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ABSTRACT 

Surface electromyogram (EMG) detected by electrode arrays along the muscle fibre direction can be 

approximated by the sum of propagating and non propagating components. A technique to separate 

propagating and non propagating components in surface EMG signals is developed. The first step is 

an adaptive filter, which allows obtaining an estimation of the delay between signals detected at 

different channels and a first estimate of propagating and non-propagating components; the second 

step is used to optimise the estimation of the two components. The method is applicable to signals 

with one propagating and one non propagating component. It was optimised on simulated signals, and 

then applied to single motor unit action potentials (MUAP) and to M-waves. 

The new method was first tested on phenomenological signals constituted by the sum of a 

propagating and a non propagating signal and then applied to simulated and experimental EMG 

signals. Simulated signals were generated by a cylindrical, layered volume conductor model. 

Experimental signals were monopolar surface EMG signals collected from the abductor pollicis 

brevis muscle and M-waves recorded during transcutaneous electrical stimulation of the biceps 

muscle. The technique may find different applications: in single motor unit (MU) studies, a) for 

decreasing the variability and bias of CV estimates due to the presence of the non propagating 

components, b) for estimating automatically the length of the muscle fibres from only three detected 

channels and c) for removal of the stimulation artifact from electrically elicited EMG (M-wave). 

 

1. INTRODUCTION 

Surface electromyogram (EMG) signals detected by electrode arrays along the direction of the muscle 

fibres can be approximated by the sum of propagating and non propagating components [1]. 

Propagating components are associated to the propagating of the transmembrane current along the 

muscle fibres. The non propagating component in surface EMG signals is mainly due to the 

generation of the transmembrane currents at the neuromuscular junctions and to their extinction at the 

tendon endings (end of fibre effect) [2][3]. The generation and the extinction of the transmembrane 

current are associated to far field potentials simultaneously recorded by all the electrodes of the 
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detection array. Crosstalk from other muscles may contribute in introducing non propagating 

components in the EMG signals, as generation and extinction effects give the main contribution to 

crosstalk. For electrically elicited contractions, an important non propagating signal is the stimulation 

artifact. 

The presence of non propagating components affects the estimation of EMG parameters. For 

example, the non propagating component due to the end of fibre effect contributes to the high 

frequency portion of the spectrum of the EMG signal. In the case of dynamic contractions the tendons 

move with respect to the detection system, and, as a consequence, the end of fibre effect changes in 

amplitude and duration. The effect of muscle shortening on parameters extracted from the EMG 

signal spectrum was addressed in previous papers [4][5].  

Muscle fibre conduction velocity (CV) is another variable whose estimates are strongly affected by 

non propagating components. It reflects important properties of the membrane of the muscle fibres 

and is thus indicative of the peripheral condition of the neuromuscular system. CV can be estimated 

from surface EMG electrode arrays located between the innervation zone and the tendon region along 

the direction of the muscle fibres [6][7], by evaluating the delay of propagation of the signals [8]. As 

the signals detected from different channels are not simply constituted by a propagating wave, there is 

not a unique mathematical definition of the delay between detected potentials, but many definitions 

are possible [3] (associated to different estimation methods, e.g. methods based on maximum 

likelihood, reference points, detection of spectral dips, etc.). Different methods for CV estimation 

have different sensitivities to non propagating signal components. The effect of these components 

depends on the spatial filters applied for signal detection [9][10]. Specific combinations of spatial 

filters and estimation methods may be better than others in reducing the bias in CV estimates due to 

non propagating signals. Double differentiation of the detected signals, for example, usually improves 

the estimate of CV [1].  

A recent approach for CV estimation is based on the application of a pair of spatial filters and on the 

estimation of the temporal filters (related to the spatial filters by the CV to be estimated) that best 

align the signals and compensate for the effect of the applied spatial filters [11]. On the basis of such 
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idea, a method has been recently developed [12] for the identification of the non propagating 

components. The method provides the optimal choice of a pair of spatial filters which reduce the 

effect of non propagating components in the delay estimation. However, if the non propagating 

components have about the same amplitude in all the detected channels, all filter pairs can eliminate 

them, and all filters give a good CV estimate, but non propagating components cannot be estimated. 

The method proposed in this work is focused on the separation of non propagating and propagating 

components from the compound signal and is based on two steps. The first is an improvement of an 

adaptive filter technique proposed in [13]. It provides a means to estimate the delay between signals 

detected at different channels and a first estimate of the propagating and non-propagating 

components. The second step is used to optimise the estimation of such components.  

In the case of electrically elicited signals (M-waves), the main non propagating component is given 

by the stimulation artifact (see [14] for a characterisation of artifact). The identification of artifact on 

M-waves was addressed in many papers [14]. The removal of the stimulation artifact is important to 

extract information from the M-waves, mainly when the artifact is partially superimposed on the M-

waves. Recent results were obtained using a neural network [15].  

The method proposed in this paper was applied both to simulated and experimental signals, to 

identify the non propagating components due both to the generation/extinction effects and to the 

stimulation artifact (for electrically elicited EMG signals). Furthermore, when applied to monopolar 

simulated single fibre action potentials (SFAP), the method allows the estimation of the fibre semi-

length (length from the innervation zone to the tendon closer to the detection array). 

2. METHODS 

A. Signal model and notations 

In order to obtain a simple model of surface electromyogram (EMG), we considered a portion of a 

muscle with parallel and finite fibres. Under such hypothesis, the motor unit action potentials 

(MUAP) detected over the skin surface propagate without change of shape from the MU innervation 

zone to the tendon endings. In these ideal conditions, the EMG signals detected by an array along the 

fibre direction can be approximated as a linear combination of propagating and non-propagating 
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components. The non-propagating signals are due to generation and extinction effects in voluntary 

contractions, and also due to stimulation artifact in electrically elicited contractions. 

Some of the factors perturbing these ideal conditions are the misalignment of the detection array with 

respect to the fibre direction, the inclination of the fibres with respect to the detection surface, the 

presence of tissue in-homogeneities. Such factors affect the detected potentials introducing amplitude 

variations and shape perturbations in the signals with respect to the ideal case.  

Only amplitude variations across channels are considered in this method. The method is based on the 

analysis of three surface EMG signals, but could be extended to more. Consider: 
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where Ei(t) (i = 0,1,2) are the recorded signals, V0(t) is the non propagating component, V1(t) is the 

propagating component, and the coefficients aij  (i=1,2; j=0,1) are the unknown elements of the 
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general, considering detection channels located away from the innervation zone and from the tendons, 

for inter-channel distance of the order of 2.5 to 10 mm all the weighting coefficients aij  are close to 

unity. We constrained the unknown coefficients aij  to be between 0.5 and 1.5. 

The assumptions of model (1) are the following: 1) both the propagating and the non propagating 

components maintain the same shape in the three recorded channels and each is multiplied by an 

unknown coefficient; 2) the delay between propagating components detected in adjacent channels is 

constant.  

In model (1), the only available data are the recorded signals Ei(t). The delay , the shape of the 

propagating and non propagating components and their amplitudes in the three channels are unknown 

and should be estimated without any a-priori information.  

The problem will be first solved by applying an adaptive filter, obtaining a first approximated 

solution. Such a solution will then be optimised. 
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B. Adaptive filtering method  

An improvement of the adaptive filter proposed in [13] is the first step to the solution of the problem. 

We proceed in Fourier domain instead of z-domain as proposed in [13] for easier computations. In 

Section B.1 the method proposed in [13] is briefly described. In Section B.2 the method is improved. 

B.1 Algorithm for adaptive filter method 

Let us suppose that the delay   is known. Taking the Fourier transform of system (1) and rearranging 

the equations, one can write them in matrix form as shown below 
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where   is the angular frequency and the symbol )̂(  indicates Fourier transformation. The above 

equations will be satisfied when the determinant of the 3x3 matrix A
~

 is identically zero, which means 
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Eq. (3) can be rewritten in the following form (useful for the implementation of an iterative search of 

the solution) 

)(Eew+Eew+Ew+Eew+Eew=E 2

-j
211

2-j
121100

2-j
020

-j
012

  ˆ)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ          (4) 

where 

10

11
21

10

21
12

10

20

102102

10

2011

01 ,,,,
a

a
w

a

a
w

a

a
waw

a

aa
w  . The weights ijw  are not known 

a-priori. Thus, for an arbitrary choice of the weights ijw , the right hand side of Eq. (4) can be 

considered only as an approximation of  )(E2 .  

Two approaches can be used to estimate the unknown weights ijw , depending on whether or not on-

line processing is required: 1. Linear parameter estimation  (Off-line); 2. Adaptive LMS algorithm  

(On-line). Both approaches provide the same result (see [16] for details). 

The first method was used. Eq. (4) can be written in matrix form as follows 

W E =E2                                                                        (5) 
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where: 
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where   indicates Fourier transform. The above system is linear in the unknown vector W . Its 

optimal solution in the least mean squares (LMS) sense is calculated by taking the Moore-Penrose 

pseudo-inverse of E  
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the symbol * indicating LMS-optimal, and # denoting pseudo-inverse. 

Once the weights ijw  are obtained, the unknown coefficients of the matrix A  can be obtained by 

inverting the definitions of the weights ijw  in terms of the elements ija  of the matrix A , written in 

the following matrix form 
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From Eq. (7), the unknown elements ija  of the matrix A  (contained in Eq. (7) in the vector a ) are 

computed optimally in the LMS sense by pseudo-inverting the matrix W . 

Once the coefficient matrix A  is obtained as explained above, the propagating and non-propagating 

components are estimated by pseudo-inverting the matrix A  and applying it to the data (i.e., pseudo 

inverting Eq. (2)).  

B.2 Limitations of the adaptive filter algorithm 

The adaptive filter method, as introduced in [13], has two main limitations. 1) The method requires an 

a-priori knowledge of the delay  . 2) The method is sensitive to very small shape and delay 

perturbations of the propagating components and the performance worsens in presence of additive 

noise.  

A new version of the algorithm was developed to estimate the delay   by minimising the 

reconstruction error (defined as the RMS error between the three measured signals and those 
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reconstructed by summing the estimated propagating and non propagating components) with respect 

to   (with no limits in resolution, implementing the minimisation process in the frequency domain). 

The algorithm was implemented with the software Matlab (version 7.0), using the function fminbnd. 

The minimum was searched for values of delays related to physiological values of CV (between 2 and 

8 m/s).  

To reduce the sensitivity to noise and shape perturbations, the optimisation method was implemented, 

as described in the following section.  

The algorithm is described in Figure 1.  

Figures 1 about here 

  

C. Optimisation method for estimating propagating and non propagating components 

Using the modified adaptive filter approach we estimated 1) the delay between propagating 

components, 2) the weight matrix A , 3) the two unknown functions )(tV  (propagating and non-

propagating components). With this approach, the estimated non-propagating components are not 

well localised in time (see Results). When the locations of the innervation zone and tendons are of 

interest (for example, to estimate fibre semi-length), this limitation is not acceptable. As a 

consequence of the error in the estimation of the non-propagating component, also the estimation of 

the propagating signal presents problems.  

In order to improve the estimated propagating and non-propagating components, an optimisation 

process is proposed in this work. The optimisation is based on the minimisation of an error function. 

The error function was chosen as the linear combination of two terms: 

1. the RMS error between the data and their reconstruction 
2

2
)()( tVAtERMS  ; 

2. the energy of the non propagating component. 

The resulting error function is the following 
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where   is a non negative parameter, referred to as regularisation parameter (whose choice is 

explained in the next paragraph). For a fixed matrix A , the unknown functions V  are chosen as 

those minimising the RMS error in the reconstruction of the )(tE  signals 

2

2
)()(min)( txAtEtV

x
                       )()(

#
tEAtV                                (9)                  

the symbol # indicating the Moore-Penrose pseudo inverse of a rectangular matrix. Substituting the 

expression of the unknown functions V  from Eq. (9), the error function EF defined in Eq. (8) is only 

a function of the unknown matrix A . Thus, the minimisation problem can be written as 

)();();();(ˆ)(min
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The elements of the unknown matrix 
opt

A  were constrained to be in the range [0.5; 1.5] (refer to 

Section 2.A). The Matlab function fmincon was used for this constrained optimisation process. The 

coefficient matrix and the time delay estimated after applying the adaptive filter method are used as 

the starting point for the optimisation process to obtain the matrix 
opt

A  that satisfies (10). The 

correspondent vector of functions V , also defined in (10), provides the estimated propaganting and 

non propagating components. 

The choice of the regularisation parameter   should consider the trade-off between the degree of 

regularity of the solution and its fit to the data, reflecting an approximation error and a data noise 

error [17]. We propose a technique to choose the penalisation parameter which was fit on the 

simulated signals. With very low values for  , the RMS error in the reconstruction and the energy of 

the non propagating component )(0 tV  (i.e., the regularisation function) is close to that obtained by 

the adaptive filter method. Increasing  , the norm of the estimated non propagating component 

assumes a greater importance in the error function EF. As a consequence, the minimisation of the 

error function EF determines the increase of the RMS error in reconstructing the original signals 

)(tE  and the decreasing of the energy of the non propagating component for increasing values of  . 

At a certain value of  , there’s an abrupt change of both RMS and energy of )(0 tV , giving a sigmoid 
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like shape of the RMS error and energy of )(0 tV  as a function of the regularisation parameter  . 

Such a value of  , referred to as 
opt , can be detected automatically, since it corresponds to the 

maximum of the absolute value of the derivative of the RMS error and of the energy of the estimated 

non propagating component )(0 tV  as a function of  . It was empirically verified in simulations that 

the solution corresponding to 
opt  gives an optimal reconstruction of the propagating and non-

propagating components (see the example in Figure 3a, 3b). This value of   was then chosen in the 

definition of the error function EF defined in (8).  

Figures 2, 3 about here 

D. Estimation of fibre semi-length from the detected generation and extinction effects 

The non propagating components in a single MUAP are constituted by the generation and the 

extinction effects. When monopolar signals are considered, such effects are quite large and both of 

them can be estimated by the method (see the Result section). The fibre semi-length L (the length of 

the fibre from the innervation zone to the tendon closer to the detection array) was estimated from the 

estimated CV and the estimated time delay   between the generation and the extinction effects: 

CVL                                                                        (11) 

The time delay between the generation and the extinction effects   was estimated by the following 

steps. 

1. Identification of the supports of the generation and extinction effects. 

2. Separation of the two effects, by considering the non propagating component on the support of 

the generation and of the extinction effects respectively, as determined at step 1. 

3. Estimation of the mean values eg  ,  of the generation/extinction effects (centroid of the non 

propagating component evaluated in the support of the generation/extinction effects, 

respectively). 

4. ge   . 

The time supports of the generation and extinction effects were obtained by selecting the time 

samples for which the non propagating component was larger than a threshold (chosen as the 10% of 
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the maximum value of the non propagating component). Two separated time interval are obtained, 

automatically identified and assigned to the generation and extinction effects. 

E. Signals considered for the validation of the method 

To optimise the method and to give a quantitative validation of its performances, phenomenological 

and simulated signals were considered. Experimental signals were finally considered as examples of 

application of the method. 

E1. Phenomenological signals 

As phenomenological signals we indicate three signals obtained as sum of propagating and non 

propagating components with a simple analytical expression. The propagating signal was described 

by the second derivative of a Gaussian function 2
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component in a monopolar EMG signal. The non propagating component was modelled as a Gaussian 

function: 
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 . Phenomenological signals are useful to validate the method as all the 

parameters of the model (coefficients matrix, propagating and non propagating components) are 

known. As done in [12], we used such signals to assess the effect of perturbations of the initial 

hypotheses on the performances of the method. The perturbations introduced were in the delay and in 

the width of the propagating components. Delay perturbation was assessed imposing for the second 

channel a delay of propagating component slightly different than  : 
100

100 p
p


 , where 

p  is the 

perturbed delay of the propagating component and p is the amount of the change (in % of  ). 

Width changes were included in the propagating component by changing the variance p : 

p

p

p

p


100

100 
 , where 

p

p  is the perturbed width of the propagating component and p is the amount 

of the change (in % of p ).  

A white noise with 20 dB of signal to noise ratio (SNR) was added to the phenomenological signals. 
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E2. Simulation of single fibre action potentials   

A cylindrical layer model [18] (four layers: bone, 20 mm radius, conductivity 0.02 S/m; muscle, 

thickness 26 mm, longitudinal conductivity 0.5 S/m, transversal conductivity 0.1 S/m; fat, thickness 3 

mm, conductivity 0.05 S/m; skin, thickness 1 mm, conductivity 0.5 S/m) was used to simulate SFAP 

related to fibres with different depth and length, and with different transversal distance and inclination 

with respect to the detection array of three monopolar channels (point electrodes with 5 mm inter-

electrode distance). A white noise with 20 dB SNR was added.  

For simulated SFAP, as the CV and the positions of the innervation zone and tendons were known, it 

was possible to identify the support of the generation and of the end of fibre effects. By interpolation, 

the propagating component was estimated for each simulated signal without additive noise (see 

Figure 2). Three propagating components were estimated, one for each channel. The three estimated 

propagating components have been aligned and averaged to improve the estimate. The non 

propagating components of the three channels were then estimated by subtracting the estimate of the 

propagating component (properly delayed) from the input signals.  

It is worth noticing that the interpolation method described in Figure 2 is available only for simulated 

signals for which the temporal supports of the generation and extinction phenomena are known.  

Figures 4 and 5 about here 

E3. Experimental signals 

Both single motor unit (MU) voluntary contractions and elicited contractions were considered, as 

described in a) and b).  

a) The surface EMG signals related to voluntary contraction were collected from the abductor pollicis 

brevis muscle by a linear array of 3 electrodes (inter-electrode distance 5 mm, electrodes 1 mm 

diameter), located between the most distal tendon and the muscle belly, along the direction of the 

muscle fibres; the reference electrode was placed at the wrist; they were amplified (EMG amplifier, 

EMG-16, LISiN – Ottino Bioengineering, bandwidth 10-500 Hz), sampled at 2048 Hz, and stored 

after a 12 bit A/D conversion. The subject was asked to perform a contraction 60 s long, at a low 
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force level, in order to activate a few MUs. The signals were decomposed to identify single MUAPs 

with the decomposition method introduced in [19], and spike-triggered averaged [20]. 

b) Electrically elicited surface EMG signals were recorded during transcutaneous electrical 

stimulation of the biceps brachii muscle. The same EMG amplifier as before was used to record three 

single differential signals. The stimulation was provided by a programmable neuromuscular 

stimulator with a hybrid output stage. The EMG signals were detected with a linear array, in single 

differential configuration, with 5 mm inter-electrode and inter-channel distance.  

3. RESULTS  

The adaptive filter and optimised methods were applied to phenomenological and simulated signals, 

in order to compare their performances. They were then applied to experimental signals, to give 

representative examples of application.  

A. Stability of the method on delay and shape perturbation of the propagating component  

Figure 4 shows the performance of the optimised method compared to the adaptive filter technique 

when shape and delay perturbations are applied to the propagating components (phenomenological 

signals described in Section 2.E1). The input signals (without additive noise), the correct components 

and their reconstruction with the adaptive filter technique and the optimised method are shown, both 

in the case of shape perturbation a) and delay perturbation b) of the propagating component. After 

optimisation, localisation of the non-propagating component improved.  

Figures 4 c) and d) show the performance of the proposed method for varying level of perturbations 

in the phenomenological signals compared to the adaptive filter algorithm (no noise added). To 

quantify the correctness of the reconstruction, the following RMS errors were studied: 1) the RMS 

error between the estimated propagating component and the simulated one (without perturbation); 2) 

the RMS error between the estimated non-propagating component and the simulated one. Both the 

results obtained by the method of adaptive filter and the optimised method are shown. In general, the 

optimisation method improved the estimation.  

B. Application to simulated signals  
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An example of application of the adaptive filter method and of the optimised method to simulated 

signals (described in Section 2.E2) is shown in Figure 5. The simulated signals are shown in a). 

Figure 5 b) and 5 c) show the non propagating components as obtained by interpolation (i.e., 

approximately the real non propagating components) and by adaptive filter before and after 

optimisation, respectively. The non propagating components identified by the two methods are also 

shown in d). Both generation and end of fibre components are identified. After optimisation, 

localisation of the non-propagating component improved. Figure 5 e) and 5 f) show the propagating 

component estimated by adaptive filter and optimisation method, respectively. 

In Figure 6 the following simulations related to different anatomies were considered: a) variation of 

depth of the fibre within the muscle; b) variation of semi-length of the fibre; c) variation of 

transversal distance with respect to the detection array; d) variation of the angle of inclination of the 

fibre with respect to the detection array. To quantify the correctness of the reconstruction, the 

following RMS errors were studied: 1) the RMS error between the propagating component estimated 

by the separation method and the propagating component estimated by interpolation on the simulated 

signals; 2) the RMS error between the non-propagating component estimated by the separation 

method and the non-propagating component estimated by interpolation on the simulated signals. Both 

the results obtained by the method of adaptive filter and the optimised method are shown. In general 

the percentage error increases for increased depth within the muscle, for shorter fibres and for fibres 

with large transversal distance with respect to the detection system; in such cases the weight of non 

propagating components increased. The percentage error changes slightly by varying the angle 

between the fibre and the detection array: we should note that with a positive angle between the fibre 

and the detection array the hypothesis that the propagating components in different channels have 

respectively the same shape on all channels is no longer true. In general, the optimisation method 

improved the estimation. 

Figure 7 shows the application of the adaptive filter and optimised method to the estimation of fibre 

semi-length. In a), the method to estimate fibre length is explained. The two methods were applied to 

estimate fibre semi-length for different lengths of the simulated fibres. In b), c), d) the percentage 

estimation error (percentage error with respect to the actual fibre semi-length) relative to superficial 
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fibres under the array (3 mm depth), deeper fibres (6 mm deep) and superficial fibres at a lateral 

distance (5 mm transversal distance and 3 mm depth) are shown. Since by increasing depth and 

transversal distance the weights of the generation and extinction effects in the signals increase, the 

estimation improves. 

Figures 6 and 7 about here 

C. Experimental data 

The results of processing some experimental data are shown in Figure 8. In a), b), c) an example of 

application to an array of three monopolar surface MUAP signals from abductor pollicis muscle 

during a voluntary contraction is considered. Before applying the method described in Section 2, each 

monopolar signal was normalised with respect to its negative peak value in order to reduce the 

variations in the amplitude of the propagating component across the channels. After the application of 

the method, the results were de-normalised. 

Figure 8 d), e), f) show the results in removing the stimulation artifact generated in the recorded 

surface EMG signal during transcutaneous electrical stimulation of the biceps brachii muscle. The 

artifact is considered as the non propagating component to be identified. Both the adaptive filter and 

the proposed optimisation succeed in identifying the artifact. The optimisation method improves 

localisation with respect to adaptive filter as the amplitude of the estimated non propagating 

component superimposed to the propagating M-wave (probably due to shape perturbations of the 

propagating wave) is lower. We expect that the estimation of the M-wave (i.e., the propagating 

component) is improved by using the optimised method.  

Figures 8 about here 

4. DISCUSSION 

This study proposes a new method for the identification of propagating and non-propagating 

components from an array providing three adjacent channels of surface EMG. It is based on an 

adaptive filter technique, which estimates the delay between the propagating signals and provides a 

first estimate of the two components, endowed with an optimisation method devoted to the 

improvement of the estimation of such two components, with special attention to the localisation of 
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the temporal support of the non-propagating component. The results obtained by the adaptive filter 

method have been compared to those obtained after optimisation. The optimised method gives always 

an improvement (whose importance depends on the actual signals considered), but requires a higher 

computational cost.  

The method was applied to separate non-propagating components in surface EMG signals detected by 

three channels along muscle fibres. It was first optimised on simulated test signals. Then the 

performance of the method was tested on phenomenological and simulated signals, before applying it 

to some representative examples of experimental signals. A first example of application was the 

identification of the propagating and non-propagating components in single MUAPs detected by a 

linear array of three electrodes. A second application was the removal of the stimulation artifact from 

M-waves recorded with three single differential channels during transcutaneous electrical stimulation.  

The method proposed in this paper is robust to noise and shape perturbations of the two components 

in simulated signals (improving substantially the results shown in [13]). This suggests that the method 

can be applied (even if the hypothesis of the method are not exactly satisfied) on real single MUAP 

and M-waves. Furthermore, it applies also in the case of non propagating component being identical 

in all channels (such case can not be studied by the method in [12]).  

The method can only be applied to signals that (within a good approximation) are constituted by a 

single propagating component and a single non-propagating one. For example, interference surface 

EMG signal cannot be processed by the method. Also single MUAPs are not exactly feasible, as the 

amplitudes of the generation effect across different channels decay in the opposite directions with 

respect to the amplitudes of the end of fibre effect. Nevertheless, the method was applied on 

simulated SFAPs, and could identify the location of both generation and extinction effects. This is an 

important improvement with respect to the method proposed in [12] by which only extinction effects 

can be estimated. The new method was assessed by comparing the estimated propagating and non-

propagating components with those obtained directly from the simulated signals. It was verified that 

the adaptive filter method allows to identify both the generation and the extinction effect. The 

optimisation method improves the estimation of both the propagating and non-propagating  

component.  
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Non-propagating components reflect important properties of the signals under consideration. In the 

case of single MUAPs, non-propagating components are related to the generation of the action 

potential at the endplates and its extinction at the tendon endings. The localisation of the non-

propagating components in this case gives, for example, information about the location of the 

endplate and tendons, and therefore on the mean length of the fibres constituting the MU.  

The optimisation method, improving the localisation of the non-propagating components, improves 

also the estimation of the propagating component, which is often superimposed on the non-

propagating one. 

In conclusion, we proposed a novel approach to identify and separate the propagating and non 

propagating components from EMG recordings in which one propagating and one non propagating 

component are present. The technique may find different applications. In single MUAP studies, it 

could be useful to decrease the variability and bias of CV estimates due to the presence of the non 

propagating components. It could also be applied to the automatic identification of the positions of 

the innervation zone and of the tendons. Furthermore, stimulation artifact can be considered as a non-

propagating component and removed before processing the M-wave. 
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FIGURE CAPTIONS 

Figure 1. Block diagram of the proposed optimisation process. a) Adaptive filter algorithm proposed 

in [13] for a selected   value. b) Optimisation algorithm proposed in this work. 

Figure 2. Interpolation process applied to a simulated single fibre action potential (simulation 

parameters: fibre symmetric with respect to the innervation point; semi-length of the fibre 80 mm; 

depth of the fibre 5 mm; transversal distance of the fibre with respect to the detection array 0 mm; 

angle of inclination of the fibre with respect to the detection system 0
o
; sampling frequency 2048 Hz; 

conduction velocity  4 m/s; interelectrode distance 5 mm). Four time instants are defined, a): t1 and t2 

define the time interval considered for generation; t3 and t4 define the time interval considered for 

extinction. The propagating component in the generation and extinction time interval was estimated 

using a 4
th
 order polynomial fitting, considering 8 samples for each time interval: 3 samples before 

and 5 samples after generation for the estimate in the generation time interval; 5 samples before and 3 

samples after extinction for the estimate in the extinction time interval. The application of the method 

on three channels is shown in b). The three input signals are shown in b1). Three propagating signals 

have been estimated as described in a), they were aligned and averaged to obtain the estimated 

averaged propagating signal shown in b2). The non-propagating components, b3), were estimated by 

subtracting the estimated averaged propagating signal (properly delayed and weighted) from the input 

signals in b1). A.U. means arbitrary units. 

Figure 3. Representative example of choice of the penalisation parameter (same simulated signals as 

shown in Figure 2). The penalisation parameter   was varied in discrete steps of 0.1 each, starting 

from zero. By increasing the regularisation parameter, the reconstruction errors of the two 

components decrease, they attain a minimum (for 4.0 ), and then increase again (propagating 

component, a); non-propagating component, b)). The reconstruction error of the data, c), and the 

energy of the reconstructed non propagating component (which is the regularisation function), d), 

have a sigmoid shape as a function of the regularisation parameter. In correspondence of the 

minimum errors in the reconstruction of the propagating and non-propagating components (unknown 

for real signals), the reconstruction error of the data and the energy of the reconstructed non 
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propagating component (which can be calculated also on experimental signals) undergo an abrupt 

change. The value corresponding to such change is selected as opt . 

Figure 4.  Estimated propagating and non propagating components estimated using the adaptive filter 

method and the optimisation method when some of the hypothesis of the model (Section 2.A) are not 

met: a), b) example with phenomenological signals (coefficient matrix 
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75.085.0

8.09.0

11

A
, delay 

1.25 ms, sampling frequency 2048Hz), where the width a) and the delay b) of the propagating 

component in the second channel is perturbed by +5% and +15%, respectively, with respect to the 

other channels. The propagating and non propagating component estimated using adaptive filter 

technique and optimisation method match well with the original simulated components (without 

perturbation). To quantify the correctness of the reconstruction, the RMS error (normalised with 

respect to the square root of the average energy of the three input measures) between the non-

propagating component estimated by the separation method and the true one is shown in c) and d). 

Both percent RMS errors in estimating the non propagating component for percentage variation 

between -15% and 15% of the delay, c), and for width changes in the second channel between -10% 

and 10%, d), are shown. Ten realisations of Gaussian white noise were considered at 20dB SNR for 

each case. 

Figure 5. Example of separation of propagating and non-propagating component in a simulated 

signal, a) (same simulated signal as in Figure 2). Reconstruction of the non-propagating signals by 

adaptive filter, b),  and after optimisation, c), and comparison with the reference ones obtained by the 

interpolation method (see Figure 2). The estimated non-propagating signals obtained by the adaptive 

filter method and the optimised one are shown in d). Travelling signals estimated by adaptive filter, 

e), and after optimisation, f), and comparison with the average of the three propagating components 

obtained by the interpolation method and used as reference (see Figure 2). 

Figure 6. Comparison between separation methods applied to simulated signals (plane layer surface 

EMG generation model [7]) related to different simulated anatomies. List of model default 

parameters: cylindrical model with four layers (bone, 20 mm radius, conductivity 0.02 S/m; muscle, 
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thickness 26 mm, longitudinal conductivity 0.5 S/m, transversal conductivity 0.1 S/m; fat, thickness 3 

mm, conductivity 0.05 S/m; skin, thickness 1 mm, conductivity 0.5 S/m), depth of the fibre within the 

muscle 5 mm, semi-length of the fibre 70 mm, angle of inclination with respect to the detection array 

0
o
, transversal distance with respect to the detection array 0 mm. a) Variation of depth of the fibre 

within the muscle (2 mm to 10 mm in discrete steps of 2 mm). b) Variation of semi-length of the fibre 

(60 mm to 80 mm in steps of 5 mm).  c) Variation of transversal distance with respect to the detection 

array (0 mm to 8 mm in steps of 2 mm). d) Variation of the angle of inclination of the fibre with 

respect to the detection array (0 to 15 degrees in steps of 3 degrees). To quantify the correctness of 

the reconstruction, the following RMS errors were studied: the RMS error between the propagating 

component estimated by the separation method and the propagating component estimated by 

interpolation on the simulated signals (see Figure 2); the RMS error between the non-propagating 

component estimated by the separation method and the non-propagating component estimated by 

interpolation on the simulated signals. Ten realisations of additive noise were considered (Signal to 

Noise Ratio, SNR, 20dB). 

Figure 7. Application of the adaptive filter and optimised methods to the estimation of fibre semi-

length. Single fibre action potentials were simulated (same generation model as in Figure 6), in order 

to have a defined fibre length. The method to estimate the delay between the generation and 

extinction effects is explained in a). The percentage error of the estimation with respect to the 

simulated length of the fibre as a function of such length is shown in b), c), d) for fibres which are 

superficial (3 mm depth), deep (6 mm depth) and transversally displaced with respect to the detection 

array (5 mm transversal distance), respectively. Ten realisations of additive noise were considered for 

each simulation (Signal to Noise Ratio, SNR, 20dB). 

Figure 8. Example of application to three channels of monopolar surface EMG signals, a), b), c), 

collected from the abductor pollicis brevis muscle (linear array of 3 electrodes, placed along the 

direction of the muscle fibres, with inter-electrode distance 5 mm). Contractions 60 s long at force 

lower than 4 % of the maximal voluntary contraction force were decomposed. One spike-triggered 

averaged single MUAP is considered. The monopolar signals were normalised with respect to the 

negative peak value in order to compensate for possible large variations in the amplitude of the 
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propagating component across the channels. The propagating, b), and non-propagating, c), 

components estimated by adaptive filter and optimised method are shown. Example of a surface EMG 

signal recorded during transcutaneous electrical stimulation of the biceps brachii muscle, d), e), f). 

The propagating (M-wave), e), and non-propagating (artifact), f), components estimated by adaptive 

filter and optimised method are shown. 
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Fig 2 
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Fig 4 
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Fig 6 
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Fig 8 
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