITP(𝑆0 ∧ 𝑇 , 𝑇 ∧ ¬𝑝),
𝐼22 = ITP(𝑆0 ∧ 𝑇 ∧ 𝑇 ,¬𝑝) and 𝐼23 = ⊥. This time, ℐ1 is
obtained as the conjunction between 𝐼21 and the previously
generated ITP 𝐼11 , whereas 𝐼22 is directly assigned to ℐ2.
Both ℐ1 and ℐ2 are checked for inclusion in 𝑅0 = 𝑆0 and
𝑅1 = 𝑅0 ∨ℐ1, respectively. The procedure terminates in case
such a relationship is found, otherwise the depth 𝑘 is increased
and the reasoning is repeated (Figure 3(c)).
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Fig. 3. A graphical representation of the interpolation sequence computation.



III. BMC CHECKS: FROM BOUND-K TO ASSUME-K

As previously described, standard interpolation relies on
bound-k BMC checks, as the 𝐵 term in ITP computations
(see Equation 1) includes the target ¬𝑝 at all time frames:

𝐵𝑘
𝐵(𝑉

1..𝑘) = 𝑇 𝑘(𝑉 1..𝑘) ∧⋁𝑘
𝑗=1 ¬𝑝(𝑉 𝑗)

This is a strict requirement of the algorithm, as it is necessary
to ensure the correctness of function ITPVERIF. However,
this also implies that the complexity of the SAT runs (and
eventually the size of the related refutation proofs) is higher
than with the alternative formulations, i.e., the exact-k and
assume-k:

𝐵𝑘
𝐸(𝑉

1..𝑘) = 𝑇 𝑘(𝑉 1..𝑘) ∧ ¬𝑝(𝑉 𝑘)

𝐵𝑘
𝐴(𝑉

1..𝑘) = 𝑇 𝑘(𝑉 1..𝑘) ∧⋀𝑘−1
𝑗=1 𝑝(𝑉

𝑗) ∧ ¬𝑝(𝑉 𝑘)

This issue has been already partially addressed in previous
publications, proposing partitioned ITPs [8], where given a
disjoint decomposition of the 𝐵 term:

𝐵𝑘
𝐵 =

⋁𝑘
𝑗=1 𝐵

𝑗
𝐸 =

⋁𝑘
𝑗=1 𝐵

𝑗
𝐴

an interpolant was expressed as the conjunction of (smaller)
ITPs, individually computed following an exact or exact-
assume strategy:

ITP(𝐴,𝐵𝑘
𝐵) =

⋀𝑘
𝑗=1 ITP(𝐴,𝐵𝑗

𝐸) =
⋀𝑘

𝑗=1 ITP(𝐴,𝐵𝑗
𝐴)

The formulation is quite similar to the one adopted for
ITPSEQs, where the over-approximate reachability set ℐ𝑗 , i.e.,
the column-based conjunction in the matrix-like arrangement
of ITPs, is given by ℐ𝑗 =

⋀𝑘
𝑖=𝑗 𝐼

𝑖
𝑗 , each 𝐼𝑖𝑗 being the 𝑗-th term

of an ITPSEQ generated by the exact BMC problem at depth
𝑖.

In our implementation of ITPSEQs, we explicitly resort
to an assume-k formulation, by performing SAT calls with
the 𝑏𝑚𝑐𝑘𝐴 propositional formula. We experimentally compare
the two strategies in Section VI, showing that the assume-k
approach almost always outperforms the exact-k scheme.

IV. SERIAL INTERPOLATION SEQUENCES

Our experimental practice shows that ITPSEQs can offer
different trade-offs among abstraction levels, sequential depth
at convergence, and overall size of interpolants, with respect
to standard interpolation. Hence, we consider ITPSEQ as an
additional engine within a potential portfolio of available MC
techniques. We thus propose a hybrid method, where a chain
of (standard) ITP computations works as an ITPSEQ. We
call this method Serial Interpolation Sequence (SITPSEQ).
In the sequel, we first motivate the approach, by discussing
the performance of interpolant-based approaches in terms of
sequential depth. Then we introduce the concepts of serial and
parallel interpolation sequences.

A. Abstraction Operators and Sequential Diameter(s)

Let us now discuss of the potential reduction of traversal
depths, that is always obtained as a by-product of abstraction
techniques. As a term of comparison, in order to evaluate the
traversal depths, we will use circuit diameters (forward and/or
backward), since they represent an exact measure (though

often not available) of sequential behaviors. The diameter of
a sequential system is the longest shortest path between any
two states in the state transition graph. Forward (𝑑𝐹 ) and
backward (𝑑𝐵) diameters, referred to initial and target states,
are preferred once those states are given.

Most of the existing theory on ITP-based model checking
just considers the backward diameter 𝑑𝐵 of the system under
verification, that represents an upper bound [3] for the number
𝑘𝑓𝑝 of outer iterations performed by the standard interpolation
algorithm (see Figure 1). But this is just a partial performance
estimation, as the overall performance also depends on the
number 𝑗𝑓𝑝 of inner iterations. Interpolation depth is thus often
measured not just in terms of outer iterations (𝑘𝑓𝑝 ≤ 𝑑𝐵),
but rather of couples (𝑘𝑓𝑝, 𝑗𝑓𝑝), representing the numbers of
outer/inner iterations at the fixed-point. Alternatively, the sum
𝑘𝑓𝑝 + 𝑗𝑓𝑝 is also used, that corresponds to a “virtual” BMC
bound (maximum length considered for initial-to-target paths).

In contrast to backward diameter, the exact forward diam-
eter 𝑑𝐹 is not an upper bound to forward over-approximate
traversals (number of inner iterations), nor 𝑑𝐹+𝑑𝐵 is an upper
limit for the maximum BMC bound. So not only are we taking
terms of comparisons (circuit diameters) that are typically
not known, but even in the case of known (or estimated)
values, we cannot assume them as an upper bound for ITP-
based traversal depths. These observations are fully in line
with other abstraction/over-approximation techniques (includ-
ing BDD-based ones), where nothing can be said about the
diameter(s) of an abstract state graph w.r.t. the concrete one.
However, it is true that over-approximate traversals usually
converge at smaller depths than circuit diameters, which thus
represent a good (practical) term of comparison to evaluate
the convergence power of an abstraction-based approach.

B. Sequential Depth of Interpolation Sequences

Let us now focus on ITPSEQs, where 𝑘𝑓𝑝 and 𝑗𝑓𝑝 represent
the BMC bound and the approximate forward depth, respec-
tively, providing the fixed-point (i.e., when ℐ𝑗𝑓𝑝

⇒ 𝑅𝑗𝑓𝑝−1).
Because of the way the ℐ sets are built, we have that
𝑘𝑓𝑝 − 𝑗𝑓𝑝 ≤ 𝑑𝐵 , whereas no relation can be established
between 𝑗𝑓𝑝 and 𝑑𝐹 .

As already pointed out, we are interested in practical con-
siderations, so let us explicitly state that we expect 𝑗𝑝 < 𝑑𝐹 ,
because of the over-approximation, and, as a consequence,
𝑘𝑓𝑝 < 𝑑𝐹 + 𝑑𝐵 . Should we expect 𝑗𝑓𝑝 << 𝑑𝐹 , or rather
𝑗𝑓𝑝≈𝑑𝐹 ? As no theoretical upper bound can be established, we
draw our discussion on a heuristic basis. Let us first observe
that the abstraction process in ITP-based approaches is fully
driven by SAT-solvers. Then, on the one hand, the depth of
a traversal visiting an abstract space is unpredictable. On the
other hand, the over-approximation freedom for ITP(𝐴,𝐵),
i.e., the freedom left for visiting unreachable states, may range
over the sub-space including 𝐴 and not intersecting 𝐵. The
smaller is this sub-space, the more constrained (and tightened
to actually reachable states) is the over-approximation. Or, in
other words, a high abstraction level implies a large degree of
freedom for over-approximation.



But the over-approximation level is just part of the problem,
and often not a good indication for the traversal conver-
gence/depth. Another key issue is finding a (least) fixed-point,
i.e., a chain of over-approximated state sets (𝑅𝑗 =

⋁𝑗−1
𝑖=0 𝑅𝑖)

such that 𝑅𝑗 ∧ 𝑇 ⇒ 𝑅𝑗 .
On both of the above mentioned issues, standard ITPs and

ITPSEQs show a clearly different nature: (1) State sets in
standard ITPs are generated from a cumulative application of
(ITP-based) over-approximations, as 𝐼1 is used to generate its
approximated image 𝐼2, which is in turn used for computing
𝐼3, etc. This can be captured by a recurrent formulation:

𝐼𝑗 = ITP(𝐼𝑗−1 ∧ 𝑇,𝐵𝑘)

with 𝐼0 = 𝑆0. In our experience, the cumulative effect of ITP
operators tends to enhance the abstraction level, and to produce
shorter traversal depths than 𝑑𝐹 . (2) Over-approximate state
sets in ITPSEQs, derive from conjunctions of ITPs, that are
directly derived from BMC problems:

𝐼𝑘𝑗 = ITP(𝑆0 ∧ 𝑇 𝑗 , 𝐵𝑘−𝑗)

The 𝐴 term in the ITPSEQ is a forward circuit unrolling, and
its projection over variables 𝑉 𝑗 (the lower bound for the ITP)
is the exact set of states forward reachable in 𝑗 steps (𝑆𝑗).

Thus, abstractions in ITPSEQs are potentially tighter, as
they derive from individual refutation proofs, to be further
combined by column-based conjunctions. On the other hand,
standard interpolation cumulatively combines all the contribu-
tions: an ITP, generated from a SAT refutation proof, is used
as one of the inputs for the next ITP computation.

Our experience basically confirms the above guesses. When-
ever we considered problems where the traversal depth is in the
range from a few tens to hundreds, standard interpolation tends
to converge at shorter depths than interpolation sequences.

C. Parallel and Serial Interpolation Sequences

As described in Section II-C, all components of an ITPSEQ
are computed from the same refutation proof. We call this type
of computation parallel, as the ITPs can be generated from
the proof in any order (virtually in parallel). We introduce an
alternative way to generate an ITPSEQ, that we call serial,
as every term is obtained by taking into account the previous
one, with a technique more similar to standard interpolation.

Definition 3: Given a set of formulas Γ1..𝑛 a Serial
ITPSEQ (SITPSEQ) for Γ1..𝑛 is an ITPSEQ where, for any
0 < 𝑗 < 𝑛, the 𝐼𝑗 term is computed as:

𝐼𝑗 = ITP(𝐼𝑗−1 ∧𝐴𝑗 ,
⋀𝑛

𝑖=𝑗+1 𝐴𝑖) (3)

The idea is directly derived from standard interpolation, but
it is applied to an ITPSEQ scheme, where the 𝐵 terms of
successive interpolants are not kept unchanged, but reduced
at each iteration. The ITPSEQ properties are guaranteed by
construction. The overall SAT time required to obtain the
sequence is obviously increased, as the sequence generation
needs to loop through a number of SAT calls and standard ITP
computations. The potential advantage lies in the cumulative
interpolation effect, with a possible saturation of the over-
approximation.

More in general, several intermediate solutions are possible,
both static and dynamic. Figure 4 reports the pseudo-code of
a function able to build an ITPSEQ ranging from being totally
parallel to completely serial, depending on the 𝛼𝑠 parameter
(0 ≤ 𝛼𝑠 ≤ 1). More precisely, the first 𝑛𝑠 terms of the
sequence are generated according to Equation 3, whereas the
remaining ones are obtained through a parallel computation,
as specified by Equation 2. For our experiments we chose
𝛼𝑠 = 0.5.

SITPSEQ (Γ1..𝑛, 𝛼𝑠)
𝑛𝑠 = ⌊𝛼𝑠 ⋅ 𝑛⌋
𝐼0 = ⊤
for (𝑗 = 1; 𝑗 ≤ 𝑛𝑠; 𝑗++)

𝐼𝑗 = ITP(𝐼𝑗−1 ∧𝐴𝑗 ,
⋀𝑛

𝑖=𝑗+1 𝐴𝑖)
𝐼𝑛𝑠+1..𝑛 = ITPSEQ({𝐼𝑛𝑠 ,Γ𝑛𝑠+1..𝑛})
return 𝐼0..𝑛

Fig. 4. Computation of serial and parallel interpolation sequence.

V. INTERPOLATION SEQUENCES AND COUNTEREXAMPLE

BASED ABSTRACTION

Recent works [10] describe alternative ways to compute
ITP-like over-approximations without resorting to SAT refuta-
tion proofs. Although the techniques were inspired by existing
abstraction methods, they required a tight integration and an
ad-hoc formulation for ITP-based Model Checking.

Due to their strong similarity with BMC, ITPSEQs appear
much more suitable for integration with existing abstraction
techniques, which work on a BMC basis. We address in this
section abstraction-refinement, following the Counterexample
Based Abstraction (CBA) scheme [13], as the integration with
our method is straightforward. Furthermore, its abstraction
strategy (i.e., refining an initially coarse abstraction), is dual to
the one adopted for interpolation (i.e., letting the SAT solver to
remove unnecessary details from the model). Although Proof
Based Abstraction (PBA) [13] is also possible, we prefer the
CBA strategy, because PBA is closer to standard interpolation,
as they both start from SAT refutation proofs.

CBA approaches can be useful for both BMC and UMC. In
the first case, any refinement done at bound 𝑘 is introduced
just for BMC checks at larger depths, i.e., BMC checks at
lower bounds are not repeated. On the other hand, a full proof
is typically restarted in UMC approaches whenever a newly
refined circuit is available.

In our case we do not repeat the proofs, as the goal of
refinements is only to provide unsatisfiable BMC instances at
increasing bounds. The advantage in case of failure is obvious.
On the other hand, in case of unsatisfiable checks, we expect
smaller refutation proofs, and hence ITPs. As a consequence,
we obtain a higher over-approximation for the computed state
sets, which is not a guarantee (but it is often a good premise)
for better convergence.

The related pseudo-code is provided in Figure 5. The mod-
ifications with respect to the original pseudo-code of Figure 2
can be clearly identified in the CBA functions REFINE and
EXTEND. Our implementation of CBA is based on an iterative
search of abstract counterexamples for each given bound 𝑘.



Each abstract counterexample is checked on the concrete
model 𝑇 , exploiting function EXTEND. If the counterexample
is validated, a failure is returned. In the opposite case, the
abstract model 𝑇𝐴 is refined in a new model by function
REFINE. When no more (abstract) counterexamples are found,
the 𝑇𝐴 model is adopted in function SITPSEQ to perform the
serial ITPSEQ computation.

ITPSEQCBAVERIF (𝑆0, 𝑇 , 𝑝, 𝛼𝑠)
𝑇𝐴 = ABSTRACT (𝑇 )
for (𝑘 = 1; ; 𝑘++)

cex = SAT(𝑏𝑚𝑐𝑘𝐸 (𝑆0, 𝑇𝐴, 𝑝))
while (cex ∕= ∅)

if (EXTEND (cex, 𝑇 , 𝑇𝐴, 𝑘) ∕= ∅) return FAIL
𝑇𝐴 = REFINE (𝑐𝑒𝑥, 𝑇 , 𝑇𝐴, 𝑘)
cex = SAT(𝑏𝑚𝑐𝑘𝐸 (𝑆0, 𝑇𝐴, 𝑝))

𝑅0 = 𝑆0

𝐼0..𝑘+1 = SITPSEQ (Γ1..𝑘+1(𝑏𝑚𝑐𝑘𝐸 (𝑆0, 𝑇𝐴, 𝑝)), 𝛼𝑠)
for (𝑗 = 1; 𝑗 < 𝑘; 𝑗++)

ℐ𝑗 = ℐ𝑗 ∧ 𝐼𝑗
if (ℐ𝑗 ⇒ 𝑅𝑗−1) return PASS
𝑅𝑗 = 𝑅𝑗−1 ∨ ℐ𝑗

ℐ𝑘 = 𝐼𝑘
if (ℐ𝑘 ⇒ 𝑅𝑗−1) return PASS

Fig. 5. Computation of serial and parallel interpolation sequence with CBA.

VI. EXPERIMENTAL RESULTS

We present a set of experimental data, on a selected sub-set
of 100 publicly available and industrial circuits, oriented to
provide both a comparison with standard interpolation, and an
overall evaluation of the techniques proposed in the paper.

Our prototype ran on a 2.5 GHz Quad-core AMD work-
station, with 8 GB of main memory, with 1800 seconds time
limit, and 2 GBytes memory limit. We ran our implementa-
tions of: (a) standard ITPs, (b) standard ITPSEQs, (c) serial
ITPSEQs (with 𝛼𝑠 = 0.5), and (d) serial ITPSEQs with CBA.

Figure 6 plots CPU times for individual runs, sorted with
different orders for each approach, in order to provide mono-
tonic curves. It basically shows that standard interpolation is
more powerful than ITPSEQs, at least for proved properties,
and that our improved ITPSEQ methods (serial sequences and
integration with CBA) have the edge over standard ITPSEQs.
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Fig. 6. Performance comparison between standard interpolation and inter-
polation sequences (possibly enhanced with serialization and CBA).

Table I provides more detailed data for the benchmarks
completed by at least one of the ITPSEQ techniques. The table
is divided into two main parts. The upper part includes mid-
size problems, which are reported in order to provide a broader
comparison among all techniques. The lower part focuses on
industrial circuits, and it shows more challenging cases, often
completed by fewer techniques. For each property, the table
reports the design name followed by the number of primary
inputs (#PI), and register count (#FF). After that, the BDDs
section reports the exact diameters and the CPU time for both
forward (𝑑𝐹 , Time𝐹 ) and backward (𝑑𝐵 , Time𝐵) BDD-based
verification. The diameter is not reported in case an overflow
or a failure occur. For each one of the subsequent parts
(ITP, ITPSEQ, SITPSEQ, and ITPSEQCBA), Table I reports
execution times, and depth measures (see Section IV-B). 𝑘𝑓𝑝
represents the BMC bound, and 𝑗𝑓𝑝 indicates the depth of the
forward traversal (or the index of the cut) at fixed-points (a 0
value is reported in case of failure).

A careful analysis of 𝑘𝑓𝑝 and 𝑗𝑓𝑝 confirms our guesses
of Section IV, i.e., that cumulative abstraction can provide
convergence at shorter depths. The values of 𝑘𝑓𝑝 and 𝑗𝑓𝑝 are
quite similar, with very few exceptions, for the three ITPSEQ
approaches, on most of the experiments solved by all methods
(typically completed at lower BMC bounds). We can also
perceive the advantage of serial sequences and CBA in the
verification instances left unsolved by standard ITPSEQs. The
BMC bound (𝑘𝑓𝑝 in round brackets) at overflow is typically
larger than the one of serial sequences at fixed-point, indicating
that the potential convergence of standard ITPSEQs (with
unlimited time and memory bounds) would have been at larger
depths.

Table I finally shows that ITPSEQ approaches get better
results than standard ITP in some large industrial cases (> 500
latches), with ITPSEQCBA being the only approach able to
complete all the presented industrial benchmarks.

A last very interesting observation comes from Figure 7.
In this graph we present a scattered plot comparing execution
times of standard ITPSEQs, in two versions, based on assume-
k and exact-k checks, respectively. The graph clearly shows
the advantage of the assume-k formulation, confirming the
discussion presented in Section III.

VII. CONCLUSIONS

This work revisits the formulation of Unbounded Model
Checking (UMC) based on ITPSEQs, in order to better under-
stand its relationships with Bounded Model Checking (BMC)
and with other UMC approaches based on standard interpo-
lation. Our contributions includes theoretical insight on in-
terpolation sequences, and a new perspective for performance
improvements. Our experimental results provide an interesting
support for our formulations, and represent an encouraging
platform for further tuning and a broader experimental work.

REFERENCES

[1] W. Craig, “Three Uses of the Herbrand-Gentzen Theorem in Relating
Model Theory and Proof Theory,” The Journal of Symbolic Logic,
vol. 22, no. 3, pp. 269–285, 1957.



TABLE I
PERFORMANCE COMPARISON AMONG STANDARD INTERPOLATION (ITP), PARALLEL (ITPSEQ) AND SERIAL (SITPSEQ) INTERPOLATION SEQUENCES,

AND INTERPOLATION SEQUENCES ENHANCED WITH CBA (ITPSEQCBA). 𝑜𝑣𝑓 MEANS OVERFLOW ON TIME, A DASH (−) MEANS DATA NOT AVAILABLE.

Model BDDs ITP ITPSEQ SITPSEQ ITPSEQCBA
Name #PI #FF 𝑑𝐹 Time𝐹 𝑑𝐵 Time𝐵 Time 𝑘𝑓𝑝 𝑗𝑓𝑝 Time 𝑘𝑓𝑝 𝑗𝑓𝑝 Time 𝑘𝑓𝑝 𝑗𝑓𝑝 Time 𝑘𝑓𝑝 𝑗𝑓𝑝

bj08amba2g3f3 8 25 14 1 9 1 89 11 11 710 19 11 327 17 8 318 17 8
bj08amba2g4f3 12 35 − 𝑜𝑣𝑓 − 𝑜𝑣𝑓 14 11 0 14 11 0 22 11 0 28 11 0
eijkS820 18 58 11 1 4 22 22 4 10 125 13 9 237 14 10 174 13 9
eijkS832 18 62 11 1 4 17 17 4 10 131 13 9 264 14 9 248 14 10
eijkS953 16 105 11 2 3 22 37 4 10 67 13 9 131 13 9 220 15 9
intel006 345 350 − 𝑜𝑣𝑓 9 62 19 9 15 𝑜𝑣𝑓 (36) − 1348 29 20 638 25 15
intel049 136 141 11 40 15 49 21 11 12 𝑜𝑣𝑓 (27) − 747 25 15 𝑜𝑣𝑓 (29) −
neclaftp3001 32 2826 − 𝑜𝑣𝑓 − 𝑜𝑣𝑓 203 14 0 480 14 0 1144 14 0 274 14 0
neclaftp3002 32 2826 − 𝑜𝑣𝑓 − 𝑜𝑣𝑓 427 16 0 643 16 1670 16 0 425 16 0
nusmvguidancep6 84 86 72 8 28 2 254 19 15 𝑜𝑣𝑓 (33) − 240 22 13 254 22 14
nusmvguidancep9 84 86 72 12 31 9 4 9 11 302 23 12 𝑜𝑣𝑓 (28) − 696 25 12
nusmvreactorp4 74 76 272 9 13 25 8 15 24 179 43 30 171 32 19 288 42 27
nusmvtcasp5 146 169 − 𝑜𝑣𝑓 − 𝑜𝑣𝑓 54 25 0 112 25 0 427 25 0 405 25 0
nusmvtcastp6 146 171 − 𝑜𝑣𝑓 − 𝑜𝑣𝑓 11 18 0 24 18 0 56 18 0 55 18 0
pdtviscoherence3 6 29 28 2 6 1 10 6 11 12 14 9 16 13 7 11 11 6
pdtviscoherence4 6 29 28 2 15 2 29 10 8 𝑜𝑣𝑓 (25) − 218 18 10 175 17 8
pdtviscoherence5 6 29 28 2 15 2 23 9 9 1781 25 10 425 20 8 160 17 8
pdtvisns2p0 16 75 16 3 10 10 40 7 15 607 19 10 241 16 5 416 17 5
pdtvisns2p2 16 73 16 3 9 4 115 11 12 𝑜𝑣𝑓 (21) − 𝑜𝑣𝑓 (22) − 680 19 10
pdtvisretherrtf4 3 43 − 1 − 3 25 33 0 637 33 0 712 33 0 673 33 0
pdtvissfeistel 68 296 − 𝑜𝑣𝑓 − 𝑜𝑣𝑓 273 21 11 329 23 10 438 24 9 𝑜𝑣𝑓 (21) −
pdtvisvending00 2 27 118 3 12 1 14 7 15 388 22 9 194 20 9 𝑜𝑣𝑓 (28) −
prodconsp1negnv 61 86 − 50 − 87 36 23 0 938 23 0 757 23 0 1158 23 0
prodconsp5 63 84 − 𝑜𝑣𝑓 − 𝑜𝑣𝑓 42 23 0 991 23 0 832 23 0 1296 22 0
texasPImainp01 14 47 16 1 36 4 281 19 29 1240 38 24 1352 34 21 𝑜𝑣𝑓 (30) −
viscoherencep3 6 29 28 1 14 2 63 10 12 𝑜𝑣𝑓 (24) − 44 14 6 137 17 7
viseisenberg 7 22 − 1 − 1 10 21 0 78 21 0 92 21 0 90 21 0
industrialA1 26 151 12 35 28 74 1 15 9 160 37 21 106 27 9 79 27 11
industrialA2 44 251 18 264 18 112 53 16 34 𝑜𝑣𝑓 (52) − 322 29 9 680 33 17
industrialA3 44 251 − 𝑜𝑣𝑓 20 347 45 16 20 𝑜𝑣𝑓 (41) − 1710 35 21 1221 29 15
industrialA4 44 251 18 𝑜𝑣𝑓 24 𝑜𝑣𝑓 117 16 30 𝑜𝑣𝑓 (39) − 𝑜𝑣𝑓 (35) − 994 31 17
industrialB1 402 782 − 𝑜𝑣𝑓 − 𝑜𝑣𝑓 𝑜𝑣𝑓 (9) − 𝑜𝑣𝑓 (9) − 𝑜𝑣𝑓 (8) − 1726 6 4
industrialB2 395 771 − 𝑜𝑣𝑓 − 𝑜𝑣𝑓 659 4 3 599 5 2 712 5 2 907 5 2
industrialB3 402 782 − 𝑜𝑣𝑓 − 𝑜𝑣𝑓 𝑜𝑣𝑓 (9) − 𝑜𝑣𝑓 (9) − 𝑜𝑣𝑓 (8) − 1692 6 3
industrialC1 407 771 − 𝑜𝑣𝑓 − 𝑜𝑣𝑓 210 4 1 418 4 2 311 4 2 459 4 2
industrialC2 266 607 − 𝑜𝑣𝑓 − 𝑜𝑣𝑓 690 6 8 𝑜𝑣𝑓 (14) − 219 9 7 182 8 6
industrialC3 266 607 − 𝑜𝑣𝑓 − 𝑜𝑣𝑓 𝑜𝑣𝑓 (8) − 𝑜𝑣𝑓 (14) − 478 10 8 357 9 7
industrialD1 71 99 − 𝑜𝑣𝑓 − 𝑜𝑣𝑓 36 9 17 831 29 19 285 21 13 226 20 12
industrialE1 252 607 − 𝑜𝑣𝑓 − 𝑜𝑣𝑓 𝑜𝑣𝑓 (9) − 𝑜𝑣𝑓 (9) − 𝑜𝑣𝑓 (10) − 1691 16 10

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  200  400  600  800  1000  1200  1400  1600  1800

E
x
a
c
t
 
A
s
s
u
m
e
 
c
h
e
c
k
s

Exact checks

Fig. 7. Performance comparison between interpolation sequences adopting
exact-k or assume-k checks.

[2] R. C. Lyndon, “An Interpolation Theorem in the Predicate Calculus,”
Pacific Journal of Mathematics, pp. 155–164, 1959.

[3] K. L. McMillan, “Interpolation and SAT-based Model Checking,” in
Proc. Computer Aided Verification, Boulder, CO, USA, 2003, pp. 1–13.

[4] K. L. McMillan and R. Jhala, “Interpolant-based Transition Relation
Appproximation,” in Proc. Computer Aided Verification, Edimburgh,
Scotland, UK, 2005, pp. 39–51.

[5] J. P. Marques-Silva, “Improvements to the Implementation of
Interpolant-based Model Checking,” in Proc. Correct Hardware Design
and Verification Methods, Edimburgh, Scotland, UK, 2005, pp. 367–370.

[6] J. P. Marques-Silva, “Interpolant Learning and Reuse in SAT-Based
Model Checking,” Electronic Notes in Theoretical Computer Science,
vol. 174, no. 3, pp. 31–43, 2007.

[7] V. D’Silva, M. Purandare, and D. Kroening, “Approximation Refinement
for Interpolation-Based Model Checking,” in Proc. Verification, Model
Checking and Abstract Interpretation, 2008, pp. 68–82.

[8] G. Cabodi, P. Camurati, L. Garcia, M. Murciano, S. Nocco, and S. Quer,
“Trading-off SAT search and Variable Quantifications for effective
Unbounded Model Checking,” in Proc. Formal Methods in Computer-
Aided Design, Portland, Oregon, USA, Nov. 2008, pp. 205–212.

[9] Y. Vizel and O. Grumberg, “Interpolation-Sequence based Model Check-
ing,” in Proc. Formal Methods in Computer-Aided Design, Austin,
Texas, USA, Nov. 2009, pp. 1–8.

[10] G. Cabodi, M. Murciano, S. Nocco, and S. Quer, “Stepping Forward
with Interpolants in Unbounded Model Checking,” in Proc. Int’l Conf.
on Computer-Aided Design, San Jose, California, Nov. 2006, pp. 772–
778.

[11] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and
M. Y. Vardi, “Benefits of Bounded Model Checking at an Industrial
Setting,” in Proc. Computer Aided Verification, Paris, France, Jul. 2001,
pp. 435–453.

[12] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “Predicate Ab-
straction of ANSI-C Programs Using SAT,” Formal Methods in System
Design, vol. 25, no. 2-3, pp. 105–127, 2004.

[13] N. Een, A. Mishchenko, and N. Amla, “A Single-Instance Incremental
SAT Formulation of Proof and Counterexample Abstraction,” in Proc.
Int’l Workshop on Logic Synthesis, May 2010.

[14] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Symbolic
Model Checking Using SAT Procedures instead of BDDs,” in Proc.
Design Automation Conference, New Orleans, Louisiana, Jun. 1999, pp.
317–320.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


