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ABSTRACT 
 
A technique is proposed for the adaptation of automatic 
speech recognition systems using Hybrid models combining 
Artificial Neural Networks with Hidden Markov Models. 
The application of linear transformations not only to the 
input features, but also to the outputs of the internal layers 
is investigated. The motivation is that the outputs of an 
internal layer represent a projection of the input pattern into 
a space where it should be easier to learn the classification 
or transformation expected at the output of the network.  
A new solution, called Conservative Training, is proposed 
that compensates for the lack of adaptation samples in 
certain classes.  
Supervised adaptation experiments with different corpora 
and for different adaptation types are described. The results 
show that the proposed approach always outperforms the 
use of transformations in the feature space and yields even 
better results when combined with linear input 
transformations.  
 

1. INTRODUCTION 
 
A large number of papers have described techniques for 
refining Automatic Speech Recognition (ASR) systems by 
adapting the acoustic features and the parameters of 
stochastic models to environments, applications and 
speakers [1-5]. More recently, particular attention has been 
paid to discriminative training techniques and their 
application to the acoustic feature transformation [6,7].  
Since Artificial Neural Networks (ANN), used as acoustic 
models, are also trained with discriminative methods, it is 
worth exploring methods for adapting their features and 
model parameters.  Some solutions to this problem have 
been proposed.  In [8,9], different techniques for adapting 
neural networks are compared. These techniques include 
adding a linear transformation network that acts as a pre-
processor to the main network or adapting all weights of the 
original network. A tied-posterior approach is proposed in 
[10] to combine Hidden Markov Models (HMM) with ANN 
adaptation strategies. The weights of a hybrid ANN/HMM 
system are adapted by optimising the training set cross 
entropy. A sub-set of the hidden units is selected for this 
purpose. The adaptation data are propagated through the 
original ANN and the nodes exhibiting the highest variance 
are selected, since hidden nodes with a high variance 
transfer a larger amount of information to the output layer.  
Recent adaptation techniques have been proposed with the 
useful properties of not requiring to store the previously 
used adaptation data and to be effective even with a small 

amount of adaptation data. Methods based on speaker space 
adaptation [2] and eigenvoices [3] are of this type and can 
be applied both to Gaussian Mixture HMMs as well as to 
the ANN inputs as proposed in [11]. The parameters of the 
transformations are seen as the components of a vector in a 
parameter adaptation space. Principal components can be 
found in this space to define a speaker space. Rapid 
adaptation consists in finding the values of the coordinates 
of a specific speaker point in the speaker space. If a limited 
number of adaptation data is available, then only fewer 
eigenvoices are used.  
This paper explores a new possibility consisting in adapting 
ANN models with transformations of an entire set of 
internal model features. Values for these features are 
collected at the output of a hidden layer for which the 
number of outputs is usually of the order of a few hundreds. 
These features are supposed to represent an internal 
structure of the input pattern. As for input feature 
transformation, a linear network can be used for hidden 
layer feature transformation. In both cases the estimation of 
the parameters of the adaptation networks can be done with 
error back propagation by keeping unchanged the values of 
the parameters of the ANN. Internal transformations can 
also be obtained by linear combination of “eigenvoices”.  
The risk of catastrophic forgetting [13] is particularly high 
when a distributed connectionist network is adapted with 
new data that do not adequately represent the knowledge 
included in the original training data. This effect is evident 
when adaptation data do not contain examples for a subset 
of the output classes. If the outputs of the missing classes 
are forced to a value close to zero for all the adaptation 
samples, there is a risk that the network becomes less 
sensitive to input data belonging to these classes. This paper 
proposes a solution to this problem introducing 
Conservative Training, a variant to the standard method of 
assigning the target values, which compensates for the lack 
of adaptation samples in some classes. Experimental results 
on the adaptation test for the Wall Street Journal task [16] 
using the proposed approach compare favourably with 
published results on the same task [10,16]. 
The paper is organized as follows: Section 2 gives a short 
overview of the acoustic-phonetic models of the ANN used 
by the Loquendo ASR system, and presents the Linear 
Hidden Networks, which transform the features at the 
output of hidden layers. Section 3 is devoted to the 
illustration of the problem of catastrophic forgetting in 
connectionist learning, and proposes our Conservative 
Training approach as a possible solution.  Section 4 reports 
the experiments performed on several databases with the 
aim of clarifying the behavior of the new adaptation 



technique with respect to the classical LIN approach. 
Finally the conclusions and future developments are 
presented in the last Section. 
 

2. FEATURE TRANSFORMATIONS 
 
2.1 The ANN architecture 
The Loquendo-ASR decoder uses a 4-layer hybrid HMM-
MLP model where each phonetic unit is described in terms 
of a single or double state left-to-right automaton with self-
loops. The models are based on a set of vocabulary and 
gender independent units including stationary context-
independent phones and diphone-transition coarticulation 
models. The HMM transition probabilities are uniform and 
fixed [12]. 
Using two hidden layers, rather than a larger single hidden 
layer, has the advantage of reducing the total number of 
connections. Moreover, it allows considering the activation 
values of each hidden layer as a progressively refined 
projection of the input pattern in a space of features more 
suitable for classification. We typically use 273 feature for 
the input layer (39 parameters of a 7 frame context), 315 
nodes for the first hidden layer, and 300 for the second 
hidden layer. 
These models have been successfully used for the 15 
languages released with the Loquendo ASR recognizer, and 
are the starting models for adaptation experiments of 
section 4, if not differently specified. 
 
2.2 Input feature transformations 
The simplest and more popular approach to speaker 
adaptation with ANNs is Linear Input Transformation [8,9]. 
The input space is rotated by a linear transformation to 
make the target conditions more consistent with the training 
conditions. The transformation is performed by a linear 
layer interface (referred to, in this paper, as linear input 
network or LIN) between the input observation vectors and 
the input layer of the trained ANN. The LIN weights are 
initialized with an identity matrix, and they are trained by 
minimizing the error at the output of the ANN system 
keeping fixed the weights of the original ANN. 
Using few training data, the performance of the combined 
architecture LIN/ANN is usually better than adapting the 
whole network, because it involves the estimation of a 
lower number of parameters.  
 
2.3 Hidden feature transformations 
Assuming that the activation values of a hidden layer 
represent an internal structure of the input pattern in a space 
more suitable for classification, a linear transformation can 
be applied to the activations of the internal layers. Such a 
transformation is performed by a Linear Hidden Network 
(LHN). As for the LIN, the values of an identity matrix are 
used to initialize the weights of the LHN. The weights are 
trained using a standard back-propagation algorithm 
keeping frozen the weights of the original network. It is 
worth noting that, since the LHN performs a linear 
transformation, once the adaptation process is completed, 
the LHN can be removed combining LHN weights with the 
ones of the next layer using the following simple matrix 
operations: 
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WBBB
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  (1) 

where Wa and Ba are the weights and the biases of the 
adapted layer, WSI and BSI are the weights and biases of the 
layer following the LHN in the original Speaker 
Independent network, and WLHN and BLHN are the adapted 
weights and the biases of the linear hidden network.  
 

3. CATASTROPHIC FORGETTING 
 
It is well known that in connectionist learning, acquiring 
new information in the adaptation process, can damage 
previously learned information [13]. This effect must be 
taken into account when adapting an ANN with limited 
amount of data, which do not include enough samples for 
all the acoustic-phonetic units. The problem is more severe 
in the ANN modeling framework than in the classical 
Gaussian Mixture HMMs. The reason is that an ANN uses 
discriminative training to estimate the posterior probability 
of each acoustic-phonetic unit.  The minimization of the 
output error is performed by means of the Back-
Propagation algorithm that penalizes the units with no 
observations by assigning to them a zero target value for 
every adaptation frame. That induces in the ANN a 
forgetting of the capability to classify the corresponding 
acoustic-phonetic units. Thus, while the Gaussian Mixture 
models with little or no observations remain un-adapted or 
share some adaptation transformations of their parameters 
with other acoustic similar models, the units with little or 
no observations in the ANN model loose their 
characterization rather than staying not adapted. Thus, 
adaptation may destroy the correct behavior of the network 
for the unseen units.  
To mitigate the problem of loosing characterization of the 
units with little of no observations, it has been proposed 
[14] to include in the adaptation set examples of the missing 
classes taken from the training set. The disadvantage of this 
approach is that a substantial amount of the training set 
must be stored so that examples of the missing classes can 
be retrieved for each adaptation task. In [15], it has been 
proposed to approximate the real patterns with pseudo-
patterns rather than using the training set. Pseudo-patterns 
consist of pairs of random input activations and the 
corresponding output. These pseudo-patterns are included 
in the set of the new patterns to be learned to prevent 
catastrophic forgetting of the original patterns. It seems 
difficult, however, to generate these pseudo-patterns when 
the dimensionality of the input features is high. 
 
A solution called Conservative Training (CT) is proposed 
here to mitigate the forgetting problem.  Since ANN 
training is discriminative, the units for which no 
observations are available will have zero as a target for all 
the adaptation samples. Thus, during adaptation, the 
weights of the acoustic ANN will be biased to favor the 
output activations of the units with samples in the 
adaptation set and to weaken the other units, which will 
tend to always have a posterior probability close to zero. 
Conservative Training avoids to always associating the 
value zero to the target of the missing units, using instead as 
target the outputs computed by the original network.  



Let Fp be the set of phonetic units included in the 
adaptation set (p indicates presence), and let Fm be the set 
of the other missed ones. In Conservative Trainining the 
target values are assigned as follows: 
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where )O|Ff(T tpi   is the target value associated to the 

input pattern 
tO  for a unit if that is present in the 

adaptation set, )O|Ff(T tmi   is a target value associated 

to the input pattern
tO  for a unit that is missing in the 

adaptation set, )O|f(NN_ORIGINAL_OUTPUT ti  
is the output of the original network (before adaptation) for 

the phonetic unit i given the input pattern 
tO , and  

)|( ti Ofcorrect  is a predicate which is true if the 

phonetic unit if  is the correct class for the input pattern 
tO . 

Thus, a phonetic unit that is missing in the adaptation set, 
rather than obtaining a zero target value for each input 
pattern, will keep the value that it would have had with the 
original un-adapted network. 
 

4.  EXPERIMENTAL RESULTS 
 
4.1 Test on different adaptation tasks 
Adaptation to a specific application may involve the 
speakers, the channel, the environmental noise and the 
vocabulary, especially if the application uses specific list of 
terms. The proposed techniques have been tested on a 
variety of cases requiring different types of adaptation. The 
adaptation types that have been considered are listed below. 
 
Application adaptation:  Directory Assistance 
The adaptation to a Directory Assistance application has 
been tested. The corpus includes spontaneous utterances of 
the 9325 Italian town names. The adaptation set is made of 
53713 utterances; the test set includes 3917 utterances. 
 
Vocabulary adaptation: Command words 
The lists A1-2-3 of SpeechDat-2 Italian, containing 30 
command words, have been used. The adaptation and the 
test sets include 6189 and 3094 utterances respectively. 
 
Channel-Environment adaptation: Aurora-3 
The benchmark is the standard Aurora3 Italian corpus. The 
Well-Matched train set has been used for adaptation (2951 
utterances), while the results on Well-Matched test set (the 
noisy channel, ch1) are reported (654 utterances). 
 
Speaker: WSJ0  
The standard adaptation and test sets of WSJ0 (8 speakers, 
40 utterances per speaker) have been used after 8 kHz 

down-sampling. The down-sampling was performed 
because the original ANN model is trained with the LDC 
Macrophone telephone speech corpus. Standard bigram 
language model is employed. 
The results on these tests, reported in Table 1, show that a 
linear transform on hidden units (LHN) always outperforms 
a linear transform on the input space (LIN). This indicates 
that the hidden units represent a projection of the input 
pattern in a space where it is easier to learn or adapt the 
classification expected at the output of the MLP.  The 
adaptation of the whole net is feasible only if many 
adaptation data are available, and is less effective than 
LHN. 
 

Table 1.  Adaptation results on different tasks with 
different methods (WER %). The adaptation starts from 
the standard Loquendo telephone models. 

 
Adaptation 
type 

Application Vocabulary Channel-
Environ. 

Speaker 

Test case: Directory 
Assistance 

Connected 
Digits 

Aurora3 
Ch1 

WSJ0 
 (8 kHz) 

no adaptation 14.6 3.8 24.0 16.4 
whole net 10.5 3.2 10.7 15.3 
LIN+CT 12.4 3.4 15.3 13.9 
LHN+CT 10.1 2.3 10.4 12.1 
 
 
4.2 Speaker Adaptation (WSJ0) 
Further experiments have been performed on the WSJ0 
speaker adaptation test in several conditions. Three baseline 
models have been used: 
 
  the default 8kHz telephone speech model (trained 

with LDC Macrophone – referred as MCRP in the 
Tables); 

  a model trained with the WSJ0 train set (SI-84), 16 
kHz.  

  a model trained with the WSJ0 train set (SI-84), 
down-sampled to 8 kHz. 

 
Furthermore, for each type of models two architectures are 
tested: a standard one (STD), described in sub-section 2.1 
and an improved one (IMP), characterized by a wider input 
window modeling a time context of 250 ms [17], and by the 
presence a third 300 units hidden layer. 
The adaptation set is the standard adaptation set of WSJ0 
(si_et_ad, 8 speakers, 40 utterances per speaker), down-
sampled to 8 kHz when necessary. 
 
The test set is the standard SI 5K read NVP Senneheiser 
microphone (si_et_05, 8 speakers x ~40 utterances) with 
bigram or trigram standard LM provided by Lincoln Labs. 
The results, reported in Tables 2 and 3, show that also in 
these cases LHN is always better that LIN. The 
combination of LIN and LHN (trained simultaneously) is 
usually better than the use of LHN alone. Conservative 
training (CT) effects are of minor importance in WSJ0 
because the adaptation set has a good phonetic coverage 
and the problem of unseen phonetic classes is not dramatic.  
Nevertheless, its use improves performances (see LIN 
standard vs. LIN+CT), because it avoids the adaptation of 



prior probabilities of the phonetic classes on the (poor) 
prior statistics of the adaptation set. 
 

Table 2.  Speaker Adaptation results – WSJ0 8 kHz 
 

Train 
Set 

Net 
type 

Adaptation  
method 

Bg 
LM 

Tg 
LM 

MCRP STD NO adaptation 16.4 13.6 
MCRP STD LIN standard 14.6 11.6 
MCRP STD LIN+CT 13.9 11.3 
MCRP STD LHN+CT 12.1 9.9 
MCRP STD LIN+LHN+CT 11.2 9.0 
WSJ0 STD NO adaptation 13.4 10.8 
WSJ0 STD LIN standard 14.2 11.6 
WSJ0 STD LIN+CT 11.8 9.7 
WSJ0 STD LHN+CT 10.4 8.3 
WSJ0 STD LIN+LHN+CT 9.7 7.9 
WSJ0 IMP NO adaptation 10.8 8.8 
WSJ0 IMP     LIN standard 9.8 7.6 
WSJ0 IMP     LIN + CT 9.8 7.7 
WSJ0 IMP     LHN + CT 8.5 6.6 
WSJ0 IMP     LIN+LHN+CT 8.3 6.3 

 
Table 3.  Speaker Adaptation results – WSJ0 16 kHz 

 
Train 

Set 
Net 
type 

Adaptation  
method 

Bg 
LM 

Tg 
LM 

WSJ0 STD NO adaptation 10.5 8.4 
WSJ0 STD LIN standard 9.9 7.9 
WSJ0 STD LIN+CT 9.4 7.1 
WSJ0 STD LHN+CT 8.4 6.6 
WSJ0 STD LIN+LHN+CT 8.6 6.3 
WSJ0 IMP NO adaptation 8.5 6.5 
WSJ0 IMP     LIN standard 7.2 5.6 
WSJ0 IMP     LIN+CT 7.1 5.7 
WSJ0 IMP     LHN+CT 7.0 5.6
WSJ0 IMP     LIN+LHN+CT 6.5 5.0 

 
6. CONCLUSIONS1 

 
A method has been proposed for adapting all the outputs of 
the hidden layer of ANN acoustic models and for reducing 
the effects of catastrophic forgetting when the adaptation 
set does not contains examples for some classes.  
Experiments for the adaptation of an existing ANN to a new 
application, a new vocabulary, a new noisy environment 
and new speakers have been performed. They all show the 
benefits of CT, and also that LHN outperforms LIN. 
Furthermore, experiments on speaker adaptation show that 
further improvements are obtained by the simultaneous use 
of LHN and LIN showing that linear transformations at 

                                                 
1 This work was partially supported by the EU FP-6 IST Projects 
HIWIRE and DIVINES 

different levels produce different positive effects that can be 
effectively combined.  
An overall WER of 5% after adaptation on WSJ0 using the 
standard trigram LM and without across word specific 
acoustic models compares favorably with published results. 
Future work will explore unsupervised adaptation and the 
use of eigenvoices.  
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