
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On chip interconnects for multiprocessor turbo decoding architectures / Martina, Maurizio; Masera, Guido; Moussa, H.;
Baghdadi, A.. - In: MICROPROCESSORS AND MICROSYSTEMS. - ISSN 0141-9331. - 35:2(2011), pp. 167-181.
[10.1016/j.micpro.2010.08.004]

Original

On chip interconnects for multiprocessor turbo decoding architectures

Publisher:

Published
DOI:10.1016/j.micpro.2010.08.004

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2377023 since:

Elsevier

On Chip Interconnects for Multiprocessor Turbo Decoding Architectures

M. Martinaa, G. Maseraa, H. Moussab, A. Baghdadib

aDipartimento di Elettronica, Politecnico di Torino, 10129 Torino, Italy
bElectronics Department, TELECOM Bretagne, Technopole Brest Iroise, 29238 Brest, France

Abstract

Turbo codes are among the most powerful and widely adopted error correcting codes in several communication ap-
plications. The high throughput requirements of current and future standards impose that parallel decoders composed
by multiple interconnected processing elements are used at the receiver side to efficiently decode turbo codes. In this
work, on chip interconnects for multiprocessor turbo decoding are investigated. Due to the dominant trend towards
the design of flexible, multi-standard decoders, capable to support the decoding of several turbo codes, the network
on chip approach is seen as a viable and promising solution, although the specific characteristics of the addressed
application impose a drastic simplification in the network organization. Both indirect and direct network topologies
are studied and experimental results show that a network-on-chip based decoder made of 16 processing elements can
achieve a throughput of several hundreds of Mbps. Moreover, the area required by the network compares favorably
with previously published works on flexible interconnect architectures for turbo decoding and the cost overhead of
NOC based solutions with respect to a fully dedicated implementation is limited to 13%.

Keywords: NOC, Turbo decoder, MPSoC, VLSI

1. Introduction

The last few decades witnessed dramatic advance-
ments in wireless communications, which have been
improving at a fast rate in terms of both throughput and
reliability. On the implementation side, this trend came
with a continuous growth of the computational com-
plexity of wireless receivers that has stimulated very
relevant efforts in the search for efficient hardware solu-
tions, capable of giving proper support to the demanded
computation with limited Silicon area.

More recently, the introduction of a large number
of continuously evolving wireless standards has raised
the need for flexible hardware implementations, able
to support on a unique component multiple standards
and to dynamically adapt to different communication
modes. Therefore, while throughput and area have been
the dominant metrics driving the optimization of digi-
tal receivers for a specific application, today the need
for flexible systems able to support different operative
modes and standards has changed the perspective. In
particular, the software defined radio (SDR) paradigm
makes flexibility a fundamental property of future re-
ceivers [1]. To enable a single modem to service multi-
ple different wireless systems, highly flexible solutions
are needed. The cost of the so-called velcro approach,

where multiple dedicated building blocks are separately
optimized and simply placed end to end in the multi-
standard receiver, becomes rapidly unacceptable with
the number of standards to be supported. Flexibility can
be also seen as a viable way to reduce development costs
and extend products life.

One of the most demanding processing functions in
a modern wireless receiver is channel decoding. Es-
pecially the decoding algorithms of binary and double-
binary turbo codes have a very high computational com-
plexity: for this class of error correcting codes, the
decoding process contributes at least 40% to the to-
tal computational complexity of the physical layer of
a wireless system, depending on the implementation
platform [2] [3] [4]. Every standard uses multiple dif-
ferent codes and different configurations of the decod-
ing algorithm. For example, the Turbo coding algo-
rithm used in W-CDMA employs a different polyno-
mial, block size, coding rate and termination method
from that used in WiMAX. To show the widely hetero-
geneous set of turbo codes currently adopted in commu-
nication standards, Table 1 summarizes their main pa-
rameters as well as the required throughputs. Moreover,
novel codes with enhanced properties with better over-
all performance are still investigated and these novel

Preprint submitted to Microprocessors and Microsystems July 8, 2010

solutions might be adopted in future standards. Thus,
flexible architectures able to support as much decoding
options as possible seems the only viable solution for
reducing overall costs.

The answer to the severe constraints of high process-
ing throughput and full flexibility in terms of decoded
code and executed decoding algorithm in clearly given
by Multi-Processor System-on-Chip (MPSoC) architec-
tures. This kind of solution is currently being widely
investigated in order to accommodate the mentioned
needs of high throughput and flexibility in emerging
wireless communication standards. The software pro-
grammability of processors guarantees large flexibility
in terms of computation. In order to obtain the same
level of flexibility in terms of inter-processor commu-
nication, a proper interconnect structure must be used.
Decoding algorithms for turbo codes involve iterative
and intensive exchanges of data between the process-
ing elements mapped onto different processors and the
processed data typically show a very limited locality.
Moreover, the inter-processor communication needs are
different for different codes to be decoded. Thus, a
really flexible communication network for an MPSoC
based turbo decoder tends to be quite a complex struc-
ture with strict bandwidth and latency constraints. Con-
ventional on-chip buses are known to become inefficient
in large systems and are not adequate for channel de-
coders. On the contrary, the recently emerged Network-
on-Chip (NOC) paradigm seems to be well applicable
to implement inter-processor interconnects for channel
decoders.

After the introduction of the NOC concept [5, 6, 7, 8]
the scientific literature focused on general purpose NOC
solutions; more recently the idea of Application Spe-
cific NOC (ASNOC) [9] was proposed as a method to
improve efficiency, through a careful tailoring of the
network features around the specific application to be
supported. All ASNOC examples available in the liter-
ature are related to fairly complex applications, which
involve heterogeneous processing tasks or IPs (Intellec-
tual Property), occupy a fairly relevant physical area and
make use of advanced methods for routing and conges-
tion control. Following the classification given in [10],
we call this kind of NOC InterIP-NOC. On the contrary,
[10] defines as IntraIP-NOC any network whose domain
area is restricted to be internal to a single IP: in this case,
the NOC extend is typically much smaller, processing
tasks are usually homogeneous and stringent constraints
are posed on the NOC overhead, which is limited resort-
ing to simple routing methods.

In this framework, the contribution of our work is
twofold. i) To give results for a wide set of param-

eters of the NOC approach in turbo decoder archi-
tectures. This aspect has been partially investigated
in some previous works, whereas in this paper it is
treated in a unified way exploring both indirect and
direct topologies. ii) To highlight the characteristics
of a particular application, turbo decoding, that can
take advantage of the NOC approach. In particu-
lar, dealing with the IntraIP-NOC concept, this work
aims to focus the attention of the NOC community on
a special case of Application Specific NOCs.

In the following of the paper, Section 2 briefly in-
troduces the decoding algorithm together with its speed
and flexibility needs, while Section 3 reviews the state
of the art on the implementation of multi-standard or
multi-mode parallel turbo decoders. Obtained results
in the design of two different types of IntraIP-NOC
for turbo decoding are presented in the two successive
sections: specifically, Section 4 deals with some indi-
rect interconnect structures designed for parallel turbo
decoding, while an extensive study of the complex-
ity/performance trade-offs offered by different direct
NOCs, with different topologies, routing algorithms and
node architectures, is given in Section 5. Finally, in Sec-
tion 6 comparisons are presented and conclusions are
drawn in Section 7.

2. Standard FEC Turbo Decoding Systems

A Turbo encoder is basically formed by two convolu-
tional encoders and one interleaver. The interleaver can
be seen as a memory where data are written in the nat-
ural order and later read in an interleaved order, accord-
ing to a permutation law, which is a specific character-
istic of the code and has the purpose of minimizing the
correlation between original and interleaved data. The
three units can be concatenated in a serial or parallel
way and the uncoded symbols received by the turbo en-
coder can be either binary (e.g. UMTS case) or double-
binary (like in the case of the WiMAX standard). In
the parallel scheme, the first convolutional coder (CC)
directly receives the uncoded sequence in the natural or-
der, while the second encoder is fed by the interleaved
sequence (see Fig. 1 (a)). The whole encoder operates
on blocks of data having the same length as the inter-
leaving sequence.

In the decoding process, a block of soft inputs (also
called intrinsic information) are received from the de-
modulator and processed by a first component decoder
(or SISO unit), which implements the BCJR algorithm
[11]. This processing step is usually referred to as half
iteration and generates at the SISO output results called
extrinsic information. This sequence is interleaved and

2

Table 1: Turbo code based channel coding schemes in modern communication standards

Standard Code Rates States Block size Throughput per channel
UMTS binary 1/3 8 40 - 5114 up to 2 Mbps
HSDPA binary 1/2 - 3/4 8 40 - 5114 up to 84 Mbps

CDMA-2k binary 1/2 - 1/5 8 378 - 20736 up to 2 Mbps
IEEE802.16 (WiMAX) double-binary 1/2 - 3/4 8 up to 648 up to 144 Mbps

Inmarsat binary 1/2 16 up to 2608 up to 64 kbps
LTE binary 1/3 - 7/8 8 40 - 6144 up to 326,4 Mbps

then processed by a second SISO unit (second half iter-
ation) working as the component decoder for the second
CC code: this unit also generates an output extrinsic se-
quence, which is de-interleaved and fed back to the first
SISO. The decoding process is repeated several times,
with the same intrinsic information and only extrinsic
sequences are passed between the SISO. Extrinsic in-
formation is a measure of the reliability associated to
possible estimations of uncoded symbols: thus, if the
decoding process converges, the extrinsic values tend to
evolve along iterations in the direction of increased re-
liability for the symbols that have been actually sent.
The decoding is stopped after a predetermined number
of iterations (typically in the range 4 to 8, depending on
desired performance).

As the focus of this paper is on the IntraIP-NOC re-
quired to support communication needs among multi-
ple processors that concurrently decode a turbo code,
the equations related to the decoding algorithm are
not strictly necessary to understand the interconnect
needs among processing elements: for this reason,
we do not show the equations related to the BCJR
algorithm and the reader can refer to [12], [13], [14]
for more details.

πk[u1;I]
πk[u1;O]

λk[u1]

πk[u2;O]
πk[u2;I]

λk[u2]

−1

u u1 c1

u2

c2

πk[c1;I]

πk[c2;I]

Figure 1: Example: turbo encoder (a) and turbo decoder (b)

The architecture of a turbo encoder with parallel con-

catenation of two CC is shown in Fig. 1 (a): a di-
rect copy u1 of the uncoded symbols u is applied to the
first convolutional encoder CC1, while a scrambled se-
quence, u2 is received in parallel by the second encoder
CC2. The two generated outputs, c1 and c2 together
form the coded symbol produced by the turbo encoder.
An example of CC is also given in Fig. 1 (a). Part (b) of
Fig. 1 describes the basic blocks of the corresponding
decoder. Here S IS O1 executes the BCJR algorithm
on in-order data (corresponding to CC1): it therefore
receives πk[c1;I] from the channel and πk[u1;I] from the
deinterleaver and generates outputs πk[u1;O]; extrinsic
values λk(u1) are obtained according to [13]. Similarly
S IS O2 operates on inputs πk[c2;I] and πk[u2;I] to com-
pute πk[u2;O]; extrinsics λk(u2) are finally forwarded to
the deinterleaver.

To limit the amount of memory required by the de-
coding algorithm the received blocks of data are usu-
ally partitioned in several separated windows and the
BCJR algorithm is applied to each window. It has been
proved that with a good choice of the window length,
the performance loss due to this approach is negligible
[15], [16].

Interleaving and deinterleaving components may be
critical in a turbo decoder, both in terms of error cor-
recting capabilities and in terms of implementation cost.
The permutation function is usually implemented rely-
ing on a random access memory (RAM), where data are
written in the natural order and read in the permuted
order, or vice-versa. The generation of sequential ad-
dresses is obtained by means of a counter, but the scram-
bled addresses require more expensive circuits. A sep-
arate memory (RAM or ROM) can be used to store the
scrambled addresses, but this solution tends to be expen-
sive, especially when multiple turbo codes (and, con-
sequently, multiple interleavers) need to be supported.
Alternatively, when possible, the scrambled address se-
quence can be generated by means of a known and sim-
ple algorithm: in this case, the algorithm can be mapped
onto proper hardware circuits, usually based on addition
and shifting operations, which enable on the fly genera-

3

tion of scrambled addresses [17], [18].

3. Multiprocessor Architectures

The required limits of throughput in recent wireless
standards show a tremendous rate of growing. While 2
Mbps is the throughput specification for the 3G Uni-
versal Mobile Telecommunications System (UMTS)
[19], the enhanced telephony communications proto-
col known as High-Speed Downlink Packet Access
(HSDPA) with the “Dual Cell” technology provides
speeds of up to 84 Mbps in the downlink [20], and the
WiMAX (Worldwide Interoperability for Microwave
Access) standard IEEE802.16e requires a data rate of
144 Mbps [21]. Moreover, 3GPP Long Term Evolu-
tion (LTE) [22], which is considered a very promising
4G wireless technology, reaches a peak speed of 326.4
Mbps for a 4x4 antenna system, and 172.8 Mbps for a
2x2 antenna system. Data rate as high as 1 Gbps is cur-
rently expected in further evolution of LTE.

Therefore high throughput definitely is a key design
issue for turbo code decoders. Single SISO architec-
tures are unable to reach high throughput because of the
iterative nature of the decoding algorithm, which results
into long latency. Therefore the recourse to parallel ar-
chitectures is inevitable [13].

A straightforward approach to the implementation of
parallel turbo decoders is to handle concurrently sev-
eral independent data blocks that are simultaneously
decoded on different processing elements. This solu-
tion multiplies the costs (memories, area, and power
consumption) with respect to the single processor de-
coder and improves the throughput by the same amount.
More efficient parallel architectures can be obtained by
exploiting the inherent parallelism of the iterative al-
gorithm at different levels [23]. Parallel computation
can also be introduced at the level of component de-
coders. In the original formulation of the whole de-
coding algorithm, the two allocated SISO do not work
concurrently: the first component decoder operates in
the domain of scrambled data, receiving them from the
deinterleaver and writing them back into the interleaver.
Thus, the second component decoder needs to wait un-
til the block of data is completely processed and the in-
terleaver memory filled with the new updated extrinsic
values; at that point, it starts its processing reading from
the interleaver and writing into the deinterleaver, while
the first component decoder is idle. Alternatively the
two component decoders can be arranged to run concur-
rently, leading to the shuffled decoding technique [24],
where extrinsic values are exchanged as soon as they

are available. This approach potentially doubles the de-
coding throughput, even if it may reduce the error cor-
recting capability of the code for a fixed number of it-
erations. However, in [23] it is shown that for a target
performance the shuffling requires in the worst case to
increase the number of iterations by about 1.7.

Finally, the data block can be divided into several
sub-blocks, each one decoded on an individual SISO
processor. With P allocated processors, the same num-
ber of windows are processed at the same time and the
throughput can be significantly improved. For a single
SISO processor architecture, the throughput, TS S , can
be expressed as the product of the clock frequency fCK

times the ratio between the total number of decoded bits
per data block, N, and the occupied number of clock cy-
cles, nCK . As the single SISO architecture for a binary
code refines one bit reliability per clock cycle and 2It
half-iterations are necessary before making a decision,
nCK should be equal to 2It × N. However, a slightly
longer time is required to decode a block due to the in-
ternal latency of the SISO, LS IS O. The overall through-
put is then given by

TS S =
N fCK

nCK
=

N fCK

2It × (N + LS IS O)

For the multi-SISO decoder, the throughput is ideally
derived observing that P SISO processors concurrently
refine P bit reliability values:

TMS =
N fCK

nCK
=

N fCK

2It × (N/P + LS IS O)
(1)

As an example, a decoder running at 300 MHz on blocks
of 1024 data for 10 iterations and with a SISO latency of
5 clock cycles achieves a throughput as low as TS S = 15
Mbps in the single SISO version, but can reach TMS =

115 Mbps in the multiple SISO version, with P = 8
processors.

However, (1) is a fairly optimistic estimation of the
throughput, as it assumes that extrinsic data can be ex-
changed among allocated SISOs and interleaving and
deinterleaving memories with no additional latency.
This assumption is unrealistic, especially with large P:
in this case, multiple extrinsic data need to be simulta-
neous scrambled and as a consequence the interleaver
(and deinterleaver) memory has to be partitioned into P
disjoint components. The partitioning must guarantee
that P values can be accessed in parallel at each clock
cycle, both in the natural order and the scrambled one.
Due to the random nature of the permutation law, this
partitioning is not always possible, and two or multiple
accesses may collide into a single memory component.

4

There are a number of techniques to solve this prob-
lem [25], [26], [27], [28], [29], [30]. The collisions
in the access to memories can be simply accepted and
managed by inserting wait states in the SISO proces-
sors when a collision occurs: in other words, when two
SISOs need to read a data from the same memory, two
distinct access operations are scheduled and the decod-
ing process is slowed down. This solution is rarely ac-
ceptable, due to its cost in terms of latency and through-
put.

Another approach to the mentioned problem is to re-
sort to hardware-aware interleavers, that are interleavers
specifically designed to allow for simple partitioning up
to a given degree of parallelism. Several techniques
have been proposed to design such collision-free inter-
leavers [25] [26] [27] [28] and recent standards spec-
ified codes with collision-free interleavers at least for
some values of P (e.g. 3GPP LTE and WiMAX). How-
ever, other standards, such as HSDPA, use interleavers
that generate collisions when partitioned and so a multi-
standard implementation cannot take advantage of the
collision-free property.

Finally, instead of constraining the interleaver design,
the collision problem can be faced by designing proper
interconnect networks capable to avoid or at least re-
duce conflicts in memory accesses. As this approach
can handle any permutation law, its indubitable advan-
tage is full flexibility with capability to implement de-
coders compliant with multiple standards and even fu-
ture proof. Some papers have been published on this ap-
proach, proposing different buffering architectures. Two
examples are given by the ring-shaped network pro-
posed in [29] and by the joint space and time permuta-
tion network described in [30]. A considerable overhead
is introduced in this approaches in terms of additional
hardware resources, particularly if multiple interleavers
must be supported.

In the context of a parallel multi-processor turbo de-
coder with capability of supporting generic interleavers
with no collisions, the NOC (or better IntraIP-NOC
[10]) is a very interesting option for the implementa-
tion of the flexible interconnect structure. NOCs bring
to this specific kind of application several of their gen-
eral advantages over traditional on-chip interconnects,
such as enhanced scalability, separation between com-
putation and communication, modularity, regularity of
physical links and predictability of their delay.

In comparison to most InterIP-NOCs, networks
adopted for turbo decoding exhibit some key differ-
ences.

1. Since the data block is partitioned into P sub-

blocks of equal size and each SISO processor is
assigned one sub-block, the same amount of data
is exchanged by all network nodes.

2. To maximize throughput, idle times are minimized
in SISO processor, so that the rate at which data are
exchanged by a SISO processor is fairly constant.

3. Due to the random nature of the interleaver, the
whole pattern of connections among allocated
SISO processors shows little adjacency.

4. As a consequence of previous characteristics, the
injected traffic load tends to be uniform.

5. Due to the iterative nature of the decoding algo-
rithm, it is of utmost importance to minimize the
latency of the single iteration.

6. The uniform traffic load and the homogeneous na-
ture of nodes lead to simpler routing algorithms
compared to the InterIP case. Moreover flow con-
trol is not required.

7. Given the permutation law of an interleaver, the
traffic pattern can be derived by off-line analysis.

In order to take into account the variable delay con-
tribution introduced for each data block by the NOC,
the throughput expression of (1) must be corrected as
follows

TMS =
N fCK

2It × (N/P + LS IS O + LNOC)
(2)

The additional latency term LNOC depends on the spe-
cific code being decoded, as well as on the NOC
characteristics, topology, routing algorithm and node
or switch architecture. Similarly, for double binary
codes the single SISO refines two bit reliability val-
ues per clock cycle so the denominator in (2) be-
comes 2It×(N/2P+LS IS O+LNOC). However, since the
data block size for double binary codes is usually ex-
pressed in couples of bits, (2) for double binary codes
becomes

TMS =
2Nc fCK

2It × (Nc/P + LS IS O + LNOC)
(3)

where Nc is the number of couples per data block.
Both direct and indirect networks can be proposed for

flexible parallel turbo decoders. Direct Networks typi-
cally consists of a set of nodes, each one being directly
connected to small subset of other nodes in the net-
work. The required connectivity is obtained by means
of routers, which are components of the nodes and can
decide the path for each data to be sent from a source
node to a destination node. Instead of providing a di-
rect connection between two nodes, indirect networks
exploit switches to connects nodes.

5

NItx

NItx

NItx

NItx

NItx

NItx

NItx

NItx

SISO7

SISO6

SISO5

SISO4

SISO3

SISO2

SISO1

SISO0

Component Decoder 0

NItx

NItx

NItx

NItx

NItx

NItx

NItx

NItx

SISO15

SISO14

SISO13

SISO12

SISO11

SISO10

SISO9

SISO8

Component Decoder 1

NIrx MEM_b

NIrx MEM_t

NIrx MEM_b

NIrx MEM_t

NIrx MEM_b

NIrx MEM_t

NIrx MEM_b

NIrx MEM_t

NIrx MEM_b

NIrx MEM_t

MEM_t

NIrx MEM_b

NIrx

MEM_t

NIrx MEM_b

NIrx

MEM_t

NIrx MEM_b

NIrx

NIrxMEM_t

NIrxMEM_b

NIrxMEM_t

NIrxMEM_b

NIrxMEM_t

NIrxMEM_b

NIrx

NIrxMEM_b

NIrxMEM_t

NIrxMEM_b

NIrxMEM_t

NIrxMEM_b

NIrxMEM_t

NIrxMEM_b

NIrxMEM_t

NIrxMEM_b

MEM_b Extrinsic information memory Bottom

MEM_t Extrinsic information memory Top

(2 x 8log216) Routers

MEM_t

Figure 2: Schematic view of a complete multiprocessor turbo decoder with two Butterfly networks and 8 SISO by component decoder

In the following sections, both type of networks will
be investigated as interconnect structures in parallel
turbo decoders.

4. Indirect Networks

Indirect network topologies as Multistage Intercon-
nection Networks (MIN) [31], have their name origi-
nated from their topology which includes several switch
stages connected to each other and where the process-
ing elements (PE) are connected on the first and last
stages. From the connectivity point of view, MINs
are positioned between shared bus networks and cross-
bars. Thus, it can happen that paths between two
source/destination PEs cross, thus forming a conflict to
be managed. Most of the MIN connecting P input pro-
cessors to P output processors or memories are formed
of d = log2(P) stages, each one having P/2 switches (or
routers) with 2 input and 2 output ports. Thus, the num-
ber of routers is out of O(P log2(P)) against O(P2) for
crossbars.

4.1. Butterfly network

The Butterfly network [32] is a multistage intercon-
nection network with 2-input 2-output routers and uni-
directional links. The advantages of this topology are:
first, the logarithmic diameter of the network (log2 P
with P the number of network input ports) which gives
a number of routers equal to P

2 log2 P; then the recur-
sive structure of the network (a network of diameter d
is obtained with two networks of diameter d − 1) which
enables high scalability; and finally a very simple rout-
ing that uses directly the bits of the destination address
for the selection of the output port at each stage of the
network. However, this type of network does not have
path diversity: there exists only one route between each
source and each destination, which increases the risk
of conflicts in the routers. To mitigate this problem,
we chose to use queues to store the conflicting pack-
ets. Several architectural decisions were made in the
proposed Butterfly network according to the specifici-
ties of the supported application. First of all, in the
considered turbo decoder architecture, the interleaving

6

(respectively deinterleaving) function of extrinsic infor-
mation must be supported by the interconnection net-
work. To this purpose, it is necessary that the network
can vehicle any permutation of the inputs to its out-
puts, which is the case for the Butterfly network. Thus,
through the packet addressing, the interleaving (respec-
tively deinterleaving) of the data is performed thanks
to the identifier of destination port and the destination
memory write address containing extrinsic information.
Assuming that the turbo decoder we consider supports
the butterfly decoding scheme, a maximum of two pack-
ets will be generated by each SISO processor at the in-
puts of the network. This is why the number of input
ports of the network is twice larger than the number of
SISO processors. Figure 2 represents a Butterfly net-
work that connects 8 SISOs each producing 2 packets
for 8 memories attached to destination SISOs. Network
Interfaces (NI) are used between network and proces-
sor/memories. The Destination-Tag routing technique
is used. This deterministic routing uses a digit of the
destination address in the header of the packets to select
the output port at each router along the path from the
source to the destination.

Packets integrate, besides the payload composed of
the extrinsic information, a simple header field. The
header includes the previously defined routing informa-
tion and the destination memory address. The first field
has a width of d bits, d being the diameter of the net-
work and the second field a width of

⌊

log2(N
P)
⌋

+ 1 bits,
where N is the length of the frame to be decoded and P
the number of SISOs in an interleaving domain.

Router architecture (Fig. 3.(a)) implements a simple
switch with 2 input and 2 output ports with input FIFOs
to store the conflicting packets. FIFO depth is deter-
mined with respect to the worst case: all input packets
have the same network output port. Thus, FIFO depth is
fixed to 2i for all routers of stage i of the Butterfly net-
work (i varies from 0 to log2(P)). The Routing and Ar-
bitration block implements a round-robin queues serv-
ing policy. It generates the control signals of the switch
matrix, FIFOs, and output packets.

4.2. Benes network

The Benes network [33] is another indirect network
suitable for P to P permutation. It offers path diversity
where P paths exist for each source/destination couple.
Built from two Butterflies put back-to-back, its diame-
ter is almost the double of that of Butterfly: 2 log2 P−1.
However, this topology avoids the conflicts if and only
if all the paths have a different destination, which is
not the case of parallel turbo decoding where interleav-

ing (respectively deinterleaving) ends in potential con-
flicts. In order to avoid these conflicts, a time-division
multiple access (TDMA)-based architecture, which im-
plies all paths precalculation but avoids buffer usage in
routers, is proposed and evaluated. In this approach,
packets are scheduled at the input of the network so that
at each cycle, there is at most one packet intended for
a given network output port. For this purpose, a time
slot is associated with each packet which defines the cy-
cle when the packet will be sent in the network. Thus,
the number of slots necessary to the packets scheduling
corresponds to the maximum number of packets hav-
ing the same destination. Of course, the slot assignment
can be done in a random, arbitrary way or according
to the application specificities. Regarding the routing
algorithm, a Street-sign routing is used where the pack-
ets carry the identifier of router output of each crossed
network stage. Moreover, contrary to the Butterfly net-
work, which directly uses the network output port iden-
tifier, the routing information in Benes must be precal-
culated by an algorithm which determines the path of
each packet. The reference algorithm for the Benes net-
work, and more generally in the rearrangeable Clos net-
works, is the looping algorithm [34]. This algorithm is
executed off-line for the target interleaving law and
the obtained routing information is carried by the
packet header.

4.3. Logic synthesis results
In order to evaluate the efficiency of the proposed

indirect network architectures, a synthesizable RTL
VHDL description of the two networks was developed.
Logic synthesis was carried out with 130 nm standard
cells technology. The performance metrics that we
considered are area, maximum clock frequency, and
throughput. Table 2 shows the results obtained in terms
of area, frequency, and throughput for a network size of
16 input ports. It is assumed that, each PE produces
extrinsic information values with a rate r (injection
rate): when r = 1, one extrinsic value per clock cycle
is generated, whereas r < 1 means that more than
one cycle is necessary to generate an extrinsic value.
It is worth pointing out that, the use of r allows for
modeling different clock frequencies for the PEs and
the network. In particular, given the computational
complexity of the BCJR algorithm [13], it is reason-
able to assume that PEs can achieve a lower clock
frequency than the network: fPE ≤ fNOC . As a con-
sequence, we consider in this paper only the case r =
fPE/ fNOC ≤ 1. Impact of varying the injection rate
on area and throughput are thoroughly discussed in
the next section. For the designed indirect network

7

FIFO
+

FSM

FIFO
+

FSM

Routing & Arbitration
Switch
Matrix

2x2

re
q_

re
ad

_1

em
pt

y_
1

pr
io

rit
y_

1

po
rt

_o
ut

pu
t_

1

packet_input_1

packet_output_1

switch

packet_input_0

packet_output_0

valid_input_1

valid_input_0

re
q_

re
ad

_0

em
pt

y_
0

pr
io

rit
y_

0

po
rt

_o
ut

pu
t_

0
valid_output_1

valid_output_0

log2N + 4 + 37

log2N + 4 + 37

log2N-1 + 4 + 37

log2N-1 + 4 + 37

4

4

log2N + 4 + 37

log2N + 4 + 37

Routing Switch
Matrix
2x2

po
rt

_o
ut

pu
t_

1

packet_input_1

packet_output_1

switch

packet_input_0

packet_output_0

valid_input_1

valid_input_0

po
rt

_o
ut

pu
t_

0

valid_output_1

valid_output_0

2log2N-1 + 37

2log2N-1 + 37

2log2N-2 + 37

2log2N-2 + 37

2log2N-1 + 37

2log2N-1 + 37

Reg

Reg

(a) (b)

Figure 3: Router architecture: (a) Butterfly and (b) Benes

Table 2: Synthesis results of the Butterfly and Benes networks for a
130 nm standard cell technology with P = 16 and r = 0.2

Butterfly Benes

Frequency (MHz) 345 381
Area of one NI tx (mm2) 0,0052 0,0098
Area of one NI rx (mm2) 0,0045 0,0045
Area of one Router (mm2) 0,0210 0,0065
Total Area (mm2) 0,7506 0,4820
Throughput (Mbps) 138 152

topologies of Butterfly and Benes we fixed the injec-
tion rate to r = 0.2 avoiding network congestion for
the worst communication profile case. We can see
in table 2 how the lower complexity of Benes routers
allows for higher maximum clock frequency (+10.4%)
and thus higher throughput. Furthermore, total area of
the Benes network is lower (−35.8%), although it com-
prises a higher number of routers.

5. Direct Networks

While two specific indirect networks have been anal-
ysed in the previous section, in the case of direct net-
works we provide a full investigation of the available
design space, by analysing several combinations of
choices for interleaver law, parallelism degree, node ar-
chitecture, routing algorithm and topology.

A direct network based turbo decoder architecture
relies on P nodes each of which contains both a pro-
cessing element (PE) and a routing element (RE) (see
Fig. 4). The i-th PE is a so called SISO module [35]
that produces extrinsic information values with a rate r.
When r = 1 at each time j each SISO outputs the new
extrinsic information values λi, j and stores into a local
memory the extrinsic information received from the net-
work λ′i, j. On the other hand, the RE is built around

a crossbar switch. It is known that node architectures
can be classified in two main categories: input-queuing
and output-queuing. According to [36], input-queuing
leads to low implementation cost; as a consequence, it
is a suited solution for direct network based turbo de-
coder architectures. Said M the number of input/output
ports of each node, we have that the node is made of an
M × M crossbar switch, whose inputs are connected to
M FIFOs, and whose outputs, connected to M registers,
become the node output ports (see Fig. 4). We assume
that the input/output port labeled as M − 1 is devoted to
receive/send data from/to the PE.

5.1. Node architecture

In order to send the extrinsic information on the net-
work each node requires routing information and a rout-
ing algorithm (RA). In the case of turbo decoder archi-
tectures, the routing information is the destination node
k and the memory location t where the extrinsic infor-
mation will be written. This information is stored into
an identifier memory and a location memory respec-
tively. Thus, a message send by node i at time j is a
packet made of a header and a payload. The header
contains the destination node k(i, j), whereas the pay-
load contains λi, j and the memory location t(i, j) (see
Fig. 5 (a)). In general, the RA drives the read enable
of the input FIFOs, the crossbar configuration and the
load signal of the output registers, based on the packet
header information. In the case of single-binary turbo
codes λi, j is usually represented on a small number of
bits, e.g. 8 bits. If we consider the HSDPA maximum
block size N = 5114 and P = 64 we obtain that k(i, j)
and t(i, j) require 6 and 7 bits respectively. Thus, we
pay the network flexibility with a significant complexity
overhead. However, the traffic generated by a multipro-

8

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�
�

�
�

�
�

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

read enable loadcrossbar
conf.

RE

PE

SISO i

input
[0,M − 1]

output
[0,M − 1]

MEM i
λi,j λ′

i,j

node i

node i

RE i

PE i

Figure 4: Node architecture block scheme

cessor turbo decoder is deterministic as it depends on
the interleaving law. As a consequence, given a RA, we
can compute off-line the commands for the RE and store
them into a routing memory (RM). Furthermore, we can
compute off-line the sequence of the memory locations
at the destination side (t′(i, j)) and store it into a loca-
tion memory. This solution leads to a packet with no
routing information overhead (see Fig. 5 (b)). Unfortu-
nately, the complexity overhead introduced by the RM
can be relevant and an external memory, e.g. a flash
memory, is required to store the RE commands and
t′(i, j) sequences. As an example, to support all the
interleavers specified by the HSDPA standard a 64
MB external flash memory is required. To that pur-
pose a third node architecture is derived where t′(i, j) is
precalculated and the packet contains only k(i, j) as the
header and λi, j as the payload (see Fig. 5 (c)). In the fol-
lowing we will refer to the three architectures as: fully
adaptive (FA) node architecture, all precalculated (AP)
node architecture and partially precalculated (PP) node
architecture respectively.

5.2. Topologies

Since the interleaver law tends to spread almost uni-
formly the extrinsic information among nodes, we con-
sider topologies where all the nodes have the same de-
gree D = M − 1. The same assumption has been made
in previous works where ring, mesh and toroidal topolo-
gies were considered [37], [38], [39], [36]. However,
since the number of clock cycles required to deliver a
message have a significant impact on the turbo decoder
throughput, topologies with short worst case distance
among nodes are interesting candidates. To that pur-
pose, generalized de-Bruijn [40] and generalized Kautz
[41] topologies are attracting alternatives. Generalized
de-Bruijn topologies are defined as follows: there is a

connection between node i and node j if

j = (i · D + k) mod P k = 0, 1, . . . ,D − 1 (4)

Similarly, generalized Kautz topologies are defined as
follows: there is a connection between node i and node
j if

j = (−i · D − k) mod P k = 1, . . . ,D (5)

Thus, in this work we compare the performance and
complexity of different topologies including ring (R)
D = 2, honeycomb (H) D = 3 and toroidal mesh (T)
D = 4 topologies as well as generalized de-Bruijn (B)
and generalized Kautz (K) for D = 2, 3, 4 topologies.
As an example in Fig. 6 we show the generalized de-
Bruijn (D = 2, D = 3) and the generalized Kautz
(D = 2, D = 4) topologies for P = 16.

5.3. Routing algorithms

It is worth pointing out that in turbo decoder archi-
tectures the delivery of messages impacts not only on
the throughput but also on the error correction capa-
bility. In particular, message dropping to avoid colli-
sions is not a viable solution as it can impair the de-
coder error correction performance. To that purpose
shortest path based routing algorithms can be used both
to obtain high throughput and to insure message deliv-
ery [42]. We can classify shortest path routing algo-
rithms in two main categories: i) single shortest path
(SSP) algorithms; ii) all-local shortest path (ASP) al-
gorithms. SSP algorithms consider one shortest path
from each source node i to each destination node k in the
network, whereas ASP algorithms rely on the fact that
more shortest paths can connect node i to node k. We
callN i,k the set of all nodes adjacent to i and placed on a
shortest path between i and k. Both SSP and ASP rout-
ing algorithms can be coupled to different policies to

9

(b)

identifier
memory

location
memory

identifier
memory

location
memory

(a) (c)

location
memory

RE i

PE i
λi,j

M − 1 M − 1

λ′

i,j

t′(i, j)

RA RA

RE i

PE i
λi,j

t(i, j)

M − 1 M − 1

t′(i, j)

λ′

i,j

k(i, j)

RE i

PE i
λi,j

M − 1 M − 1

λ′

i,j

t′(i, j)
k(i, j)

RM

Figure 5: Node block schemes: FA (a), AP (b) and PP (c) node architectures

serve the input FIFOs. In this work we consider Round-
Robin (RR) and FIFO-length (FL) serving policies with
SSP and an improved version of FL with ASP. More-
over, the routing algorithms have been coupled with the
node architectures as follows.

5.3.1. FA/PP and SSP-RR
This SSP routing algorithm is implemented with the

Round-Robin circular serving policy on FA and PP node
architectures.

5.3.2. FA/PP and SSP-FL
In this SSP routing algorithm the FL serving policy

is used, namely based on the number of elements con-
tained into each input FIFO, the longest FIFO is served
first and the shortest one is served last. This routing
algorithm has been implemented on FA and PP node ar-
chitectures.

5.3.3. AP ASP-FT
This solution relies on a ASP routing algorithm cou-

pled with an improved FL serving policy named FL
with traffic-spreading (FT) that can be explained as fol-
lows. Let’s define Ii,l

j as the set of input ports in a node

l ∈ N i,k that can receive a message from node i at time
j. At time j the number of elements contained in the
input FIFO associated to port p ∈ Ii,l

j with l ∈ N i,k is

Ll
j,p. The ASP-FT routing algorithm chooses l̂ ∈ N i,k

and p̂ ∈ Ii,l
j so that

Ll̂
j, p̂= Lmin = min

p,l
{Ll

j,p} (6)

The couples l̂, p̂ that satisfy (6) belong to the set J i,l̂
j, p̂.

To choose only one couple in J i,l̂
j, p̂ we operate a traf-

fic spreading based selection, namely our objective is to
spread the traffic as much as possible over the network.
To that purpose we use a set of counters (Q), where each

counter Qi,l̂
j, p̂is incremented each time a message is sent

from node i to node l̂ through input port p̂. Then, we se-

lect the couple l̃, p̃ ∈ J i,l̂
j, p̂that is associated to the least

used path

Qi,l̃
j, p̃= Qmin = min

p̂,̂l
{Qi,l̂

j, p̂} (7)

Due to the complexity of this routing algorithm it has
been used only with AP node architecture.

Unfortunately, none of the aforementioned algo-
rithms prevents output contentions, namely two or more
input FIFOs to be connected to the same output. We
compare two possible approaches to solve this problem:
i) delay colliding message (DCM), namely if an output
port is already reserved, the colliding message is kept
in its input FIFO and it is not sent; ii) send colliding
message (SCM), if possible, a colliding message is sent
to another output port. The aim of DCM is to reduce
the number of hops to deliver a message, whereas SCM
aims at reducing the size of input FIFOs.

5.4. Experimental results

The direct network based approach detailed in the
previous sections has been tested on the design space
represented in Fig. 7 for an injection rate r =
0.33, 0.5, 1. For each case we compared the through-
put obtained for fNOC = 200 MHz with eight itera-
tions. The throughput is calculated resorting to (2)
and (3) for binary and double binary codes respec-
tively where the whole nCK values are obtained by
SystemC cycle accurate simulations [43]. As far as

10

generalized de−Bruijn D=2 generalized de−Bruijn D=3

generalized Kautz D=2 generalized Kautz D=4

0000

1000 0100 1001 1101

1100

1110

11110101

1011 01110110

0011

0001

1010

00100001

1100

1000 0100 1001 1101 1110

0000 1010 0101 1111

01111011011000100001

0011

1100

1000 0100 1001 1101 1110

1111010110100000

0010 0110 1011 0111

0011

1100

1000 0100 1001 1101 1110

0000 1010 0101 1111

011110110010 01100001

0011

Figure 6: Some examples of the considered topologies for P = 16

the complexity is concerned, we described all the ar-
chitectures as parametric blocks and we performed the
logical synthesis on a 130 nm standard cells technol-
ogy. Memories have been generated by means of a
130 nm memory generator. The area results concern
all the nodes in the network where each node includes
the blocks depicted in Fig. 5 except the PE. It is worth
pointing out that, fNOC = 200 MHz is a conservative
choice to limit buffering and to combat unreliability
and reduce nonrecurrent costs. Moreover, it is in line
with the clock frequency used for the indirect net-
works presented in section 4 and in previous works
dealing with NOC based turbo decoder architectures
as [36, 37, 39].

The complexity characterization shown in this work
does not consider post place and route area overhead.
The actual routing overhead is expected to be quite lim-
ited for regular topologies, such as meshes and toroids,
which can be implemented by means of a modular lay-

out. For example in [44] and [45] it is shown that for
regular topologies, at least at the 130 nm technology
node, the area occupation of logic cells in the design
gives a useful indication about the actual complexity of
the NOC. Routing overhead in less regular topologies
is somewhat more difficult to estimate before place and
route. However, results are available in the literature
showing that a low area layout can be generated for gen-
eralized de-Bruijn networks. For example in [46] and
[47] an optimal layout algorithm is run on generalized
de-Bruijn topologies leading to a layout comparable and
in some cases smaller than the one required by toroidal
meshes.

The analysis of experimental results on the design
space depicted in Fig. 7 shows that

1. PP node architectures achieve the same throughput
as FA with a lower area.

2. Generalized de-Bruijn and generalized Kautz
topologies achieve nearly the same results both in

11

interleaver law

node architecture
routing algorithm

topologies

output
contention

WiMax

UMTS

N = 2400

N = 5114

N = 16384

N = 24576circular shifting

prunable S-random

AP ASP-FT

PP SSP-FL

PP SSP-RR

FA SSP-FL

FA SSP-RR R
B
K
H

B
K

T
B

K

D = 2

D = 3

D = 4

P

64
32

16
8 DCM

SCM

PSfrag replacements

[48]

[49]

Figure 7: Direct network: design space representation

terms of throughput and complexity. Thus, for the
sake of brevity in the following only Kautz results
will be discussed.

3. DCM performs better that SCM, as an example
for the generalized Kautz topologies with D = 4
SCM requires the same or even greater area
than DCM; moreover, SCM achieves a through-
put that is about 30% less than DCM.

4. Results tend to be clustered into two families,
namely short interleavers (WiMax interleaver with
N = 2400 and HSDPA interleaver with N = 5114)
and long interleavers (prunable S-random inter-
leaver with N = 16384 and circular shifting in-
terleaver with N = 24576).

topologies

interleaver law

node architecture
routing algorithm

D = 2

D = 4

D = 3

N = 24576circular shifting

WiMax N = 2400

R

K

H

K

T

K

P

64 32 16 8 PP SSP-RR

PP SSP-FL

AP ASP-FT DCM

PSfrag replacements

[48]

Figure 8: Direct network: pruned design space representation

As a consequence, for the sake of clarity in the fol-

lowing we will refer to the pruned design space defined
by the aforementioned results and represented in Fig. 8.
In particular, we will detail the experimental results ob-
tained for PP node architectures with SSP routing algo-
rithms and AP node architectures with ASP-FT routing
algorithm with DCM. As far as short interleavers are
concerned results referred to the HSDPA N = 5114 in-
terleaver are shown; whereas for long interleavers we
discuss the results obtained with the circular shifting
N = 24576 interleaver.

Experimental results within the pruned design space
are shown in Table 3 and 4 that refer to the HSDPA in-
terleaver with N = 5114 and to the circular shifting in-
terleaver with N = 24576 respectively. Each cell of the
two tables gives the throughput in Mbps and the area
in mm2 obtained for different P and r values, routing
algorithms and architectures with DCM. From the ex-
perimental results summarized in Table 3 and 4 we can
observe that:

1. In most cases, topologies with D=4 achieve higher
throughput with lower complexity overhead than
topologies with D=2 when r → 1. On the other
hand, when r < 1 and P > 8 increasing D from
2 to 3 leads to a higher throughput and a smaller
area, whereas increasing D from 3 to 4 leads to
higher throughput but also to higher area.

2. The ASP-FT routing algorithm is the best perform-
ing solution both in terms of throughput and area
when r = 1.

3. The routing memory overhead of the ASP-FT algo-
rithm becomes relevant as r decreases and SSP so-
lutions become the best solutions mainly for P = 8
and P = 16.

4. In most cases, generalized Kautz are the best per-
forming topologies.

5. For considered topologies with node degree
D=2, the throughput tends to saturate when the
interleaver size increases.

6. The NOC aggregate bandwidth increases with
increasing values of P: as a consequence, the de-
livery time for a packet tends to be dominated
by the number of hops in networks with large
P. In this case, the topology choice tends to
play a very important role, whereas the other
design choices, such as routing algorithm, have
a weaker impact on the throughput.

To better highlight the results shown in Table 3 we
depict in Fig. 9 the experimental results obtained
with r = 1 and ASP-FT routing algorithm for the
HSDPA interleaver with N = 5114 where each point
represents the throughput and the area achieved by

12

Table 3: Throughput [Mbps]/area [mm2] achieved for the HSDPA interleaver (N=5114) within the pruned design space
D=2, ring D=2, generalized Kautz

P=8 P=16 P=32 P=64 P=8 P=16 P=32 P=64

r=1.00
SSP-RR (PP) 60.68/1.54 70.52/3.60 79.36/5.64 84.33/7.26 54.43/1.89 74.59/3.31 105.57/4.96 159.41/7.00
SSP-FL (PP) 60.88/1.54 72.11/3.18 80.46/4.44 82.43/5.62 58.09/1.78 81.64/3.14 117.19/4.47 171.15/6.20
ASP-FT (AP) 68.70/1.33 77.81/2.59 83.45/3.60 83.18/4.90 58.09/1.53 81.64/2.51 117.19/3.40 171.15/4.51

r=0.50
SSP-RR (PP) 46.42/0.52 68.19/1.59 75.16/3.87 79.86/5.54 46.54/0.52 72.03/1.24 101.39/2.89 142.21/4.97
SSP-FL (PP) 46.42/0.51 68.26/1.39 76.19/3.63 77.48/5.31 46.52/0.50 78.24/0.96 112.74/2.41 156.87/4.36
ASP-FT (AP) 46.44/0.65 75.47/1.32 78.92/3.10 78.68/4.71 46.52/0.62 78.24/1.01 112.74/2.06 156.87/3.40

r=0.33
SSP-RR (PP) 31.12/0.50 57.72/0.78 71.27/2.90 75.21/5.10 31.16/0.49 58.33/0.74 92.91/1.58 129.53/3.53
SSP-FL (PP) 31.11/0.49 57.62/0.73 72.35/2.64 72.35/4.95 31.14/0.49 58.30/0.71 101.63/1.28 140.96/2.92
ASP-FT (AP) 31.11/0.65 57.75/0.98 74.64/2.47 74.29/4.50 31.14/0.62 58.30/0.88 101.63/1.36 140.96/2.54

D=3, honeycomb D=3, generalized Kautz
P=8 P=16 P=32 P=64 P=8 P=16 P=32 P=64

r=1.00
SSP-RR (PP) 60.65/1.58 102.86/2.13 98.96/4.98 192.84/6.23 84.06/0.82 111.95/1.85 188.01/3.17 279.76/5.28
SSP-FL (PP) 60.91/1.57 105.40/2.09 101.23/4.27 186.37/5.81 90.61/0.74 126.96/1.72 194.30/3.07 291.89/5.14
ASP-FT (AP) 68.55/1.34 140.49/1.44 144.30/3.11 240.32/4.04 90.61/0.75 142.85/1.34 207.89/2.37 298.02/3.71

r=0.50
SSP-RR (PP) 46.49/0.52 86.62/0.85 93.80/3.31 173.00/4.16 46.66/0.53 87.03/0.83 151.84/1.53 230.78/3.08
SSP-FL (PP) 46.46/0.51 86.56/0.82 95.27/3.05 167.12/3.78 46.66/0.53 86.85/0.81 152.38/1.45 237.64/2.81
ASP-FT (AP) 46.47/0.65 86.97/0.96 134.44/1.77 214.87/2.79 46.66/0.70 87.15/0.96 152.93/1.45 238.97/2.42

r=0.33
SSP-RR (PP) 31.14/0.50 58.38/0.79 88.54/2.04 150.94/2.97 31.20/0.52 58.51/0.78 103.86/1.39 167.56/2.63
SSP-FL (PP) 31.12/0.49 58.38/0.77 91.45/1.83 150.59/2.76 31.19/0.52 58.49/0.77 103.86/1.36 167.12/2.54
ASP-FT (AP) 31.14/0.64 58.49/0.95 101.39/1.55 163.07/2.44 31.19/0.66 58.49/0.93 103.94/1.43 167.56/2.33

D=4, toroidal mesh D=4, generalized Kautz
P=8 P=16 P=32 P=64 P=8 P=16 P=32 P=64

r=1.00
SSP-RR (PP) 66.73/1.09 92.71/1.92 104.97/3.94 181.61/5.58 75.29/0.92 156.49/1.32 191.11/2.84 356.13/4.49
SSP-FL (PP) 70.40/1.03 93.46/1.83 113.14/3.40 190.82/5.21 83.24/0.87 163.70/1.21 199.45/2.83 372.74/4.30
ASP-FT (AP) 90.23/0.74 162.04/1.15 228.30/2.22 341.84/3.49 90.61/0.74 163.70/1.12 246.81/1.99 372.74/3.31

r=0.50
SSP-RR (PP) 46.59/0.54 86.33/0.94 98.80/2.48 161.02/3.78 46.68/0.55 87.27/0.89 152.38/1.64 246.81/3.16
SSP-FL (PP) 46.58/0.53 86.68/0.90 107.62/2.20 173.24/3.54 46.68/0.54 87.27/0.87 152.38/1.60 245.87/3.12
ASP-FT (AP) 46.59/0.71 87.03/1.09 152.02/1.67 237.64/2.77 46.68/0.73 87.27/1.04 152.93/1.63 245.87/2.77

r=0.33
SSP-RR (PP) 31.17/0.52 58.41/0.87 94.91/1.68 147.29/3.14 31.21/0.54 58.57/0.85 103.94/1.54 170.24/2.94
SSP-FL (PP) 31.16/0.52 58.43/0.85 98.80/1.59 154.04/3.04 31.21/0.53 58.57/0.84 104.11/1.51 170.01/2.92
ASP-FT (AP) 31.17/0.66 58.49/1.03 103.35/1.63 166.25/2.71 31.21/0.69 58.57/1.01 104.11/1.59 170.01/2.69

Table 4: Throughput [Mbps]/area [mm2] achieved for the circular shifting interleaver (N=24576) within the pruned design space
D=2, ring D=2, generalized Kautz

P=8 P=16 P=32 P=64 P=8 P=16 P=32 P=64

r=1.00
SSP-RR (PP) 62.56/6.58 72.23/15.73 81.22/24.45 87.04/30.37 56.62/8.43 77.26/14.10 116.01/20.56 169.96/26.72
SSP-FL (PP) 62.57/6.84 73.89/13.90 82.98/18.67 88.25/22.11 59.52/8.09 83.52/13.50 125.31/18.55 183.79/23.53
ASP-FT (AP) 71.48/5.93 81.57/11.29 88.17/15.12 91.14/19.36 59.52/6.94 83.52/10.74 125.31/13.90 183.79/16.74

r=0.50
SSP-RR (PP) 49.12/1.80 72.36/6.00 80.26/15.71 86.11/21.02 49.13/1.79 77.37/4.10 114.99/10.17 165.12/16.37
SSP-FL (PP) 49.12/1.78 73.42/5.10 82.28/14.68 87.29/20.48 49.13/1.78 86.74/2.98 129.59/8.00 186.75/13.78
ASP-FT (AP) 49.12/2.50 82.40/4.93 87.48/12.55 90.23/18.42 49.13/2.39 86.74/3.43 129.59/7.03 186.75/10.80

r=0.33
SSP-RR (PP) 32.78/1.76 63.67/2.09 79.52/11.40 85.06/19.10 32.78/1.76 63.83/2.06 111.61/4.13 162.20/9.53
SSP-FL (PP) 32.78/1.76 63.68/2.04 81.51/9.65 86.27/18.43 32.77/1.75 63.81/2.01 123.57/2.66 186.58/6.51
ASP-FT (AP) 32.78/2.51 63.67/3.37 86.71/9.32 88.90/17.17 32.77/2.44 63.81/2.99 123.57/3.71 186.58/6.45

D=3, honeycomb D=3, generalized Kautz
P=8 P=16 P=32 P=64 P=8 P=16 P=32 P=64

r=1.00
SSP-RR (PP) 63.28/6.51 107.23/8.07 103.96/20.19 219.19/21.14 87.61/2.86 118.27/6.64 210.05/10.39 332.65/16.23
SSP-FL (PP) 64.03/6.67 109.73/8.31 106.61/16.64 214.53/20.29 97.37/2.06 135.54/6.08 220.22/10.86 350.29/16.37
ASP-FT (AP) 72.48/5.74 152.42/5.28 160.67/11.92 313.79/13.45 97.37/2.29 153.26/4.55 239.53/8.07 375.55/11.66

r=0.50
SSP-RR (PP) 49.12/1.80 95.52/2.19 102.95/12.05 213.78/10.75 49.16/1.81 95.63/2.15 185.62/2.91 322.18/5.24
SSP-FL (PP) 49.12/1.79 95.48/2.13 106.06/10.62 208.55/9.56 49.16/1.81 95.69/2.10 185.68/2.76 346.34/4.32
ASP-FT (AP) 49.12/2.50 95.60/3.05 163.71/4.91 312.99/6.14 49.16/2.63 95.69/3.02 185.62/3.54 348.10/4.60

r=0.33
SSP-RR (PP) 32.78/1.77 63.84/2.08 102.14/5.83 205.69/5.13 32.79/1.79 63.89/2.08 124.30/2.68 235.31/3.96
SSP-FL (PP) 32.78/1.76 63.84/2.06 108.17/4.43 216.03/4.54 32.79/1.79 63.89/2.07 124.27/2.62 235.58/3.78
ASP-FT (AP) 32.78/2.50 63.85/2.99 123.62/4.18 233.35/5.14 32.79/2.47 63.89/2.95 124.30/3.62 235.58/4.68

D=4, toroidal mesh D=4, generalized Kautz
P=8 P=16 P=32 P=64 P=8 P=16 P=32 P=64

r=1.00
SSP-RR (PP) 70.18/4.23 97.20/6.89 110.05/13.77 202.77/16.59 77.99/3.34 174.15/3.71 215.50/8.33 493.89/10.22
SSP-FL (PP) 73.67/4.04 96.02/6.58 117.84/11.43 214.68/15.00 86.09/3.21 184.17/2.97 232.38/8.38 516.74/9.82
ASP-FT (AP) 96.57/2.36 184.12/3.13 275.76/6.43 471.89/9.19 97.11/2.35 184.17/3.06 298.83/5.09 516.74/7.61

r=0.50
SSP-RR (PP) 49.14/1.82 95.26/2.32 109.34/7.13 198.32/7.77 49.16/1.82 95.75/2.19 185.62/2.95 350.48/4.47
SSP-FL (PP) 49.14/1.80 95.48/2.22 119.74/6.10 213.85/7.03 49.16/1.82 95.75/2.17 185.96/2.89 350.89/4.28
ASP-FT (AP) 49.14/2.66 95.61/3.34 185.17/4.03 347.12/5.17 49.16/2.72 95.75/3.15 185.90/3.83 350.89/4.96

r=0.33
SSP-RR (PP) 32.78/1.79 63.85/2.17 110.01/3.59 196.55/5.02 32.79/1.81 63.91/2.15 124.37/2.82 236.04/4.17
SSP-FL (PP) 32.78/1.78 63.85/2.15 123.10/2.97 216.80/4.56 32.79/1.80 63.92/2.14 124.40/2.78 235.94/4.06
ASP-FT (AP) 32.78/2.42 63.85/3.03 124.00/3.95 234.15/5.26 32.79/2.51 63.92/3.02 124.40/3.72 235.94/4.96

13

Table 5: Power consumption [mW] results: average power consumption per node
D=2, R D=2, K D=3, H D=3, K D=4, T D=4, K

r=1.00
SSP-RR (PP) 8.02 7.71 7.43 6.37 7.16 5.94
SSP-FL (PP) 6.17 6.79 6.98 6.23 6.92 5.87
ASP-FT (AP) 7.87 8.49 8.62 8.16 8.46 8.16

r=0.50
SSP-RR (PP) 6.09 5.42 5.11 3.88 5.14 4.44
SSP-FL (PP) 5.81 4.73 4.69 3.59 5.02 4.51
ASP-FT (AP) 7.53 6.45 6.27 5.67 6.91 6.91

r=0.33
SSP-RR (PP) 5.44 3.67 3.75 3.33 4.33 4.10
SSP-FL (PP) 5.41 3.11 3.53 3.26 4.38 4.23
ASP-FT (AP) 7.13 4.83 5.46 5.37 6.60 6.67

a topology for a given P. Similarly, in Fig. 10 and
11 we show the experimental results obtained with
r = 1, P = 64 and r = 0.33, P = 16 respectively
for the HSDPA interleaver with N = 5114. More-
over, in Table 5 we show the average power con-
sumption per node obtained for each topology. As it
can be observed, AP architectures are almost always
the most power demanding ones, due to the presence
of RMs. On the contrary PP architectures show a
lower power consumption; this reduction is particu-
larly significant when topologies with short distances
among nodes, as the generalized Kautz ones, are em-
ployed. As it can be observed, generalized Kautz

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
50

100

150

200

250

300

350

400

R

K2
H

K3
T

K4

R
K2

H
K3

T
K4

R

K2

H

K3

T

K4

R

K2

H

K3

T

K4

A[mm]2

T
[M

bp
s]

P=8
P=16

P=32

P=64

Figure 9: HSDPA with N = 5114 throughput/area comparison of
different topologies for the case r = 1, ASP-FT routing algorithm,
DCM approach

topologies with D = 4 are always the best solutions to
achieve high throughput with minimum area overhead.
Moreover, we observe that increasing D has the effect
of reducing network congestion, which has two positive
consequences: higher throughput and smaller size of in-
put FIFOs. However, the saved area benefit is partially
mitigated by the increased complexity of the routing al-
gorithm, as highlighted in the first part of Table 6 for PP
node architectures: for example, K topology requires
23.81 mm2 for FIFOs and 0.11 mm2 for RA/RM when

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
50

100

150

200

250

300

350

400

R, SSP−RR (PP)
R, SSP−FL (PP)R, ASP−FT (AP)

K2, SSP−RR (PP)
K2, SSP−FL (PP)K2, ASP−FT (AP)

H, SSP−RR (PP)
H, SSP−FL (PP)

H, ASP−FT (AP)

K3, SSP−RR (PP)
K3, SSP−FL (PP)

K3, ASP−FT (AP)

T, SSP−RR (PP)

T, SSP−FL (PP)

T, ASP−FT (AP)

K4, SSP−RR (PP)

K4, SSP−FL (PP)K4, ASP−FT (AP)

A[mm]2

T
[M

bp
s]

Figure 10: HSDPA with N = 5114 throughput/area comparison of
different topologies for the case r = 1, P = 64, DCM approach

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
57.6

57.7

57.8

57.9

58

58.1

58.2

58.3

58.4

58.5

58.6

R, SSP−RR (PP)

R, SSP−FL (PP)

R, ASP−FT (AP)

K2, SSP−RR (PP)
K2, SSP−FL (PP) K2, ASP−FT (AP)

H, SSP−RR (PP)
H, SSP−FL (PP)

H, ASP−FT (AP)

K3, SSP−RR (PP)
K3, SSP−FL (PP) K3, ASP−FT (AP)

T, SSP−RR (PP)
T, SSP−FL (PP)

T, ASP−FT (AP)
K4, SSP−RR (PP)

K4, SSP−FL (PP) K4, ASP−FT (AP)

A[mm]2

T
[M

bp
s]

Figure 11: HSDPA with N = 5114 throughput/area comparison of
different topologies for the case r = 0.33, P = 16, DCM approach

D = 2, whereas areas of 6.86 mm2 and 0.36 mm2 are
occupied when D = 4. On the contrary, if an AP archi-
tecture is used for switching nodes, the routing memory
size progressively becomes smaller with increasing D,
due to the higher number of packets that can be switched
at each clock cycle. For example, in the second part of
Table 6 (AP node architecture), the area occupied by

14

the routing memory (RA/RM) reduces with increasing
D. We can further observe that for r = 1 the ASP-FT
routing algorithm is the best solution, whereas for r < 1
SSP routing algorithms, implemented as PP node archi-
tectures, tend to achieve the same performance as the
ASP-FT routing algorithm with lower complexity over-
head. An interesting phenomenon that arises increasing
the interleaver size is the performance saturation that
can be observed in the Table 4 for D = 2 topologies,
namely the throughput tends to saturate and increasing
r has the effect of augmenting the area with a negligible
increase or even with a decrease of throughput. As an
example, the generalized Kautz topology with P = 64
and ASP-FT routing algorithm achieves more than 180
Mbps with r = 1, r = 0.5, r = 0.33. However, the
solution with the smallest area is the one obtained with
r = 0.33. The throughput flattening of low D topolo-
gies can be explained by observing that high values of r
tend to saturate the network. Furthermore, high values
of r lengthen the input FIFOs as highlighted in Table 7,
where the total area of the network is given as the break-
down of the building blocks, namely the input FIFOs,
the crossbars (CB), the output registers, the routing al-
gorithm/memory (RA/RM), the identifier memory (IM)
and the location memory (LM) is given for some signifi-
cant cases: the highest throughput (light-gray), the high-
est area (mid-gray), and lowest area (dark-gray) points
for each D value in Table 4.

Table 6: Area occupied by input FIFOs and routing algo-
rithm/memory (RA/RM) for different topologies and routing algo-
rithms with P = 64, circular shifting interleaver (N = 24576), r = 1
and DCM

Node arch. routing alg. D top. Tot. FIFOs RA/M
area [mm2] area [mm2]

PP SSP-RR

2 R 27.46 0.11
2 K 23.81 0.11
3 H 18.02 0.23
3 K 13.01 0.23
4 T 13.21 0.37
4 K 6.86 0.36

AP ASP-FT

2 R 11.45 6.35
2 K 12.38 2.79
3 H 9.25 2.55
3 K 7.86 2.15
4 T 5.14 2.24
4 K 3.78 2.03

6. Comparisons

Given the different solutions presented in the two pre-
vious sections as methods to interconnect multiple pro-
cessing elements in a multi-standard parallel turbo de-
coder, it is very interesting to compare them with other
approaches towards single standard implementations or

even architectures designed to support a limited number
of codes. However such a comparison tends to be quite
difficult to carry out, as the flexibility in the computa-
tion to be supported always comes at a relevant cost,
both in terms of occupied area and achievable through-
put. Direct comparisons between architectures with dif-
ferent degrees of flexibility risk then to be unfair. We
report in Table 8 some of the analyzed NOC based ar-
chitectures together with a few previous implementa-
tions of known turbo decoders. For each case, occupied
area and achieved throughput is given and all data have
been converted to a 130 nm CMOS technology: for the
sake of simplicity, when starting from values related to
a technology with feature size α, rough scaling factors
(130/α)2 and α/130 have been used in the conversion
for area and throughput respectively. The purpose of
the presented data is twofold:

1. To compare NOC based solutions studied in this
work with other interconnect architectures used in
parallel turbo decoders (first and second parts of
the Table); in this case, comparisons can be made
directly on area and throughput data.

2. To obtain an estimation of the flexibility cost asso-
ciated to the use of NOC structures (first and third
parts of the Table). In this case, direct area com-
parisons do not make sense, as the complexity val-
ues given in Table 8 for NOC based decoders are
referred to only the interconnect structures and do
not include the area contribution of processing ele-
ments. On the contrary, the whole occupied area is
shown for considered decoders. However one use-
ful lesson that can be learned from those date is the
overhead associated to the NOC structure.

In the first part of Table 8, four NOCs with paral-
lelism degree equal to 16 are compared in terms of
achieved throughput for 8 decoding iterations, occupied
area and throughput to area ratio: Butterfly and Benes
indirect networks, toroidal mesh and generalized Kautz
among direct networks. For the two latter cases, the re-
ported synthesis data refer to D = 4, r = 1, N = 5114
and ASP-FT configuration. All four cases provide fairly
high throughput at a limited cost of occupied area and
throughput to area ratio is quite high, with the highest
value shown by the Benes topology. Two different inter-
connect architectures are considered in the second part
of the Table. These two structures are able to adapt to
multiple codes, with different interleaving laws, but they
achieve significantly lower throughput to area ratios. Fi-
nally in the third part of the Table, we give implementa-
tion data for three implementations with no, or limited,
flexibility. In these cases, area figures refer to the whole

15

Table 7: Hardware resources breakdown for the circular shifting interleaver with N=24576 and DCM: some significant points

D top. P r routing alg. Tot. FIFOs Tot. CB Tot. reg. RA/M IM+LM Tot.
area [mm2] area [mm2] area [mm2] area [mm2] area [mm2] area [mm2]

2 R 64 1 ASP-FT (AP) 11.45 (59.15%) 0.03 (0.15%) 0.08 (0.41%) 6.35 (32.80%) 1.45 (7.49%) 19.36 (100%)
2 R 64 1 SSP-RR (PP) 27.46 (90.43%) 0.05 (0.16%) 0.14 (0.46%) 0.11 (0.36%) 2.61 (8.59%) 30.37 (100%)
2 R 8 0.33 SSP-FL/RR (PP) 0.05 (2.84%) 0.01 (0.57%) 0.01 (0.57%) 0.01 (0.57%) 1.68 (95.45%) 1.76 (100%)
2 K 64 0.5 ASP-FT (AP) 6.53 (60.46%) 0.03 (0.28%) 0.08 (0.74%) 2.71 (25.09%) 1.45 (13.43%) 10.80 (100%)
2 K 64 1 SSP-RR (PP) 23.81 (89.11%) 0.05 (0.19%) 0.14 (0.52%) 0.11 (0.41%) 2.61 (9.77%) 26.72 (100%)
2 K 8 0.33 SSP-FL (PP) 0.05 (2.86%) 0 (0%)(1) 0.01 (0.57%) 0.01 (0.57%) 1.68 (96.00%) 1.75 (100%)
3 H 64 1 ASP-FT (AP) 9.25 (68.77%) 0.09 (0.67%) 0.11 (0.82%) 2.55 (18.96%) 1.45 (10.78%) 13.45 (100%)
3 H 64 1 SSP-RR (PP) 18.02 (85.24%) 0.10 (0.47%) 0.18 (0.85%) 0.23 (1.09%) 2.61 (12.35%) 21.14 (100%)
3 H 8 0.33 SSP-FL (PP) 0.05 (2.84%) 0.01 (0.57%) 0.01 (0.57%) 0.01 (0.57%) 1.68 (95.45%) 1.76 (100%)
3 K 64 1 ASP-FT (AP) 7.86 (67.41%) 0.09 (0.77%) 0.11 (0.94%) 2.15 (18.44%) 1.45 (12.44%) 11.66 (100%)
3 K 64 1 SSP-FL (PP) 13.15 (80.33%) 0.10 (0.61%) 0.18 (1.10%) 0.33 (2.02%) 2.61 (15.94%) 16.37 (100%)
3 K 8 0.33 SSP-FL (PP) 0.06 (3.35%) 0.01 (0.56%) 0.02 (1.12%) 0.02 (1.12%) 1.68 (93.85%) 1.79 (100%)
4 T 64 1 ASP-FT (AP) 5.14 (55.94%) 0.23 (2.5%) 0.13 (1.41%) 2.24 (24.37%) 1.45 (15.78%) 9.19 (100%)
4 T 64 1 SSP-RR (PP) 13.21 (79.63%) 0.17 (1.02%) 0.23 (1.39%) 0.37 (2.23%) 2.61 (15.73%) 16.59 (100%)
4 T 8 0.33 SSP-FL (PP) 0.06 (3.35%) 0.01 (0.56%) 0.02 (1.12%) 0.02 (1.12%) 1.67 (93.85%) 1.78 (100%)
4 K 64 1 ASP-FT (AP) 3.78 (49.67%) 0.22 (2.89%) 0.13 (1.71%) 2.03 (26.68%) 1.45 (19.05%) 7.61 (100%)
4 K 64 1 SSP-RR (PP) 6.86 (67.12%) 0.16 (1.57%) 0.23 (2.25%) 0.36 (3.52%) 2.61 (25.54%) 10.22 (100%)
4 K 8 0.33 SSP-FL (PP) 0.06 (3.33%) 0.10 (0.56%) 0.02 (1.11%) 0.03 (1.67%) 1.68 (93.33%) 1.80 (100%)
(1) The area and the percentage are not really zero, but they are negligible compared with the IM and LM contribution to the total area.

Table 8: Implementation results of some flexible interconnect structures and complete turbo decoders. Interconnect architectures have parallelism
degree P = 16; the two direct networks have D = 4, r = 1, N = 5114 and ASP-FT configuration. Throughput is for 8 decoding iterations. All data
have been converted to a 130 nm CMOS technology.)

NOC architecture clock freq. NOC area Throughput (8 it.) Throughput to Area Ratio
(degree 16) (MHz) (mm2) (Mbps)

Butterfly 345 1.5 138 92
Benes 381 0.96 152 158

toroidal mesh 200 1.2 162 135
generalized Kautz 200 1.1 164 149

Interconnect architecture clock freq. interconnect area Throughput (8 it.) Throughput to Area Ratio
(degree 16) (MHz) (mm2) (Mbps)

[29] 184 1.5 19.6 13
[50] - 9.8 91 9.2

Decoder architecture clock freq. decoder area (mm2) Throughput (8 it.) NOC overhead
(MHz) (mm2) (Mbps) (gen. Kautz area

over decoder area)
[51] 150 8.4 75 13%
[52] 250 10.7 187 10%
[53] 352 10 352 11%

decoders and the last column reports, for each decoder,
the ratio between the NOC area occupied by the Kautz
topology and the decoder area. This ratio is a measure
of the potential overhead introduced by the NOC with
respect to the global cost of a decoder: it represents
the percentage increment of complexity that would be
caused by the use of the NOC as a method to make
the considered decoder flexible, that is able to handle
any interleaving law. In the three considered cases, this
overhead is not higher than 13%, which makes a NOC a
very promising solution for the implementation of flex-
ible interconnect structures in parallel turbo decoders.

7. Conclusions

In this paper we presented two classes of solutions to
achieve high throughput and flexibility in multiproces-
sor turbo decoder architectures. Both solutions rely on
the network on chip approach. One solution investigates
indirect networks, as butterfly and Benes topologies.
The other solution relies on direct networks, propos-
ing generalized Kautz topologies as an effective alterna-
tive. Experimental results show that a network-on-chip
based decoder made of 16 processing elements achieves
a throughput of 164 Mbps, while the area required by
the network compares favorably with previously pub-
lished works.

16

Acknowledgement

This work has been supported by NEWCOM++
NoE.

References

[1] A. Polydoros, Algorithmic aspects of radio flexibility, in: IEEE
International Symposium on Personal, Indoor and Mobile Com-
munications, 2008, pp. 1–5.

[2] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge,
C. Chakrabarti, K. F. Soda, A low-power architecture for soft-
ware radio, in: 33rd International Symposium on Computer Ar-
chitecture, 2006, pp. 89–101.

[3] C. Pan, N. Bagherzadeh, A. Kamalizad, A. Koohi, Design and
analysis of a programmable single-chip architecture for DVB-T
base-band receiver, in: Design, Automation and Test in Europe
Conference and Exhibition, 2003, pp. 468–473.

[4] M. Hosemann, R. Habendorf, , G. P. Fettweis, Hardware-
software codesign of a 14.4mbit - 64 state - viterbi decoder for
an application- specific digital signal processor, in: IEEE Work-
shop on Signal Processing Systems, 2003, pp. 45–50.

[5] P. Guerrier, A. Greiner, A generic architecture for on-chip
packet-switched interconnections, in: Design, Automation and
Test in Europe Conference and Exhibition, 2000, pp. 250–256.

[6] W. J. Dally, B. Towels, Route packets, not wires: On-chip inter-
connection networks, in: Design Automation Conference, 2001,
pp. 684–689.

[7] L. Benini, G. D. Micheli, Networks on chips: a new soc
paradigm, IEEE Computer 35 (1) (2002) 70–78.

[8] S. Kumar, A. Jantsch, J. P. Soininen, M. Forsell, M. Millberg,
J. Oberg, K. Tiensyrja, A. Hemani, A network on chip archi-
tecture and design methodology, in: IEEE Computer Society
Annual Symposium on VLSI, 2002, pp. 105–112.

[9] L. Benini, Application specific NoC design, in: Design, Au-
tomation and Test in Europe Conference and Exhibition, 2006,
pp. 1330–1335.

[10] F. Vacca, H. Moussa, A. Baghdadi, G. Masera, Flexible archi-
tectures for LDPC decoders based on network on chip paradigm,
in: Euromicro Conference on Digital System Design, 2009, pp.
582–589.

[11] L. Bahl, J. Cocke, F. Jelinek, J. Raviv, Optimal decoding of lin-
ear codes for minimizing symbol error rate, IEEE Transactions
on Information Theory 20 (3) (1974) 284–287.

[12] G. Masera, Turbo Code applications: a journey from a paper to
realization, Springer, 2005, Ch. 14 - “VLSI for turbo codes”, pp.
347–382.

[13] E. Boutillon, C. Douillard, G. Montorsi, Iterative decoding of
concatenated convolutional codes: Implementation issues, Pro-
ceedings of the IEEE 95 (6) (2007) 1201–1227.

[14] S. Papaharalabos, P. T. Mathiopoulos, G. Masera, M. Martina,
On optimal and near-optimal turbo decoding using generalized
max* operator, IEEE Communications Letters 13 (7) (2009)
522–524.

[15] S. Benedetto, D. Divsalar, G. Montorsi, F. Pollara, Algorithm
for continuous decoding of turbo codes, IET Electronics Letters
32 (4) (1996) 314–315.

[16] A. J. Viterbi, An intuitive justification and a simplified imple-
mentation of the MAP decoder for convolutional codes, IEEE
Journal on Selected Areas in Communications 16 (2) (1998)
260–264.

[17] Z. Wang, Q. Li, Very low-complexity hardware interleaver for
turbo decoding, IEEE Transactions on Circuits and Systems II
54 (7) (2007) 636–640.

[18] M. Martina, M. Nicola, G. Masera, Hardware design of a low
complexity, parallel interleaver for wimax duo-binary turbo de-
coding, IEEE Communications Letters 12 (11) (2008) 846–848.

[19] http://www.3gpp.org.
[20] http://www.3gpp2.org.
[21] IEEE Std 802.16, part 16: air interface for fixed broadband wire-

less access systems (Oct. 2004).
[22] http://www.3gpp.org/highlights/lte/lte.htm.
[23] O. Muller, A. Baghdadi, M. Jezequel, Exploring parallel pro-

cessing levels for convolutional turbo decoding, in: IEEE Inter-
national Conference on Information and Communication Tech-
nologies: from Theory to Applications, 2006, pp. 2353–2358.

[24] J. Zhang, M. P. C. Fossorier, Shuffled iterative decoding, IEEE
Transactions on Communications 53 (2) (2005) 209–213.

[25] C. Douillard, C. Berrou, Turbo codes with rate-m/(m+1) con-
stituent convolutional codes, IEEE Transactions on Communi-
cations 53 (3) (2005) 268–278.

[26] J. Kwak, K. Lee, Design of dividable interleaver for parallel de-
coding in turbo codes, IET Electronics Letters 38 (22) (2002)
1362–1364.

[27] A. Nimbalker, T. Blankenship, B. Classon, T. Fuja, D. C. Jr.,
Inter-window shuffle interleavers for high throughput turbo de-
coding, in: 3rd International Symposium on Turbo Codes and
Related Topics, 2005, pp. 335–358.

[28] R. Dobkin, M. Peleg, R. Ginosar, Parallel interleaver design and
VLSI architecture for low-latency MAP turbo decoders, IEEE
Transactions on VLSI 13 (4) (2005) 427–438.

[29] F. Gilbert, M. Thul, N. Wehn, Communication centric architec-
tures for turbo-decoding on embedded multiprocessors, in: De-
sign, Automation and Test in Europe Conference and Exhibi-
tion, 2003, pp. 356–361.

[30] A. Tarable, S. Benedetto, Mapping interleaving laws to parallel
turbo decoder architectures, IEEE Communications Letters 8 (3)
(2004) 162–164.

[31] R. Bergevin, Architectures et traitement parallles,
www.gel.ulaval.ca/∼bergevin/enseignement.html (2007).

[32] J. W. Cooley, J. W. Tukey, An algorithm for the machine calcu-
lation of complex fourier series, Mathematics of Computation
19 (90) (1965) 297–301.
URL http://www.jstor.org/stable/2003354

[33] V. E. Benes, Mathematical Theory of Connecting Networks and
Telephone Traffic, Academic Press, 1965.

[34] D. C. Opferman, N. T. Tsao-Wu, On a class of rearrangeable
switching networks, Bell System Technical Journal 50.

[35] S. Benedetto, D. Divsalar, G. Montorsi, F. Pollara, Soft-input
soft-output modules for the construction and distributed iterative
decoding of code networks, European Transactions on Telecom-
munications 9 (2) (1998) 155–172.

[36] C. Neeb, M. J. Thul, N. Wehn, Network-on-chip-centric ap-
proach to interleaving in high throughput channel decoders, in:
IEEE International Symposium on Circuits and Systems, 2005,
pp. 1766–1769.

[37] M. J. Thul, F. Gilbert, N. Wehn, Optimized concurrent interleav-
ing architecture for high-throughput turbodecoding, in: IEEE
International Conference on Electronics, Circuits and Systems,
2002, pp. 1099–1102.

[38] M. J. Thul, F. Gilbert, N. Wehn, Concurrent interleaving archi-
tectures for high-throughput channel coding, in: IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing,
2003, pp. 613–616.

[39] F. Speziali, J. Zory, Scalable and area efficient concurrent inter-
leaver for high throughput turbo-decoders, in: IEEE Euromicro
Symposium on Digital System Design, 2004, pp. 334–341.

[40] M. Imase, M. Itoh, Design to minimize diameter on building-
block network, IEEE Transactions on Computers 30 (6) (1981)

17

439–442.
[41] M. Imase, M. Itoh, A design for directed graphs with minimum

diameter, IEEE Transactions on Computers 32 (8) (1983) 782–
784.

[42] H. Moussa, A. Baghdadi, M. Jezequel, Binary de Bruijn inter-
connection network for a flexible LDPC/turbo decoder, in: IEEE
International Symposium on Circuits and Systems, 2008, pp.
97–100.

[43] M. Martina, Turbo NOC: Network On Chip based turbo decoder
architectures, downloadable at www.vlsilab.polito.it/∼martina.

[44] F. Angiolini, P. Meloni, S. M. Carta, L. Raffo, L. Benini, A
layout-aware analysis of networks-on-chip and traditional inte-
connects for MPSoCs, IEEE Transactions on Computer-aided
Design of Integrated Circuits and Systems 26 (3) (2007) 421–
434.

[45] P. Meloni, I. Loi, F. Angiolini, S. Carta, M. Barbaro, L. Raffo,
L. Benini, Area and power modeling for networks-on-chip with
layout awareness, VLSI DesignSpecial issue on Networks on
Chip, Article ID 50285, 12 pages.

[46] M. Hosseinabady, M. R. Kakoee, J. Mathew, D. K. Pradhan,
Reliable network-on-chip based on generalized de Bruijn graph,
in: IEEE International High Level Design Validation and Test
Workshop, 2007, pp. 3–10.

[47] M. Hosseinabady, M. R. Kakoee, J. Mathew, D. K. Pradhan, De
Bruijn graph as a low latency scalable architecture for energy
efficient massive NoCs, in: Design, Automation and Test in Eu-
rope Conference and Exhibition, 2008, pp. 1370–1373.

[48] L. Dinoi, S. Benedetto, Variable-size interleaver design for par-
allel turbo decoder architectures, IEEE Transactions on Com-
munications 53 (11) (2005) 1833–1840.

[49] S. Dolinar, D. Divsalar, Weight distributions for turbo codes us-
ing random and nonrandom permutations, TDA Progress Report
42-122 (1995) 56–65.

[50] I. Ahmed, C. Vithanage, Dynamic reconfiguration approach for
high speed turbo decoding using circular rings, in: ACM Great
Lakes symposium on VLSI, 2009, pp. 475–480.

[51] M. May, T. Ilnseher, N. Wehn, W. Raab, A 150 Mbit/s 3GPP
LTE turbo code decoder, in: Design, Automation and Test in
Europe Conference and Exhibition, 2010, pp. 1420–1425.

[52] J. H. Kim, I. C. Park, A unified parallel radix-4 turbo decoder
for mobile wimax and 3gpp-lte, in: IEEE Custom Intergrated
Circuits Conference, 2009, pp. 487–490.

[53] P. Urard, L. Paumier, M. Viollet, E. Lantreibecq, H. Michel,
S. Muroor, B. Coates, M. Gupta, A generic 350 Mb/s turbo-
codec based on a 16-states SISO decoder, in: IEEE International
Solid-State Circuits Conference, 2004, pp. 424–536.

[54] C. Berrou, A. Glavieux, P. Thitimajshima, Near Shannon limit
error correcting coding and decoding: Turbo codes, in: IEEE
International Conference on Communications, 1993, pp. 1064–
1070.

18

