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Scalable low complexity B-spline Discrete

Wavelet Transform architecture

Maurizio Martina, Guido Masera, Gianluca Piccinini

Abstract

This work presents a scalable Discrete Wavelet Transform architecture based on the B-spline factorization. In

particular, we show that several wavelet filters of practical interest have a common structure in the distributed part

of their B-spline factorization. This common structure is effectively exploited to achieve scalability and to save

multipliers compared with a direct polyphase B-spline implementation. Since the proposed solution is more robust

to coefficient quantization than direct polyphase B-spline, it features further complexity reduction. Synthesis results

are reported for a 130 nm CMOS technology to enable accurate comparison with other implementations. Moreover

the performance of the new wavelet transform architecture, integrated in a complete JPEG2000 model, have been

collected for several images.

I. INTRODUCTION

Filter bank (FB) [1] and lifting scheme (LS) [2], along with its flipping structure (FS) form [3], are the

most common solutions to implement the discrete wavelet transform (DWT). A novel approach to design DWT

architectures, based on the B-spline (BS) factorization, is proposed in [4] to reduce the number of required

multipliers. As detailed in [4], the gate count for the BS architecture of the 9/7, the 6/10 and the 10/18 filters

is significantly reduced compared with the corresponding FB or LS implementations. In this work, we propose a

new BS architecture that offers scalability and complexity advantages with respect to solution given in [4].

The BS approach is based on factorizing each DWT as

H(z) = zδH ·HBS(z) · Q̂(z) · h0 (1)

G(z) = zδG ·GBS(z) · R̂(z) · g0 (2)

where H(z) and G(z) are the Z-domain representations of the analysis low-pass and high-pass filters respectively,

HBS(z) = [(1+z−1)/2]γH and GBS(z) = [(1-z−1)/2]γG are the BS terms, zδH and zδG are delay terms to model

the filter memory; in (1) and (2),

Q(z) = Q̂(z) · h0 (3)

= Q0 +Q1(z + z−1) + . . .+QNQ
(zNQ + z−NQ)
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R(z) = R̂(z) · g0 (4)

= R0 +R1(z + z−1) + . . .+RNR
(zNR + z−NR)

are referred to as the filter distributed part. In (1) and (2) HBS(z) and GBS(z) account for the γH and γG zeros of

H(z) and G(z) in z=-1 and z=1 respectively. As pointed out in [4], direct polyphase implementation of HBS(z) and

GBS(z), obtained by cascading γH (γG) multiplierless stages (see Fig. 2 (a)), is preferred to the Pascal expression

for long-tap filters.

On the other hand, the implementation of the distributed part, (3) and (4), requires multiplications [4]. Several

works in the literature address the multiplierless implementation of the DWT. As an example [5], [6], [7] deal with

FB DWT, [5], [8], [9] with LS/FS DWT and [10] with BS DWT. In particular in [10], the use of Canonic Signed

Digit representation is proposed to reduce the distributed terms complexity in BS based architectures. However, only

[4] and [10] investigate BS architectures, that, as shown in [4], feature a reduced number of multipliers compared

with FB and LS approaches. Moreover, none of the solutions proposed in the literature exploits the algebraic

properties of the distributed part to further reduce the complexity of the DWT. As a first step, this work shows,

in section II, that the distributed part has a common processing structure. Consequently, the scientific contribution

of this work is to detail how this structure allows for (i) lower number of multiplications, (ii) scalability, (iii)

robustness to coefficient quantization with respect to direct polyphase BS implementation. These three aspects are

detailed in section III and IV. In particular, in section IV, the robustness to coefficient quantization is proved by

showing experimental results obtained integrating the proposed solution into JPEG2000, the latest international

image compression standard, verification model [11].

II. PROPOSED ARCHITECTURE

As proved in [12], several DWT filters of practical interest in image compression are obtained from

H(ξ)H̃(ξ) = [cos(ξ/2)]2l · Φl−1(θ) (5)

= [cos(ξ/2)]2l ·
l−1∑
i=0

 l − 1 + i

i

 θi

where H̃(ξ) is the low-pass synthesis filter (G(z)=H̃(−z) and z=ejξ), 2l=γH+γG and θ = [sin(ξ/2)]2. We obtain

(1) and (2) from (5) by using the following factorization

[cos(ξ/2)]2l = zδH · zδG ·HBS(z) ·GBS(−z) (6)

Φl−1(θ) = Q(z) ·R(−z) (7)

Significant examples of the filters derived from (5) are the ones considered in [4], namely the 9/7, the 6/10 and the

10/18. These filters are obtained by proper spectral factorization with 2l=8 for the 9/7 and the 6/10, and 2l=14 for

the 10/18.
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Since Φl−1(θ) is a polynomial with real coefficients its roots are real (r) and complex conjugate pairs (c, c∗).

We can then write Q(z) and R(z) in the form

Q(z) =
∏

r∈IQ
r

Lr(z) ·
∏

a,b∈IQ
a,b

Wa,b(z) (8)

R(z) =
∏

r∈IR
r

Lr(−z) ·
∏

a,b∈IR
a,b

Wa,b(−z) (9)

where Lr(z) and Wa,b(z) are

Lr(z) = α0 + α1(z + z−1) (10)

α0 = 1− 1

2r
α1 =

1

4r
(11)

Wa,b(z) = β0 + β1(z + z−1) + β2(z
2 + z−2) (12)

β0 = 1− b

2a
+

3

8a
β1 =

b− 1

4a
β2 =

1

16a
(13)

with a=c · c∗, b=c+c∗ and IQ
r (IR

r ) and IQ
a,b (IR

a,b) are the sets of real and complex conjugate roots in Q(z) (R(z)).

Implementation of each Lr(z) (Wa,b(z)) filter requires two (three) multiplications for α0, α1 in (10) (for β0, β1,

β2 in (12)). The number of multiplications can be reduced by formulating the filtering operation in the following

matricial form. Said x[n] a discrete-time input signal, output of filter Lr(z) and Wa,b(z) are computed as

yL[n]=

 1

1/r

t

·

 1 0

−1/2 1/4

·

 p[0]

p[1]

 (14)

yW [n]=


1

b/a

1/a


t

·


1 0 0

−1/2 1/4 0

3/8 −1/4 1/16

·


p[0]

p[1]

p[2]

 (15)

where [·]t means array transposition, p[0]=x[n], p[1]=x[n−1]+x[n+1] and p[2]=x[n−2]+x[n+2]. The implementation

of (10) and (12) requires five multipliers, whereas (14) and (15) can be implemented as shown in Fig. 1 (a) and 1

(b), with a total of three multipliers. Low-pass and high-pass results are obtained by selectively adding or subtracting

odd power terms in Lr(z) and Wa,b(z) (lp/hp signal in Fig. 1). Furthermore, Fig. 1 (c) shows that both Lr(z) and

Wa,b(z) can be implemented as a single module (LW (z)) resorting to two multiplexers, driven by the LW signal.

However, since the BS terms are in polyphase form and the distributed part is in not-polyphase form, as shown in

Fig. 2, we need to properly connect BS term outputs, xe (x′
e) and xo (x′

o), to the distributed part input by means

of registers (see Fig. 1 (d)). Moreover, registers are required when more Lr(z) or Wa,b(z) stages are cascaded to

implement Q(z) and R(z), as in the case of the 10/18 filters, where the ouput of the first stage (x̃) becomes the

input of the second stage (see Fig. 1 (e) and Fig. 2 (b)).
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Figure 1. Block scheme of Lr(z) (a), Wa,b(z) (b) and flexible LW (z) (c)

III. RESULTS

In this work we analyze the filters considered in [4]: the 9/7, 6/10 and 10/18 wavelet filters, whose BS part is

completely described by (γf
H , γf

G) with f ∈ Jf={9/7, 6/10, 10/18}, namely (γ9/7
H =4, γ9/7

G =4), (γ6/10
H =3, γ6/10

G =5)

and (γ10/18
H =5, γ10/18

G =9). The 9/7 and 6/10 wavelet filters derive from (5) with 2l=8, and

Φ3(θ) = 1 + 4θ + 10θ2 + 20θ3 = 0 (16)

Φ3(θ) has only a real root r and a pair of complex conjugate roots c, c∗ that lead to

Q9/7(z) = Wa,b(z) (17)

Q6/10(z) = Lr(z) (18)
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Table I

COMPLEXITY REQUIREMENTS OF THE BS DWT ARCHITECTURE DESCRIBED IN [4] AND THE PROPOSED

ONE WITH A CLOCK FREQUENCY CONSTRAIN OF 200 MHZ: MULTIPLIERS, ADDERS, REGISTERS, AND

EQUIVALENT GATES. THE NUMBER OF MULTIPLIERS INCLUDES h0 AND g0 IN (1) AND (2)

Filter Architecture Multipliers Adders Registers Area(a) Area(b)

[kgate] / [µm2] [kgate] / [µm2]

9/7 or 6/10
[4] BS Type I 5 22 16 9.80 / 58771 9.08 / 54504

our 3 27 16 7.52 / 45090 5.26 / 31532

10/18
[4] BS 8 40 28 17.20 / 103195 17.20 / 103195

our 6 52 29 14.42 / 86499 11.27 / 67612

(a) Results obtained by using 16-by-16 multipliers and 16 bit rounded output.
(b) Results obtained by sizing the multipliers as detailed in section IV.

1  z a,b

W   (z)a,b

z−1

2

2

1+z
2

−1
1+z

2

−1
1+z

2
1+z

2

1−z
−1

2
1−z

−1

2
1−z

−1

2
1−z

−1

2
1−z

−1
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always
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−1 −1
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−1

2 2
1−z

−1
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H/G

G/He

o

x’

W   (z)
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Figure 2. (a) BS basic block architecture (b) scalable BS architecture to support the 9/7, 6/10 and 10/18 wavelet filters

with

Q9/7(z) = R6/10(−z) (19)

R9/7(z) = Q6/10(−z) (20)

Since γ
9/7
H +γ9/7

G =γ6/10
H +γ6/10

G we can infer that the 9/7 and 6/10 architectures have the same complexity. On the

other hand, the 10/18 wavelet filters are obtained from (5) with 2l=14 and

Φ6(θ)=1+7θ+28θ2+84θ3+210θ4+462θ5+924θ6=0 (21)

whose solution is three pairs of complex conjugate roots. Said c0, c
∗
0 and c2, c

∗
2 the couples with minimum and

maximum modulus, we obtain

Q10/18(z) = Wa1,b1(z) (22)

R10/18(z) = Wa0,b0(−z) ·Wa2,b2(−z) (23)

where ai=ci · c∗i and bi=ci+c∗i .

To prove the effectiveness of our methodology we described in VHDL both the BS architectures detailed in

[4] and the proposed ones and synthesized them on a 0.13 µm standard cell technology with Synopsys Design

Compiler. The architecture bit-width is the same employed in [4], namely internal bit-widths are all 16 bit and
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Table II

COMPLEXITY REQUIREMENTS OF THE BS DWT ARCHITECTURE DESCRIBED IN [4] AND THE

PROPOSED ONE CONSTRAINING THE AREA TO BE MINIMAL: EQUIVALENT GATES AND CRITICAL

PATH

Filter Architecture Area(a) Critical path(a) Area(b) Critical path(b)

[kgate] / [µm2] [ns] [kgate] / [µm2] [ns]

9/7 or 6/10
[4] BS Type I 8.21 / 49264 8.83 7.61 / 45647 7.77

our 6.59 / 39529 6.36 5.00 / 30034 4.94

10/18
[4] BS 13.73 / 82382 9.08 13.73 / 82382 9.08

our 12.59 / 75566 6.36 10.26 / 61544 5.28

(a) Results obtained by using 16-by-16 multipliers and 16 bit rounded output.
(b) Results obtained by sizing the multipliers as detailed in section IV.

16-by-16 multipliers with 16 bit rounded output are used. Basic block complexity, estimated after logical synthesis,

is about 1500, 70 and 90 equivalent gates for a 16-by-16 multiplier, a 16 bit adder and a 16 bit register respectively.

It is worth pointing out that these values are obtained by synthesizing the basic blocks as stand-alone components,

whereas the gate count for the whole BS DWT architectures are obtained by fixing the target clock frequency

and enabling the optimization options of the logic synthesizer. As detailed in Table I the proposed methodology

compared with [4] reduces the number of multipliers, while slightly increasing the number of adders and keeping

the same number of registers for 9/7 and 6/10 filters and nearly the same for 10/18 filters. The gate count complexity

for the whole BS DWT architectures synthesized with a 200 MHz clock frequency is given in the sixth column of

Table I. It is worth pointing out that the complexity figures detailed in Table I include h0, g0 products in (1), (2),

whereas these products are not considered in [4] (Tables I, II, III, IV).

In order better highlight the critical path and timing of the proposed architecture we performed also logic synthesis

constraining the area to be minimal and leaving to the synthesized the burden of finding the best possible clock

period. This new set of results, shown in the third and fourth columns of Table II, strengthens the effectiveness of

the proposed architecture in reducing not only the complexity but also the critical path.

Finally, to prove the scalability of the proposed approach we implemented two architectures that support the

on-line switching among the 9/7, 6/10 and 10/18 filters. Both the architectures require multiplexers in the BS part

to support the aforementioned filters. As far as the distributed part is concerned, the first architecture is derived from

the BS solution in [4]: it supports Q10/18(z) and R10/18(z), shorter filters are obtained by setting unused taps to

zero. The second architecture, depicted in Fig. 2 (b), is based on the proposed approach and employs two Wa,b(z)

modules and the flexible LW (z) module shown in Fig. 1 (b) and Fig. 1 (c) respectively to produce low-pass (yH )

and high-pass (yG) results from the input signal (u). The proper 1/r, b/a and 1/a values are chosen according to

the selected filters. Post synthesis results for a 200 MHz clock frequency confirm the effectiveness of the proposed

solution: the architecture derived from the BS solution in [4] requires 17.34 equivalent kgates, whereas the proposed

one requires only 15.54 equivalent kgates.
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Table III

DISTRIBUTED PART COEFFICIENTS

filter Qi, Ri 1/r, b/a, 1/a

9/7 (6/10)

Q0= 4.10753250160977 b/a =-1.079303580344

Q1=-1.98174636937784 1/a = 6.847681897167

Q2= 0.42798011857296

R0= 2.460348209828 1/r =-2.920696419656

R1=-0.730174104914

10/18

Q0= 6.21914113482665 b1/a1=-2.603974030008

Q1=-3.26242958738378 1/a1 =10.445744319527

Q2= 0.65285901997045

R0= 36.6061201376705 b0/a0=-6.457178409811

R1=-27.1736134996998 1/a0 =12.114739453982

R2= 12.1358244089364 b2/a2= 2.061152439819

R3=-3.11080643151506 1/a2 = 7.301607799117

R4= 0.34553545344324

IV. QUANTIZATION OF FILTER COEFFICIENTS

Further complexity can be saved by choosing the proper number of bits to represent filter coefficients. To this

purpose the proposed solution was integrated into the lossy convolution-based mode of the JPEG2000 verification

model [11]. Experimental simulations were performed on five standard images, namely ‘Lenna’ 256×256 (img1),

‘Boat’ 512×512 (img2), ‘Goldhill’ 512×512 (img3), ‘Barbara’ 512×512 (img4) and ‘Fingerprint’ 512×512 (img5).

The number of DWT decomposition levels (L) has been varied from 1 to 3 for the 256×256 image and from 1 to

4 for 512×512 images (L ∈ JL=[1, 4]). Several bit-rates (ρ) have been tested with ρ ∈ Jρ={0.125, 0.25, 1, 2, 4, 8}

bit per pixel (bpp) with the default JPEG2000 SNR progressive mode. The other encoding parameters have been

left to their default values. We performed simulations quantizing only the distributed part of the wavelet filters.

Floating point values of the distributed part are summarized in Table III. Let’s consider Qi, Ri and 1/r, b/a,

1/a as two complement values with k bits to represent the fractional part. First we performed a floating point

simulation to obtain the performance bounds of the 9/7, 6/10 and 10/18 filters with the default JPEG2000 lossy

compression mode. Then varying k from 16 down to 0 we obtained several sets of peak signal to noise ratio

(PSNR) values. We indicate each set as PSNRf
m(img, L, ρ, k), where f is the filter, f ∈ Jf , m is the quantized

amount m∈{Qi, Ri; 1/r, b/a, 1/a}, img is the considered image, img ∈ Jimg={img1, img2, . . . , img5}, L, ρ and

k are the parameters defined above. In the following we refer to the floating point simulation results as k=∞

(PSNRf
m(img, L, ρ,∞)). For each f and m we define

∆PSNRf
m(k) = max

{img,L,ρ}

{
PSNRf

m(img, L, ρ,∞)+

−PSNRf
m(img, L, ρ, k)

}
(24)
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as the maximum difference between the floating point PSNR and the corresponding PSNR obtained with a certain k

value. In Fig. 3 ∆PSNRf
m(k) in dB is shown for the 9/7, 6/10 and 10/18 filters. The solid lines represent the values

Table IV

AVERAGE PSNR IN DB OF THE 9/7 FILTERS AT DIFFERENT BIT-RATES WITH DIFFERENT WAVELET DECOMPOSITION LEVELS FOR k=10, 8,

6, 4 (BS AS IN [4]) AND k=6, 4, 2, 0 (PROPOSED)

L ρ=8 ρ=4 ρ=2 ρ=1 ρ=0.5 ρ=0.25 ρ=0.125 ρ=8 ρ=4 ρ=2 ρ=1 ρ=0.5 ρ=0.25 ρ=0.125

9/7 k=10 9/7 k=8

1 49.58 49.58 42.89 36.59 31.24 26.42 20.52 49.44 49.44 42.92 36.58 31.27 26.36 20.52

2 49.33 49.33 43.63 37.65 33.12 29.32 25.85 48.92 48.92 43.55 37.64 33.12 29.36 25.97

3 49.29 49.29 43.73 37.86 33.45 29.81 26.96 48.48 48.48 43.57 37.85 33.46 29.85 26.98

4 49.30 49.30 43.35 37.59 33.40 30.06 27.32 48.25 48.25 43.11 37.57 33.39 30.08 27.34

9/7 k=6 9/7 k=4

1 48.20 48.20 42.44 36.42 31.09 26.26 20.52 47.36 47.36 42.08 36.21 30.78 26.11 20.58

2 45.19 45.19 41.90 37.13 32.87 29.17 25.84 43.64 43.64 41.05 36.78 32.70 29.03 25.90

3 42.55 42.55 40.52 36.70 32.93 29.60 26.87 40.74 40.74 39.27 36.12 32.67 29.46 26.79

4 41.36 41.36 39.56 36.17 32.73 29.70 27.17 39.46 39.46 38.20 35.46 32.38 29.49 27.09

Proposed 9/7 k=6 Proposed 9/7 k=4

1 49.58 49.58 42.90 36.58 31.27 26.42 20.51 49.59 49.59 42.92 36.58 31.21 26.40 20.55

2 49.33 49.33 43.64 37.67 33.09 29.32 25.85 49.32 49.32 43.61 37.65 33.10 29.32 25.89

3 49.29 49.29 43.76 37.86 33.43 29.82 26.95 49.28 49.28 43.73 37.87 33.44 29.88 26.96

4 49.31 49.31 43.35 37.62 33.40 30.06 27.33 49.29 49.29 43.34 37.59 33.39 30.06 27.33

Proposed 9/7 k=2 Proposed 9/7 k=0

1 49.54 49.54 42.90 36.56 31.21 26.30 20.57 49.51 49.51 42.84 36.55 31.10 26.28 20.54

2 49.22 49.22 43.61 37.63 33.12 29.33 25.94 49.02 49.02 43.48 37.60 33.08 29.27 25.91

3 49.10 49.10 43.71 37.86 33.46 29.86 26.94 48.64 48.64 43.49 37.77 33.39 29.87 26.90

4 49.05 49.05 43.30 37.60 33.41 30.08 27.35 48.44 48.44 43.05 37.50 33.34 30.02 27.27

obtained by quantizing Qi and Ri, whereas the dashed lines detail the values achieved quantizing 1/r, b/a, 1/a. As

it can be observed, the curves referred to the 9/7 and 6/10 filters are nearly overlapped. Since representing Qi and

Ri with k < 2 causes H(z) and G(z) to degenerate to band pass filters, solid line simulations have been carried

out for k ∈ [2, 16]. Conversely, the proposed solution with k=0 (only integer part of 1/r, b/a, 1/a) introduces a

maximum PSNR degradation of about 1 dB for the 9/7 and 6/10 filters and of about 3.5 dB for the 10/18 filters.

As it can be inferred from Fig. 3, when k < 10 the quantization of Qi and Ri leads to significant performance

loss. On the other hand, the quantization of 1/r, b/a, 1/a worsens the PSNR when k < 6.

In Table IV we show for the 9/7 filters the PSNR obtained by averaging the mean square error values achieved

for the five test images belonging to Jimg. The simulation parameters have been changed in the following ranges:

L ∈ JL, ρ ∈ Jρ, k ∈ [4, 10] for Qi, Ri and k ∈ [0, 6] for 1/r, b/a, 1/a. The quantization of Qi and Ri leads

to significant PSNR degradation mainly for ρ=1 bpp or higher when k≤8 (∆PSNR≥1.2dB). On the contrary, the

proposed solution keeps the PSNR degradation limited to less than 0.5 dB with k=4. Similarly in Table V and VI

we show the results obtained for the 6/10 and 10/18 filters respectively, using the same setup employed for the 9/7

filters. As it can be observed the proposed approach leads to excellent results also with the 6/10 and 10/18 wavelet

filters.
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Table V

AVERAGE PSNR IN DB OF THE 6/10 FILTERS AT DIFFERENT BIT-RATES WITH DIFFERENT WAVELET DECOMPOSITION LEVELS FOR k=10, 8,

6, 4 (BS AS IN [4]) AND k=6, 4, 2, 0 (PROPOSED)

L ρ=8 ρ=4 ρ=2 ρ=1 ρ=0.5 ρ=0.25 ρ=0.125 ρ=8 ρ=4 ρ=2 ρ=1 ρ=0.5 ρ=0.25 ρ=0.125

6/10 k=10 6/10 k=8

1 49.56 49.56 43.15 36.86 31.61 26.16 19.10 49.41 49.41 43.14 36.87 31.66 26.31 19.08

2 49.30 49.30 43.71 37.70 33.21 29.44 26.21 48.90 48.90 43.64 37.70 33.23 29.46 26.23

3 49.27 49.27 43.76 37.87 33.47 29.86 27.06 48.47 48.47 43.60 37.86 33.47 29.90 27.02

4 49.27 49.27 43.38 37.61 33.41 30.04 27.30 48.23 48.23 43.14 37.56 33.37 30.03 27.32

6/10 k=6 6/10 k=4

1 48.19 48.19 42.64 36.70 31.48 26.21 19.10 47.34 47.34 42.36 36.61 31.47 26.03 18.82

2 45.19 45.19 41.98 37.18 32.97 29.35 26.03 43.64 43.64 41.11 36.88 32.80 29.20 25.88

3 42.55 42.55 40.56 36.74 32.93 29.66 26.82 40.74 40.74 39.28 36.11 32.62 29.45 26.82

4 41.35 41.35 39.59 36.18 32.73 29.69 27.13 39.46 39.46 38.19 35.45 32.34 29.46 27.03

Proposed 6/10 k=6 Proposed 6/10 k=4

1 49.55 49.55 43.15 36.86 31.62 26.32 19.09 49.56 49.56 43.14 36.85 31.60 26.19 18.91

2 49.30 49.30 43.73 37.71 33.20 29.44 26.21 49.31 49.31 43.71 37.70 33.21 29.44 26.21

3 49.27 49.27 43.78 37.87 33.48 29.85 27.05 49.26 49.26 43.77 37.87 33.47 29.91 26.95

4 49.29 49.29 43.40 37.60 33.41 30.05 27.31 49.27 49.27 43.35 37.58 33.40 30.03 27.31

Proposed 6/10 k=2 Proposed 6/10 k=0

1 49.50 49.50 43.13 36.89 31.64 26.26 18.94 49.49 49.49 43.08 36.83 31.62 26.16 18.88

2 49.19 49.19 43.70 37.70 33.20 29.44 26.15 49.00 49.00 43.56 37.67 33.20 29.43 26.16

3 49.06 49.06 43.76 37.85 33.48 29.88 27.03 48.63 48.63 43.51 37.78 33.43 29.90 26.85

4 49.01 49.01 43.34 37.60 33.40 30.04 27.28 48.42 48.42 43.08 37.49 33.34 30.00 27.29

Logical synthesis results presented in section III have been obtained with 16-by-16 multipliers, 16 bit rounded

output and k=12 for Qi, Ri, 1/r, b/a, 1/a in the case of 9/7 and 6/10 filters; 10/18 filters were implemented with

k=9 for Qi, Ri and k=11 for bi/ai, 1/ai. To insure limited performance degradation introduced by Qi and Ri

quantization, k=9 is adequate (Fig. 3). On the other hand, we can obtain nearly the same performance with the

proposed solution and k=4. To that purpose, we performed new logical synthesis for a target clock frequency of

200 MHz using 16-by-13 multipliers (k=9) and 16-by-16 multipliers (k=9) to represent Qi and Ri for the 9/7-6/10

and 10/18 filters respectively. Similarly, we used 16-by-8 multipliers (k=4) and 16-by-9 multipliers (k=4) for the

proposed 9/7-6/10 and 10/18 architectures respectively. As shown in the seventh column of Table I the quantization

robustness of the proposed solution significantly reduces the area requirement. In the fifth and sixth column of Table

II, the area and the critical path obtained by constraining the area to be minimal and leaving to the synthesized the

burden of finding the best possible clock period are shown. This new set of results, confirms the reduced complexity

and critical path figures of the proposed architectures. Finally, the aforementioned quantization approach was used on

the scalable architectures that support the on-line switching among the 9/7, 6/10 and 10/18 filters. The architecture

derived from the BS solution in [4], sized on the 10/18 filters still requires 16-by-16 multipliers (k=9) leading to

17.34 equivalent kgates for a 200 MHz clock frequency. For the same clock frequency, the proposed architecture

requires 16-by-9 multipliers (k=4) leading to only 13.32 equivalent kgates.
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Table VI

AVERAGE PSNR IN DB OF THE 10/18 FILTERS AT DIFFERENT BIT-RATES WITH DIFFERENT WAVELET DECOMPOSITION LEVELS FOR k=10,

8, 6, 4 (BS AS IN [4]) AND k=6, 4, 2, 0 (PROPOSED)

L ρ=8 ρ=4 ρ=2 ρ=1 ρ=0.5 ρ=0.25 ρ=0.125 ρ=8 ρ=4 ρ=2 ρ=1 ρ=0.5 ρ=0.25 ρ=0.125

10/18 k=10 10/18 k=8

1 49.52 49.52 43.24 37.01 31.71 26.47 19.36 49.50 49.50 43.26 37.01 31.69 26.47 19.34

2 49.23 49.23 43.83 37.85 33.43 29.54 26.18 49.20 49.20 43.81 37.88 33.42 29.48 26.19

3 49.14 49.14 43.88 38.06 33.67 30.00 27.04 49.11 49.11 43.90 38.07 33.66 29.99 27.13

4 49.11 49.11 43.46 37.77 33.61 30.21 27.41 49.09 49.09 43.46 37.79 33.60 30.20 27.40

10/18 k=6 10/18 k=4

1 48.77 48.77 43.16 37.03 31.72 26.48 19.25 48.29 48.29 42.87 36.92 31.68 26.30 19.18

2 47.09 47.09 43.21 37.80 33.37 29.58 26.30 46.46 46.46 42.74 37.59 33.28 29.51 26.26

3 45.36 45.36 42.50 37.70 33.58 30.04 27.07 45.33 45.33 42.26 37.55 33.48 29.96 26.99

4 44.50 44.50 41.76 37.30 33.45 30.16 27.40 45.29 45.29 41.93 37.28 33.38 30.08 27.37

Proposed 10/18 k=6 Proposed 10/18 k=4

1 49.54 49.54 43.25 37.00 31.71 26.47 19.36 49.55 49.55 43.23 37.01 31.67 26.49 19.34

2 49.29 49.29 43.84 37.87 33.43 29.52 26.11 49.29 49.29 43.82 37.87 33.43 29.53 26.12

3 49.26 49.26 43.90 38.06 33.68 29.99 27.04 49.25 49.25 43.90 38.06 33.67 30.01 27.03

4 49.27 49.27 43.48 37.78 33.61 30.18 27.40 49.25 49.25 43.48 37.76 33.60 30.19 27.41

Proposed 10/18 k=2 Proposed 10/18 k=0

1 49.54 49.54 43.22 36.99 31.68 26.23 19.27 48.78 48.78 43.15 37.01 31.82 26.39 19.09

2 49.26 49.26 43.80 37.92 33.40 29.51 26.25 47.68 47.68 43.44 37.83 33.42 29.57 26.28

3 49.17 49.17 43.87 38.03 33.65 30.00 27.06 46.71 46.71 43.13 37.84 33.63 30.02 27.09

4 49.15 49.15 43.44 37.76 33.60 30.18 27.39 46.21 46.21 42.55 37.54 33.53 30.17 27.33

V. CONCLUSION

In this work we propose a scalable BS DWT architecture that employs a reduced number of multipliers.

Implementation results on a 0.13 µm standard cell technology prove the complexity reduction offered by the

proposed methodology. Finally, simulations into a JPEG2000 model show that the proposed methodology is very

robust to filter coefficients quantization leading to further complexity reduction.
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