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Abstract 

 

This study aimed to fabricate and investigate the structure, mechanical properties and bioactivity of 

three-dimensional (3-D) glass-ceramic scaffolds for bone tissue engineering. The scaffold material 

was a fluoroapatite-containing glass-ceramic synthesized by a melting-quenching route. Glass-

ceramic powders were mixed with polyethylene particles acting as pores formers; the blend was 

pressed to obtain “green” compacts that were thermally treated to remove the organic phase and to 

sinter the inorganic one. The structure and morphology of the resulting scaffolds were characterized 

by X-ray diffraction, scanning electron microscopy, density measurements and capillarity tests. 

Crushing tests were carried out to investigate the mechanical properties of the scaffolds. The in 

vitro bioactivity was assessed by soaking the scaffolds in simulated body fluid for different time 

frames and by  analyzing the modifications that occurred on samples surface. The scaffolds had an 

interconnected macroporous structure with pores up to 50% vol. and they showed an orthotropic 

mechanical behaviour and strength well above 20 MPa. In addition, in vitro tests put into evidence 

the excellent bioactivity of the material. Therefore, the prepared scaffolds can be used in bone 

reconstructive surgery as effective load-bearing grafts thanks to their ease of tailoring, bioactive 

properties and high mechanical strength. 

 

Keywords: Scaffold; Glass-ceramic; High strength; Fluoroapatite; Bioactivity; Bone replacement. 

 

 

 

 

 

 

 



 3 
 

 

 

1. Introduction 

 

Bone tissue is usually in need of regeneration or substitution due to tumours removal, trauma or 

age-related pathologies, such as osteoarthritis and osteoporosis. Two alternatives are possible for 

bone replacement: (i) transplantation or (ii) implantation. 

Transplants can be made by using living or non-living tissues. The commonly recognized “gold 

standard” in reconstructive bone surgery consists in the use of autografts, that involves harvesting 

the patient’s own tissue from a donor site and transplanting it to the damaged region. Autografts 

cause no immunological problems but have low availability and can induce death of healthy tissue 

at the donor site. A partial solution to these drawbacks is the use of allografts, involving the 

transplant of tissues from another patient or from cadavers. Allografts can cause disease 

transmission, carry the need of immunosuppressant drugs for the patient and, furthermore, are in 

short supply. 

Implantation involves the replacement of damaged tissues by using, in most cases, man-made 

biocompatible materials that are designed to act as scaffolds, i.e. templates for tissue regeneration 

and/or remodelling [1]. 

The general criteria for an ideal bone tissue engineering scaffold can be resumed as follows [2-4]: 

the scaffold is required to (i) act as a template for bone growth, (ii) produce non-toxic degradation 

products, (iii) promote osteogenesis by inducing cells adhesion and proliferation, (iv) bond to the 

host bone creating a stable interface without the formation of scar/fibrous tissue, (v) possess 

mechanical properties matching those of natural bone, (vi) be tailored to match the shape of the 

bone defects and (vii) be sterilized according to international standards for commercial production 

and clinical use.  

At present, a scaffold able to fulfil all these requirements does not exist. The major problem 

concerns the production of scaffolds with porosity comparable to cancellous bone, necessary for 

graft vascularisation, and satisfactory mechanical strength. Aiming this, bioceramics have been 
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widely studied and recognized as the most promising materials for scaffolds devoted to bone 

regeneration. 

Hydroxyapatite (HA) has been extensively used for hard-tissue repair due to its chemical and 

crystallographic similarity to the carbonated apatite in human teeth and bone [5]. Calcium 

phosphate (CaP) salts, such as -tricalcium phosphate (-TCP) or β-calcium pyrophosphate (β-

CPP), can act as HA precursors and have usually been adopted as fillers for small bone cavities in 

orthopaedics and dentistry [6-7]. Both HA and CaP scaffolds exhibit an excellent biocompatibility 

but are characterized by poor mechanical strength with respect to cancellous bone [8-9]. 

Bioactive glasses (BGs) and glass-ceramics (BGCs) are, respectively, amorphous or partially 

crystallized SiO2-based materials able to bond to living bone stimulating the in situ growth of new 

bone while dissolving over time [10-15]. Bioactivity mechanism was described by Hench in the ‘70 

as the ability to bond to bone and stimulate osteogenesis without drugs or biological agents 

incorporated into the material [16]. More recently, P2O5-based scaffolds, able to resorb at the same 

time as the bone is repaired, have been proposed [17-20]. 

BGs and BGCs can be synthesized by conventional melting-quenching routes or sol-gel techniques. 

Hench demonstrated that, for melt-derived BGs and BGCs, compositions with silica content greater 

than 60 %wt. are bioinert [21]. However, the ability to bond to bone can be achieved for glasses 

with up to 90 %mol. silica if the glass is derived by a sol-gel process [22-23]. 

Scaffolds exhibiting a 3-D interconnected network of macropores above 100 μm, necessary for 

tissue in-growth and cells migrations into the implant, can be successfully obtained with recent 

fabrication technologies, such as sol-gel foaming process, starch consolidation, organic phase 

burning-out and sponge replication [24-29].  

At present, BGs and BGCs are used in form of powders or granules as fillers for maxillo-facial 

surgery and dental applications. Porous scaffolds are suitable as grafts for low-load sites subjected 

to compression only, such as fused spinal vertebrae. One of the most important challenges is the 

design and fabrication of high-load bearing scaffolds able to maintain the applied loads for the 
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required time without showing symptoms of fatigue or failure [2,4]. This challenge has been faced 

in the present work, in which inorganic scaffolds containing fluoroapatite for bone tissue 

engineering were produced via a thermally removable phase and characterized from a structural, 

morphological and mechanical point of view. The bioactivity and biocompatibility of fluoroapatite 

crystals has been extensively investigated in literature [30-32], and the presence of this phase is 

expected to impart highly bioactive properties to the proposed glass-ceramic scaffolds. 

Glass-ceramic scaffolds combining structural biomimickry with natural bone, remarkable bioactive 

properties and high-strength features able to actually  make them effective load-bearing grafts were 

successfully produced by very easy technologies of fabrication. Specifically, the method of 

fabrication was chosen due to its low cost, easiness and versatility for scaffold production. Some 

considerations for an improvement of scaffold design and tailoring were also presented and 

discussed at the end of the work. 

 

2. Experimental procedures 

 

2.1. Synthesis and characterization of the starting glass-ceramic 

 

In this work, the basic material used for scaffolding was a silica-based glass-ceramic belonging to 

the SiO2-CaO-Na2O-K2O-P2O5-MgO-CaF2 system. The glass-ceramic, hereafter referred to as Fa-

GC, had the following molar composition: 50% SiO2, 18% CaO, 7% Na2O, 7% K2O, 6% P2O5, 3% 

MgO, 9% CaF2. The reagents, i.e. SiO2, Ca2P2O7, CaCO3, 4MgCO3Mg(OH)2·5H2O, Na2CO3, 

K2CO3 and CaF2, were molten in a platinum crucible in air at 1550 °C for 1 h to ensure 

homogeneity. The melt was quenched in water to obtain a “frit” that was ground by ball milling and 

carefully sieved to obtain a powder with grain size below 106 μm. 
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As-poured Fa-GC was investigated by means of wide-angle (2θ within 10-70°) X-ray diffraction 

(XRD; X’Pert Philips diffractometer with Bragg-Brentano camera geometry, Cu anode Kα radiation 

with wavelength λ = 1.5405 Å) to assess the presence of crystalline phases. 

 

2.2. Scaffolds fabrication 

 

Fa-GC-derived scaffolds were prepared by mixing Fa-GC powders sieved below 106 m with 

polyethylene (PE) particles that acted as thermally removable pores formers. Fa-GC powders and 

PE grains were carefully mixed together for 1 h in a polyethylene bottle using a rolls shaker to 

obtain an effective mixing. Various amounts of PE were added to Fa-GC powders to produce 

scaffolds with different pores content. Specifically, PE amount was varied from 40 to 70 %vol. to 

evaluate the best compromise between high porosity content and satisfactory mechanical strength. 

Crack-free compacts of powders (“greens”) were obtained through uniaxial dry pressing of the 

mixed powders (130 MPa for 10 s). The “green” bodies were shaped in form of bars (60 × 10 × 10 

mm
3
) and thermally treated in air (800 °C for 3 h, heating rates set at 5 °C∙min

-1
) to remove the PE 

powders and to sinter the inorganic phase obtaining macroporous glass-ceramic scaffolds. The 

sintered bars were cut (Struers Accutom 5 apparatus) to obtain cubic-like macroporous scaffolds. 

Fa-GC-derived scaffolds will be named, from now on, with the acronym Fa-GC-S-P, where P 

(%vol.) is the volumetric fraction of PE introduced in the starting “green”. 

 

2.3. Scaffolds characterization 

 

XRD analysis was carried out on the scaffold reduced in powders to detect the presence of 

crystalline phases nucleated during the thermal treatment. 
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Scaffolds morphology and microstructure were evaluated by scanning electron microscopy (SEM, 

Philips 525 M) to assess the pores size and distribution in the prepared samples; the samples were 

silver coated before examination. 

The scaffolds were carefully polished by SiC grit papers to finally obtain 10 × 10 × 10 mm
3
 

samples that underwent pores analysis and mechanical testing. 

The porosity content Π (%vol.) was assessed by geometrical weight-volume evaluations on five 

specimens for each series as 

1001
0












s , 

where s is the apparent density of the scaffold (weight/volume ratio) and 0 is the density of non-

porous glass-ceramic. 

The interconnection of the pores 3-D network was qualitatively assessed by capillarity tests putting 

the scaffold into contact with a solution having a viscosity analogous to physiological fluid (30% 

wt. calf serum and 70%wt. of distilled water [33]). Red ink drops were dispersed to simulate the 

colour of the blood and to better observe the capillarity up-take of the fluid.  

The scaffolds underwent crushing tests (MTS System Corp. apparatus, cross-head speed set at 1.0 

mm∙min
-1

) carried out on five specimens for each series. The samples were tested in three 

orthogonal directions, as shown in Figure 1, to put into evidence possible anisotropy of the scaffold. 

The failure compressive stress  σf (MPa) was assessed in each direction as 

A

L
f  , 

where L (N) is the maximum load registered during the test and A (mm
2
) is the cross-sectional area 

perpendicular to the load axis. 

The bioactive properties of the scaffolds was investigated in vitro by soaking the samples for 

different time frames in 30 ml of acellular standard Simulated Body Fluid (SBF) prepared according 

to Kokubo’s protocol [34]. The solution was replaced every 48 h to approximately simulate fluids 
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circulation in the human body; the pH variations of the solution were daily monitored. The 

modifications occurring on scaffolds surface was monitored by SEM and compositional (EDS; 

Edax Philips 9100) investigations. 

An easy approach to improve scaffold tailoring was proposed, by using Matlab toolboxes, at the end 

of the work. 

 

3. Results and discussion 

 

3.1. Starting materials 

 

Compositions belonging to the SiO2-CaO-Na2O-K2O-P2O5-MgO-CaF2 system, in which the 

nucleation of fluoroapatite is favourite, have been investigated in previous works to obtain bioactive 

glasses or glass-ceramics [35]. The composition used in the present work was carefully designed in 

order to promote the nucleation, during quenching, of fluoroapatite crystals. 

Figure 2 shows the XRD pattern of as-poured Fa-GC: the main reflections actually corresponding to 

fluoroapatite were detected, marked and indexed, demonstrating the glass-ceramic nature of the 

material. The nucleation of fluoroapatite was induced, as foreseen, by the presence of CaF2 in the 

starting composition. 

SEM investigations on as-poured Fa-GC particle sieved below 106 μm and on PE grains were also 

carried out. The morphology of Fa-GC particles is non-spherical, irregular and angular as shown in 

Figure 3a; most of them are within 10-50 μm and only few particles above 50 μm were detected. 

The PE grains, used as scaffold pores formers, are irregularly shaped and ranged within 50-150 μm 

(Figure 3b). 

 

3.2. Scaffolds structural and morphological investigations 
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The thermal treatment, carried out to produce the porous scaffolds, induced the partial 

crystallization of the residual amorphous phase into a new crystalline phase that was indexed as 

canasite (K3(Na3Ca5)Si12O30F4∙H2O), as shown in Figure 4 and previously reported by the authors 

[33]. The biocompatibility of canasite-containing glass-ceramics has been investigated and 

demonstrated in vivo by other authors [36]. 

The sintering conditions used for scaffolds fabrication were set at 800°C for 3 h to obtain an 

effective degree of densification and to impart satisfactory mechanical properties to the scaffold 

structure. 

Fa-GC-scaffolds were produced by using different PE amounts in the range 40-70 %vol. Figure 5 

depicts a low-magnification micrograph of Fa-GC-S-40 (face perpendicular to direction T2 in the 

foreground). Few pores, ranging within 100-200 μm, can be observed. The PE content (P) of the 

starting “greens” was gradually increased till to 70 %vol. to achieve a scaffold porosity comparable 

to cancellous bone. Scaffolds with P > 70 %vol. could not be successfully produced due to scaffold 

collapse while PE burning-out occurred during the thermal treatment. 

The Fa-GC-S-70 cross section shown in Figure 6a reveals an homogeneous pores distribution inside 

the scaffold; most pores ranged within 100-300 μm, but some pores above 500 μm, probably 

created by agglomerates of PE particles, are also visible. As clearly depicted in Figure 6b, scaffold 

trabeculae are characterized by a dispersed microporosity (pores size within 10-20 m), which is 

known to play a key role to promote in vivo cells adhesion as the osteoblats preferably attach and 

spread on a rough surface [37]. 

Pores size plays a crucial role for graft colonization by cells. In fact, it has been demonstrated that 

well-engineered scaffolds should exhibit pores content and size according to the type and need of 

the specific cells that could migrate into the implant. Pores above 100 m allow (i) the scaffold 

colonization by osteoblasts, whose size is within 10-50 m, and (ii) an effective scaffold 

vascularization (nutrients supplying for cells, waste products removal). 
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3.3. Pores investigations 

 

The total porosity values of the prepared scaffolds, including the contribution of both macropores (> 

100 m) and micropores (< 100 m), are collected in Table 1. It should be noticed that the actual 

porosity (Π) is lower than the theoretical one (P) due to the scaffold shrinkage that occurred during 

the thermal treatment. A low standard deviation can be observed for the data reported in Table 1, 

thus assessing the homogeneous distribution of porosity in the “green” bars and demonstrating the 

reproducibility of the samples. 

Figure 7 reports the result of capillarity tests on Fa-GC-S-70: the fluid went up through scaffold 

pores network in 10 s, thus confirming the high interconnection degree of the porous texture. This 

is a crucial feature to attain a fast viability of the inner parts of the scaffold and to promote an 

effective in vivo bone in-growth [37-38].  

 

3.4. Scaffolds mechanical characterization 

 

An example of Fa-GC-S-70 stress-strain curve (compression along direction T1) is depicted in 

Figure 8; a similar plot was found for the scaffold with lower pores content. As highlighted in this 

picture, the curve can be divided in three regions, referred to as I, II and III). Region I exhibits a 

positive slope (Hookean-like behaviour) that ends with a first peak followed by an apparent stress 

drop due to the onset of thinner trabeculae cracking. The scaffold was still able to bear higher loads, 

thus the stress rises again till a second stress peak is reached (region II); the following stress drop 

corresponds to the fracture of thick trabeculae. In the region III the stress values slowly increase 

because the densification of the fractured scaffold, progressively reduced in powders, occurs. A 

similar behaviour was described for glass-ceramic scaffolds obtained via burning-out method but 

fabricated with a material different from Fa-GC [39]. The failure compressive stresses assessed 

along the directions A, T1 and T2 (Figure 1) are collected in Table 2. These results are consistent 
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with the pores content data shown in Table 1: as expected, by increasing the starting PE content the 

porosity increases too but, at the same time, the scaffold strength gradually decreases. The strengths 

along the directions T1 and T2 are comparable, whereas the strengths along the direction A are 

from 3 to 5 times higher than those acquired in the two other directions. Therefore, it is possible to 

conclude that the scaffolds show a typical orthotropic behaviour. In authors’ opinion, scaffolds 

orthotropy is due to the phenomenon shown in Figure 9. Ought to the pressing of Fa-GC 

powders/PE particles blend to obtain the “green” compacts, the PE grains are deformed along the 

bar axis. Therefore, the resulting scaffold pores, that replicated the PE grain size and shape, were 

preferentially oriented along the bar axis. This involved an increase of resistant area along the 

direction A in comparison with the directions T1 and T2, thus determining the orthotropic 

behaviour of the scaffold. 

The produced scaffolds exhibit very interesting properties: in fact, they are mechanically 

orthotropic, which is a feature peculiar to cortical bone, but exhibit a pores content that is one order 

of magnitude higher than that of compact bone and, in addition, their structure mimics the texture of 

cancellous bone. The values of mechanical strength, collected in Table 2, are intermediate between 

those of cancellous (2-12 MPa) and cortical (50-200 MPa) bone [21,40-41]. The high strength is 

due to the peculiar morphology of Fa-GC-derived scaffolds in which the pores are separated by  

dense regions; this involves low interconnection degree of the pores. It should be noticed that, at 

present, the bioceramic scaffolds commonly proposed in literature for bone replacement, such as 

HA-based and Bioglass
®

-derived scaffolds [8, 42-43], exhibit lower mechanical strength (below 1 

MPa) than that of cancellous bone, and for this reason they are far from an actual clinical use. The 

features of the proposed Fa-GC-derived scaffolds make them very versatile grafts for bone 

replacement and they can be successfully proposed for the substitution of extensive bone portions 

also in load-bearing bone segments. 

 

3.5. Scaffolds in vitro bioactivity 
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The biocompatibility and bioactivity of fluoroapatite, due to its chemical and crystallographic 

similarity to bone mineral, have been widely demonstrated in literature. Therefore, the presence of 

this phase, which is contained in the starting Fa-GC, make by itself the Fa-GC-derived scaffolds 

biocompatible and bioactive. 

In addition, the produced scaffolds are highly bioactive according to the mechanism described by 

Hench [16]: ion-exchange phenomena between the material and the biological fluids can lead to the 

precipitation of an apatite layer on the scaffold surface. 

After soaking in SBF for 7 days, scaffolds walls are completely covered by globe-shaped 

agglomerates of a newly formed phase, as shown in Figure 10a. The compositional analysis, 

reported in Figure 10b, reveals that this phase is constituted by calcium and phosphorus, with Ca/P 

molar ratio of 1.65, which closely approaches the ratio of natural hydroxyapatite (1.67) in the 

natural bone. The presence of a hydroxyapatite layer is expected to impart properties of 

biomimickry to the scaffolds and to promote cells adhesion, as demonstrated by other authors [37]. 

The variations of pH solution values were moderate: pH increased up to 7.55 after soaking for the 

first 48 h (reference value for SBF pH: 7.40). For this reason, no cytotoxic effect after in vivo 

implantation is foreseen to be induced by the material.   

In this work the scaffolds have been characterized mainly from a structural and mechanical 

viewpoint; tests devoted to evaluate the biological compatibility of Fa-GC by using osteoblast-like 

cells (MG63) were reported in a previous work [44] showing a high biocompatibility. Work is in 

progress to study the effect of ion release on bone cells and it will be the topic of future 

publications.   

 

3.6. Considerations about scaffold tailoring 
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As concluding remarks, the authors wish to present and discuss a preliminary approach for 

improving scaffold design and tailoring. 

By adopting a remarkable simplification of the problem, it is possible to tailor the scaffolds, from a 

structural viewpoint, by knowing the theoretical porosity P, i.e. the volumetric fraction of PE 

introduced in the starting “greens”, as the only design parameter. 

As already mentioned, the actual porosity (Π) was different from the theoretical one (P) due to the 

shrinkage occurring during the thermal treatment. The final pores content can be related to P by 

means of an empirical function interpolating the measured values, that was determined through the 

LMS algorithm. The easier function fitting the experimental data is a polynomial continuous 

function of order 2: 

86.4522.2012.0)( 2*  PPP , 

where Π
*
 (%vol.) is the expected (calculated) final porosity of the scaffold.  

The comparison between the empirical curve and the experimental porosity values is shown in 

Figure 11.  

Likewise, the strength of the scaffolds can also be related to P by means of a continuous fitting 

function. Considering, for instance, the stress along the direction T1, the fitting function is a 

polynomial function of order 3: 

26.7435.165.000050.0)( 23*  PPPP , 

where σ
*
 (MPa) is the foreseen (calculated) stress of the scaffold (direction T1). The fitting curve 

for scaffold strength is compared with experimental values in Figure 12. 

The empirical curves Π
*
(P) and σ

*
(P) can be used for scaffold design in two different ways: (i) by 

setting P, it is possible to foresee the final pores content and strength of FaGC-derived scaffolds, or 

(ii) by choosing a specific value of porosity/strength (Π
*
/σ

*
) as a target, it is possible to know the 

value of P which is necessary to achieve that target. 

It should be underlined that this approach allows to obtain only rough and preliminary results, 

because of two main problems: (i) non-ideal samples reproducibility due to experimental conditions  
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and (ii) intrinsic limits of the fitting curves, that can also lead to results lacking in an actual physical 

meaning. Concerning the point (ii) an easy example can be presented: if P ~ 0 %vol., the scaffold 

final porosity should also be ~0 %vol., but the corresponding fitting curve gives a non-meaningful 

negative value (Π
*
 = – 45.86 < 0). 

 

 

4. Conclusions 

 

Porous inorganic scaffolds for bone tissue replacement were produced by using bioactive glass-

ceramic powders as basic material and polyethylene particles as thermally removable pores formers. 

The composition of the glass-ceramic was designed to induce the nucleation of highly 

biocompatible and bioactive fluoroapatite crystals in the final scaffolds. The pores content was 

tailored by introducing different amounts of polymeric particles in the starting “green” compacts, 

that underwent a thermal treatment to obtain sintered porous samples having a porosity up to 50% 

vol.. The fabrication method chosen for scaffolds production led to highly reproducible samples in 

terms of pores content and mechanical strength.  

The 3-D network of interconnected macropores (> 100 μm) is able to promote in vivo blood vessels 

access and cells migration into the scaffolds. In addition, a diffused microporosity, which is known 

to promote cells adhesion, was observed in all prepared scaffolds. The scaffolds showed a 

mechanically orthotropic behaviour and a compressive strength well above 20 MPa and thus 

comparable to natural bone. In addition, the scaffolds exhibited an in vitro highly bioactive 

behaviour, as a thick hydroxyapatite layer was formed on samples surface after soaking in 

simulated body fluids. 

Therefore, the produced scaffolds can be proposed as effective candidates for load-bearing 

applications in orthopaedics and in the field of bone tissue replacement due to their high mechanical 

strength, bioactivity and easy tailoring and processability. 
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Figure  

 

Fig. 1 Directions of mechanical testing (compression) on final cubic scaffolds: A = direction along 

the bar axis, T1 and T2 = transversal directions perpendicular to the bar axis 
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Fig. 2 XRD pattern of as-poured FaGC 

 

 

 

 

Fig. 3 Starting materials for scaffolding: (a) FaGC powders and (b) PE particles 
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Fig. 4 XRD pattern of ground scaffold 

 

 

 

 

 

Fig. 5 Low-magnification SEM image of FaGC-S-40 

 

 



 21 
 

 

 

Fig. 6 FaGC-S-70: (a) cross-section and (b) pores magnification 

 

 

 

 

Fig. 7 Capillarity test carried out on FaGC-S-70 
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Fig. 8 Typical stress-strain curve of FaGC-S-70 (direction T1) 

 

 

Fig. 9 PE grains deformation occurring during pressing: (a) FaGC/PE particles pressing and (b) 

resulting “green” compact 
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Fig. 10 In vitro bioactivity: (a) hydroxyapatite agglomerates on FaGC-S-70 walls after soaking for 

7 days in SBF and (b) corresponding EDS pattern 

 

 

 

 

Fig. 11 Fitting curve for scaffold porosity: Π
*
 = Π

*
(P) 
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Fig. 12 Fitting curve for scaffold strength: σ
*
 = σ

*
(P) 
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Tables 

 

Table 1 Scaffolds porosity obtained via density measurements 

Scaffold Π (%vol.) 

FaGC-S-40  23.5 ± 4.6 

FaGC-S-50 35.0 ± 4.1 

FaGC-S-60 43.2 ± 4.8 

FaGC-S-65 47.8 ± 6.4 

FaGC-S-70 50.0 ± 5.3 

 

 

Table 2 Compressive strength of the scaffolds 

Scaffold 

σf (MPa) 

Direction A Direction T1 Direction T2 

FaGC-S-40 148.1 ± 15.8 56.3 ± 3.2 54.8 ± 4.6 

FaGC-S-50 130.6 ± 29.6 41.7 ± 4.8 39.2 ± 4.5 

FaGC-S-60 118. 4 ± 22.1 28.8 ± 2.9 32.5 ± 4.8 

FaGC-S-65 110.0 ± 23.8 24.3 ± 2.5 23.1 ± 3.0 

FaGC-S-70 108.2 ± 32.7 21.0 ± 2.9 20.1 ± 2.2 

 

 

 

 


