
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Estimation of Muscle Fiber Conduction Velocity from Surface EMG Recordings by Optimal Spatial Filtering / Mesin,
Luca; Tizzani, F; Farina, D.. - In: IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING. - ISSN 0018-9294. -
STAMPA. - 53:10(2006), pp. 1963-1971. [10.1109/TBME.2006.881760]

Original

Estimation of Muscle Fiber Conduction Velocity from Surface EMG Recordings by Optimal Spatial
Filtering

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TBME.2006.881760

Terms of use:

Publisher copyright

©2006 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1913105 since: 2021-08-21T18:28:45Z

IEEE



Optimal Spatial Filtering for CV Estimation 

 

1 

 

Abstract— Muscle fiber conduction velocity (CV) can be 

estimated by the application of a pair of spatial filters to surface 

EMG signals and compensation of the spatial filter transfer 

function with equivalent temporal filters. This method integrates 

the selection of the spatial filters for signal detection to the 

estimation of CV. Using this approach, in this study we propose a 

novel technique for signal-based selection of the spatial filter pair 

that minimizes the effect of non-propagating signal components 

(end-of-fiber effects) on CV estimates (optimal filters). The 

technique is applicable to signals with one propagating and one 

non-propagating component, such as single motor unit action 

potentials. It is shown that the determination of the optimal filters 

also allows the identification of the propagating and non-

propagating signal components. The new method was applied to 

simulated and experimental EMG signals. Simulated signals were 

generated by a cylindrical, layered volume conductor model. 

Experimental signals were recorded from the abductor pollicis 

brevis with a linear array of 16 electrodes. In the simulations, the 

proposed approach provided CV estimates with lower bias due to 

non-propagating signal components than previously proposed 

methods based on the entire signal waveform. In the experimental 

signals, the technique separated propagating and non-

propagating signal components with an average reconstruction 

error of 2.9 ± 0.9% of the signal energy. The technique may find 

application in single motor unit studies for decreasing the 

variability and bias of CV estimates due to the presence and 

different weights of the non-propagating components. 
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Index Terms— spatial filtering, conduction velocity, linear 

electrode arrays  

I. INTRODUCTION 

ONDUCTION velocity (CV) reflects membrane muscle 

fiber properties and is thus indicative of the peripheral 

condition of the neuromuscular system. It can be 

estimated from multi-channel surface EMG recordings located 

between the innervation zone and the tendon region along the 

direction of the muscle fibers [1][2]. In ideal conditions, the 

surface action potentials detected along the muscle fibers 

travel without changes in shape from the innervation zone of 

the motor unit to the tendon endings, but this condition is 

never met in practice. Thus, there is not a unique mathematical 

definition of the delay between detected potentials but many 

definitions are possible. Each definition corresponds to a delay 

estimation method [3].  

One of the main problems in CV estimation is the presence 

of non-propagating components associated to the propagating 

ones. These components are mainly due to the generation and 

extinction of the action potentials at the innervation and tendon 

zones [3][4][5]. Different methods for CV estimation have 

different sensitivities to non-propagating signal components. 

Moreover, the effect of these components depends on the 

spatial filter applied for signal detection [6][7]. Specific 

combinations of spatial filters and estimation methods may be 

better than others in reducing the bias in CV estimates due to 

non-propagating signals. Double differentiation of the detected 

signals [8], for example, provides a non-biased CV estimation 

in the ideal case in which the non-delayed activity is identical 

in all channels. 

Recently, Farina & Merletti [9] proposed an approach for 

CV estimation based on the application of a pair of spatial 

filters and on the estimation of the temporal filters that best 

align the signals and compensate for the applied spatial filters. 

The effect of the transfer function of the temporal filters on 

propagating components is equivalent to that of spatial filters 

up to a scaling factor on the frequency axis which depends on 

the delay of propagation. This is due to the relation between 

temporal and spatial coordinate systems through the velocity 

of propagation. The estimated delay of propagation is defined 

as that determining the best matching between the spatially and 

then temporally filtered signals [9]. This approach combines 

the selection of the spatial filters for signal detection to the 

estimation of CV and this allows for the selection of the spatial 
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filters as those that best attenuate the effect of specific signal 

components on the delay estimate. 

Farina & Merletti [9] indicated how the choice of the spatial 

filters may influence the estimated CV. Using  specific filters 

they were able to reduce the CV estimation bias due to non-

propagating components. However, the selection of the spatial 

filters was not specifically designed for minimizing the effect 

of non-propagating signals on the delay estimates. 

In this study, we propose a method for the selection of the 

filter pair which minimizes the effect of non-propagating 

components on CV estimates starting from the approach 

proposed in [9]. It will be shown that the derivation of this 

spatial filter pair allows the estimation of the shapes of the 

propagating and non-propagating components from the surface 

EMG. We will limit our analysis to single motor unit 

recordings, in which, to a first approximation, a single 

propagating and a single non-propagating waveform are 

present. The non-propagating part of the single motor unit 

action potentials is determined by both the generation and the 

extinction of the action potential, with a predominant 

contribution of the extinction phenomenon, on which we will 

focus. 

 

II. METHODS 

 

A. Signal model and notations 

The method is based on the analysis of four surface EMG 

signals obtained from detection points located along the fiber 

direction. The model considered is the following: 
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where vi(t) (i = 0,…,3) are the recorded signals, vp(t) is the 

propagating signal component, vnp(t) the non-propagating 

component, and ),,,( 3210  
  the unknown vector of 

multiplication coefficients applied to the non-propagating 

signal part. The four signals in model (1) can be either four 

monopolar derivations or signals obtained by the application 

of a spatial filter at the four detection points. Model (1) 

assumes that: 1) the propagating component has the same 

shape and amplitude in the four recorded channels; 2) the 

delay between propagating components detected in adjacent 

channels is constant (i.e., the distance between detection 

systems is fixed and velocity of propagation is constant along 

the fiber); and 3) the non-propagating component has the same 

shape in the four channels and is multiplied by unknown 

coefficients. If the elements of the vector 


 are all equal, the 

non-propagating component can be suppressed by any spatial 

filter with null summation of the weights applied to the four 

signals. However, in general the entries of the vector 


 are 

not equal and we will focus on this condition. 

In the model described by Eq. (1), the only available data are 

the recorded signals vi(t). The delay , the shape of the 

propagating and non-propagating component and its amplitude 

in the four channels are unknown and should be estimated 

without any a-priori information. The problem will be solved 

by defining a specific pair of spatial filters (termed in the 

following optimal, according to the definition provided below) 

which allow exact delay estimation. It will be shown that the 

knowledge of this filter pair allows the determination of all the 

unknowns in Eqs. (1). Thus, the method will be described in 

two phases: 1) the derivation of all the elements of model (1) 

when the optimal filter pair is known, and 2) the determination 

of the optimal filters pair. 

 

B. Estimate of the delay by spatial and temporal filtering 

Given a pair of spatial filters applied to the four detected 

signals, the delay  in model (1) can be estimated from the 

application of temporal filters that compensate for the spatial 

filters, as proposed by Farina & Merletti [9]. The method is 

illustrated in Figure 1. If we first apply two spatial filters and 

then two temporal filters (with transfer functions of the same 

shape as the spatial filters and delay set to ̂ ) and subtract the 

resulting signals, the following relation holds (Figure 1):  
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where  fVp
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 are the Fourier transforms of the 

propagating and non-propagating components, respectively, 
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the two spatial filters used for detecting the signals, with ai and 

bi  (i = 0,…,3) the filter weights. We will assume that the 

summation of the weights of the two filters is zero. The 

function  baf


,,,ˆ   is given by: 
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with
11   iii BaAbs , being aA


  and 


 bB , 

and ̂  the estimated delay defining the scaling of the 

frequency axis of the temporal filter transfer functions. 

The minimization of the energy of the difference signal 

   fYfY 21   with respect to the delay ̂  leads to an estimate 

est  of the delay [9]:  
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Figure 1. Schematic representation of the detection and 

processing of surface EMG signals for the application of the 

CV estimator proposed in [Fa03], in both a) time and b) 

frequency representations. The detection is performed by two 

spatial filters, which filter the propagating signal Vp(f) with 

transfer functions which depend on CV ( is the delay of 

propagation, directly related to CV). The two filtered signals 

present components (Vnp with i = 0,…M) which do not 

propagate along the fiber and which are linearly combined by 

the weights of the spatial filters. The processing step consists 

of filtering in the temporal domain the signals previously 

filtered in the spatial domain and adjusting the transfer 

functions of the temporal filters in order to obtain two signals 

most similar to each other. The scheme has been adapted from 

[9]. 

 

As derived in [9], the mean square error in Eq. (4) is the 

same up to a multiplication factor for filter pairs with the same 

parameters  , defined as: 









2002

1001

baba

baba
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

                                       (5)   

  define all the filter pairs which lead to different 

delay estimates, except the pairs resulting from the condition 

02112  baba [9]. As in [9], we will fix four weights of the 

filter pair ( 2,1 21  aa ; 1,2 21  bb ). This choice 

allows the inclusion of two double differential filters in the set 

of spatial filter pairs considered. 

Each filter pair provides a different estimation of the delay 

depending on how the effect of the non-propagating 

components on the delay estimate is reduced by the spatial 

filters [thus, depending on  baf


,,,ˆ  ].  It is then possible 

to build an infinite number of delay estimators by changing the 

spatial filter pair. 

 

C. Amplitudes of the non-propagating signal components 

and optimal filters 

In model (1), there is an indeterminacy in the estimation of 

the amplitude vector ),,,( 3210  


, since this vector 

multiplies the non-propagating component vnp(t), which is also 

an unknown of the problem. The vector 


 can be multiplied 

by any constant value, the signal vnp(t) by the inverse of this 

value, and the observations (recorded signals) in Eqs. (1) will 

be the same. As a consequence, 


 is estimated up to a 

multiplicative factor. Without loss of generality, we fix 

10  . In addition, we introduce a new parameter K, such 

that: 

2

13

1 






K                                   (6) 

with 12   (the case 13210    is 

excluded by Eq. (6); as mentioned above, all the filters 

considered remove the non-propagating components in such a 

case, so that no filter pair is better than another and 

optimization is not needed). 

Given 1  and 2 , 3  is determined by K [Eq. (6)], thus 

the new unknown parameters are 1 , 2 , and K. This does 

not change the number of parameters to be estimated but 

determines simpler expressions in the following derivations. 

Given model (1) and relation (2), a spatial filter pair 

completely suppresses the non-propagating components in 1Y  

and 2Y  [from Eq. (4)] if it determines   0,,,ˆ baf


 , 

̂ . We will denote the   cients [Eq. (5)] 

which identify this filter pair as opt , opt and we will refer to 

these two filters as optimal filters. In the following we will 

show that the knowledge of the optimal filters allows the 

determination all the terms in Eqs. (1). After this, we will show 

how to estimate the optimal filters, i.e., opt and opt. 

opt and opt correspond to the filter pair satisfying the 

following condition [Eq. (3)]:  

  0,,,,ˆ
ˆ3

4

ˆ

3

ˆ

2

ˆ3

1    fjfjfjfj esesesesbf


   (7) 

Eq. (7) is satisfied for si = 0 (i = 1,…,4) since the 

exponential functions are independent of each other. The 

coefficients si depend on opt , opt and on the vector 


, since 

011   iii BaAbs  (i=1, 2, 3, 4). Eq. (7) defines a 

system of 4 equations in 5 unknowns: opt, opt, 1 , 2  and 

K. If the rank of the complete matrix of this linear system is 

maximum (i.e., equal to four), only one degree of freedom 

remains in the solution. It can be shown that the solution of the 

system is in this case ),1,,1(  


, with   arbitrary. This 

solution is not physically acceptable since it imposes a 

constraint on the amplitudes of the non-propagating 

components, which does not hold in general. The other 

solutions are obtained imposing the rank of the complete 

matrix of the system to be less than four, which is equivalent to 

setting [see Eq. (6)]: 

opt

opt
K








3

; 0))(3()1( 132   optopt
.   (8) 

Eqs. (8) define a relation between the optimal filters and  the 

amplitudes of the non-propagating component. With this 

condition, the four equations (si = 0, for i = 1,…,4) derived 
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from Eq. (7) are linearly dependent (rank equal to 1), and lead 

to: 
  

221

22
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313
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where 
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optopt
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cc


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







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3
,

3

3
21

. Eq. (9) can be rewritten 

equivalently as: 

0)(3)1()1( 2121   optopt
.         (10) 

Eqs. (8), (9), and (10) associate the pair of optimal filters 

defined by opt  and opt  to the amplitudes 1 , 2  and 3  

of the non-propagating component ( 10  ). 

Thus, once the optimal filters are identified, they determine a 

condition on 1  and 2 , and viceversa. This is due to the fact 

that the knowledge of the optimal filter provides information 

on the non-propagating component amplitude vector (since the 

optimal filters are those that compensate for the amplitude 

vector and cancel out the weight of the non-propagating 

component). Moreover, given the optimal filters, K is 

determined by Eqs. (8). Thus, once the optimal filters are 

determined they allow to obtain the vector 


 up to only one 

unknown parameter: 

  )1,,,1( 22122221 ccKcc  


           (11) 

with c1 and c2 given by Eq. (9). Note that the knowledge of 

the optimal filters implies 0 and, in this condition, the 

minimization of the mean square error in Eq. (4) provides the 

exact delay  . 

Finally, we note that if 


 is in the form of Eq. (11), the 

function  baf


,,,ˆ   [Eq. (7)] has the same shape for any 

choice of   (this 

property can be derived with rather simple algebraic 

calculations, omitted). 

 

D. Estimation of the non-propagating component 

Let’s suppose to know the optimal filters and, thus, as 

indicated in the previous section, the shape of  baf


,,,ˆ   

for any other filter pair, up to an amplitude scaling factor. In 

this condition, we also have an exact estimate of the delay  . 

If the estimated delay est  is exact, the first term in Eq. (2) is 

zero for any choice of the spatial filter pair and an estimate 

npV̂  of npV  is thus obtained as:  

  ,,,

)()(
)(ˆ 21


est

np
f

fYfY
fV


                         (12) 

for any spatial filter pair, except for the optimal filters which 

would lead to   0,,, baf est


  [Eq. (7)]. Thus, 

 baf est


,,, -optimal filters in Eq. 

(12), using the delay and the vector 


 derived from the 

optimal filters. The choice of the filter pair for defining 

 baf est


,,,  

energy of  baf est


,,,  the more robust the estimate of 

npV . Thus, the filter pair should be “far” from the condition of 

the optimal filters [for which   0,,, baf est




refer to this filter pair as worst filters. Such worst filters are 

defined as those maximizing (for the bounded discrete set of 

filter pairs considered) the energy of the difference signal e
2
 

defined in Eq. (4) for the correct delay value. Since Eq. (12) is 

valid for any filter pair (except for the optimal ones), to 

improve the quality of estimation of the non-propagating 

component, the expression (12) is applied for all filter pairs 

corresponding to e
2
 larger than one fourth of its global 

maximum (corresponding to the worst filters), and the 

resulting estimates of npV  are averaged. It was verified on 

simulation (results not shown) that such an averaging reduced 

the contribution of noise on the estimated non-propagating 

component. 

If the optimal spatial filters are determined, the vector of 

amplitudes 


 is known except for one parameter 2 in Eq. 

(10)]. As stated above, 2 affects only the amplitude of 

  ,,,


estf . Thus, the shape of )( fVnp
 is fully 

determined from Eq. (12), up to the amplitude.  

To reduce the effect of noise on the average, the estimation 

of the non-propagating component )( fVnp
 (obtained as 

described above with averaging over a number of filter pairs) 

is interpolated in time domain with a polynomial function and 

considered on a bounded temporal support. Ni samples are 

used for the interpolation on each side of the maximum of 

)(ˆ tvnp . The number of samples to describe the non-

propagating component is estimated by considering samples 

on the left and right side of the maximum of )(ˆ tvnp  which 

satisfy, for each side, the following properties: 

1) )(ˆ)(ˆ
1 nnpnnp tvtv ,  where nt  and 1nt  are the nth and 

(n-1)th considered samples; 

2) )(ˆ05.0)(ˆ
0tvtv npnnp  , where nt  is the nth considered 

sample, and 0t  corresponds to the maximum of )(ˆ tvnp . 

The non-propagating component is estimated by polynomial 

interpolation on the selected samples. The polynomial fit is 

then truncated at the time interval between the first zeros of the 

polynomial on the two sides. The degree of the polynomial is 

chosen as that providing the best approximation of )(ˆ tvnp  on 

this time interval. Since high degree polynomials present large 

oscillations, the first zeros of the polynomial on the two sides 

can be estimated badly for too high degrees. For this reason, 

the degree of the polynomial providing the best fit of the non-

propagating component is not always Ni. 

 

E. Estimation of the propagating component 

When the optimal filters are obtained, the vector of 

amplitudes of the non-propagating components is known up to 

an unknown term, the non-propagating component is derived 
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with Eq. (12) (and the  subsequent interpolation procedure 

described above) up to an amplitude factor, and the delay of 

the propagating component is estimated exactly. 

From the non-propagating components we can derive the 

propagating one. Indeed, under the assumption of known 

optimal filters, the model described in Eqs. (1) can be written 

as: 

   
   
   
   




















tvBtvtv

tvBtvtv

tvBtvtv

tvBtvtv

npampestp

npampestp

npampestp

npampp

ˆ3)(

ˆ2)(

ˆ)(

ˆ)(

33

22

11

00









                     (13) 

where  tvnp
ˆ  is the estimated non-propagating term, the 

amplitude vector 


 is given by Eq. (11), and Bamp is the 

unknown amplitude of the non-propagating term, since 0  

has been fixed to 1. The unknowns of system (13) are 2 , 

Bamp, and vp(t). Translating and linearly combining the 

equations in system (13), we obtain:  

    
    
    














estnpnpampest

estnpnpampest

estnpnpampest

tvtvBtvtv

tvtvBtvtv

tvtvBtvtv







ˆˆ)()(

ˆˆ)()(

ˆˆ)()(

3232

2121

1010

      (14) 

which is a system of 3 equations in 2 unknowns, with t (the 

time variable) as a parameter. The system in Eq. (14) can be 

solved for Bamp and 
2  selecting any time sample. More 

robust estimates are obtained by averaging estimates of B and 

2
 obtained from Eqs. (14) solved through the pseudo-inverse 

matrix for a number of time samples. For this purpose, the 

samples for which the estimated non-propagating component is 

larger than a threshold are used. Outliers due to noise were 

excluded in the averaging process. An alternative approach for 

the estimation of Bamp and 
2 , consisting in integrating over 

time the system (14), provided equivalent results. 

Once Bamp and 
2  are obtained from Eqs. (14), the 

propagating term is estimated by subtracting the estimated 

non-propagating term from each of the 4 recorded signals, 

translated by multiple of est  for alignment and averaged:  





3

0

)(ˆ)(
4

1
)(ˆ

k

estnpampkestkp ktvBktvtv           (15) 

 

F. Determination of the optimal filters 

From Eqs. (11)-(15), if the optimal filters are known, all the 

unknowns in model (1) are determined. Thus, the initial 

problem of estimating the model parameters in Eq. (1) 

(including unknown waveforms for the propagating and non-

propagating components) is reduced to the estimation of opt 

and opt which define the optimal filter pair. 

It has to be noted that we can apply all the previous 

equations assuming as optimal any pair of filters, thus 

obtaining an estimation of the delay, the propagating and non-

propagating component. However, only the optimal filters 

would fit all the hypotheses, i.e., the vanishing of 

 baf


,,,ˆ  


 from Eq. (11) and 

the assumption that est  is an exact estimate of the delay . 

Thus, if we apply the above procedure assuming as optimal a 

pair of filters which does not satisfy the condition in Eq. (7), 

the determination of the propagating and non-propagating 

component will be incorrect. This property can be used to 

derive the optimal filters. We can select a filter pair and, 

assuming it corresponds to the optimal filters, we can obtain 

the propagating and non-propagating components. On the 

basis of the estimates of the model parameters we can then 

build the estimated observations (the four recorded signals) 

and compare them with the actual observations. In case of 

selection of the optimal filters, the fit will be better than when 

selecting any other filter pairs. Thus, the optimal filters are 

those leading to the best reconstruction of the observations. 

Given the reconstructed observations )(ˆ tvi , i = 0,…, 3, which 

depend on the choice of opt and opt, the following mean 

square error is thus minimized over opt and opt: 





3

0

2

2

2 )(ˆ)(
4

1

i

ii tvtverr

                                                                     
(16) 

The minimum of the mean square error (16), over opt and 

opt, identifies the two optimal filters. Moreover, the minimum 

mean square error is indicative of the performance of the 

method since small mean square errors correspond to good 

reconstructions and thus to good matching of all the 

hypotheses of the approach. The method is schematically 

shown in Figure 2 while Figure 3 reports an example of 

application on a simulated single fiber action potential. The 

method is insensitive to the degree of superposition of the two 

signal components, which can be completely overlapped in the 

time and frequency domains. 
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Figure 2. Flow-chart of the proposed method. At each step, a 

pair of candidate optimal filters (corresponding to the family 

definided by optopt  ˆ,ˆ ) is used to determine the propagating 

and non-propagating component and to reconstruct the 

detected signals from these estimates. The pair ( optopt  ˆ,ˆ ) 

resulting in the minimum mean square error in the 

reconstruction provides the estimation of the delay and of the 

two signal components. opt̂  and opt̂  are changed 

independently. m  and m  indicate the minimum considered 

values for   and  , M  and M  the maximum values, and 

 and  the steps with which they are varied. In the results 

shown in this study, m = -3, m =0, M =1, M =4, and  = 

 = 0.25. 
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Figure 3. Example of application of the proposed method to 

simulated signals. The propagating component is simulated 

with the second derivative of a Gaussian function (with 

standard deviation 14.9 ms) while the non-propagating 

component is described with a Gaussian function with 

different amplitude on the four channels (with standard 

deviation 2.9 ms). a) The simulated signals (solid line) and the 

reconstructed signals (dashed lines; completely overlapped 

with the solid lines). b) The estimation of the propagating 

(dashed lines) and non-propagating components (solid lines). 

 

 

G. Simulations 

The proposed method was tested with phenomenological and 

structure-based surface EMG models. In a first series of 

simulations, Gaussian signals have been used to test the 

sensitivity of the method to variations in the shape of the 

propagating and non-propagating components. In a second 

simulation set, motor unit action potentials were generated by 

a cylindrical structure-based model of surface EMG signal 

which included the bone, muscle, fat, and skin tissues [10]. In 

these simulations, fat layer thickness was 3 mm, skin layer 1 

mm, muscle layer 26 mm, and bone radius  20 mm. Bone, fat, 

and skin were isotropic (conductivity 0.02 S/m, 0.05 S/m, and 

0.5 S/m, respectively), while the muscle tissue was anisotropic 

with higher conductivity along the fiber direction (longitudinal 

conductivity S/m5.0l , transversal conductivity 

S/m1.0t ). The parameters that varied in the 

simulations were the fiber depth, fiber length (fibers were 

symmetric with respect to the end-plate) and signal-to-noise 

ratio. Using the simulated motor unit action potentials, the 

proposed method was compared with the spectral matching 

approach [11] (SM), the method proposed by Farina & 

Merletti [9] with selection of the spatial filter pair leading to 

the minimum CV estimate (MCV), and the method of the 

reference points which computes the delay between peaks in 

two detected signals after interpolation around the peak with a 

second order polynomial [12]. 

 

H. Experimental signals 
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The proposed method was also applied to experimental 

surface EMG signals collected from the abductor pollicis 

brevis muscle of 8 subjects. The signals were detected by a 

linear array of 16 electrodes (inter-electrode distance 2.5 mm, 

electrodes 1 mm diameter), located between the most distal 

tendon and the muscle belly, along the direction of the muscle 

fibers, and fixed at the skin with adhesive tape. The reference 

electrode was placed at the wrist. Sixteen monopolar signals 

were obtained during 60-s long contractions at force lower 

than 4 % of the maximal voluntary contraction force. The 

force level was selected during a preliminary phase and 

corresponded to a level which allowed the identification of 

single motor unit activities from the surface EMG recordings 

[13]. Monopolar surface EMG signals were amplified (EMG 

amplifier, EMG-16, LISiN-OT Bioelectronica, Torino, Italy, 

bandwidth 10-500 Hz), sampled at 2048 Hz, and stored after a 

12 bit A/D conversion. Common mode components due to line 

interference were minimized by using a negative feedback 

loop conceptually equivalent to the driven-right-leg circuit 

[14]. 

From the monopolar signals, bipolar derivations were 

obtained off-line and decomposed to identify single motor unit 

action potentials with a recently proposed decomposition 

method [15]. The detected times of occurrences of single 

motor units were used for spike-triggered averaging the 

monopolar signals in order to obtain the monopolar potentials 

as recorded at the 16 electrodes of the array [16]. These 

potentials included propagating and non-propagating 

components. The four channels in the middle between the 

innervation zone and tendon were used for further analysis. 

Before applying the proposed method, the experimental 

signals were normalized with respect to the minimum value in 

order to compensate for possible variations in the amplitude of 

the propagating component across the channels. The 

reconstruction error was considered as an index of 

performance in the separation of the propagating and non-

propagating component, as discussed above. 

III. RESULTS 

A. Stability of the method 

The effect of perturbations in the delay and in the width and 

amplitude of the propagating and non-propagating components 

on the performance of the method was tested on simulated 

signals (as described in section G above). For this purpose, the 

propagating signal was described by the second derivative of a 

Gaussian function: 

2

2

2

)(

2

2

)( p

pt

p e
dt

d
tv






                   (17) 

The non-propagating component was modeled as a Gaussian 

function: 

2

2

2

)(

)( np

npt

np etv






                   (18) 

 

A.1 Perturbation of the width and amplitude of the 

propagating component 

Width and amplitude changes in the propagating component 

were obtained by changing the variance p
  in Eq. (17): 

p

p

p

p


100

100
                     (19) 

where 
p

p
  is the perturbed width index of the propagating 

component.  

Figure 4a reports an example of determination of the two 

signal components in case of perturbations of the amplitude 

and width. Figure 4d shows the CV estimates for width 

changes in the third channel with p in the range 0-20 [Eq. 

(19)]. 

 

A.2 Perturbation of the width and amplitude of the non-

propagating component 

Perturbation of the width and amplitude of the non-

propagating component was obtained by varying the width of 

the Gaussian function in Eq. (18): 

np
np

p p


100

100
                         (20) 

where np

p
  is the perturbed width. 

An example of reconstruction is shown in Figure 4b. Figure 

4e reports the CV estimates for the cases of width changes in 

the second channel between 0% and 100%.  
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Figure 4. Examples of reconstructed (dashed lines) signals 

and CV estimates when some of the hypotheses of model (1) 

are not met (signals are modeled as in Figure 3). The width 

and amplitude of the propagating component are not the same 

for the different channels in a) and d); the shape of the non-

propagating component is not the same for the different 

channels in b) and e); the delay between adjacent channels is 

not constant in c) and f). In a) t
np

 6 , t
p

 30  

( t  being the time step, the inverse of the sampling frequency 

2048
s

f Hz) for the first, second, and fourth channel, 

pp
p   15.1  for the third channel. In d) the width 
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changes in the third channel between p=0 and p=20 [p given in 

Eq. (18)]. In b) t
np

 6 , t
p

 30   for the first, 

second, and fourth channel, nt
np

p
  7.1  for the third 

channel. In e) the CV estimates are reported for the cases of 

width changes for the non-propagating component in the 

second channel between 0% and 100%. In c) a perturbation of 

the delay is introduced in the second channel and an example 

of reconstruction is shown for the case 15p . In f) the CV 

estimates are reported for the cases of percentage of variation 

of p
  between 0% and 20% of the value of  .  

 

A.3 Perturbation of the delay 

Perturbations of the delay were assessed imposing for the 

third channel a delay of the propagating component slightly 

different than  :  


100

100 p

p




.                                (21) 

An example of reconstruction is shown in Figure 4c for the 

case 15p . Figure 4f shows the CV estimates with percent 

increases of p
  in the range 0% - 20%. 

 

B. Simulations of motor unit action potentials 

Figure 5 reports the comparison of the proposed method for 

CV estimation with SM and MCV for simulated motor unit 

action potentials. Figure 5a shows the separation of 

propagating and non-propagating components for a simulated 

signal generated by a motor unit with 50 fibers, at 7 mm depth 

within the muscle, with semi-fiber length 50 mm, and signal-

to-noise ratio 15 dB. The scatter of end-plates and tendon 

regions was 5 mm. The CV estimates with the new method, the 

SM [11] and MCV [9] methods are shown in Figure 5b,c,d for 

various fiber depths, semi-lengths, and signal-to-noise ratios. It 

is noted that the method proposed led to the minimum bias of 

CV estimates among the three methods tested. The method of 

the reference points applied to the two double differential 

derivations of the simulated signals poorly performed for 

increasing fiber depth since the signal energy was mostly due 

to the non-propagating component and thus the signal-to-noise 

ratio for the propagating component (used for the computation 

of the peak delay) was very low. Thus, additional simulations 

were performed to compare the new method proposed and that 

of the reference point for varying signal-to-noise ratio. For a 

motor unit at 4 mm depth into the muscle and 50 mm fiber 

semi-length the estimates of conduction velocity for the new 

method and the method of the reference point, respectively, 

were 4.04 ± 0.13 m/s and 3.89 ± 0.22 m/s (20 dB), 4.02 ± 0.24 

m/s and 4.04 ± 0.60 m/s (16 dB), 4.19 ± 0.40 m/s and 4.48 ± 

0.86 m/s (12 dB), 3.80 ± 0.37 m/s and 4.30 ± 1.01 m/s (8 dB). 

Thus, the method of the reference points showed a larger 

standard deviation and bias of estimation when compared with 

the proposed method, especially for low signal-to-noise ratios. 

This is due to the limited amount of information on the 

waveform used by the method of the reference points. 

Similarly, local perturbations of the signal shape which affect 

the peak of the signal have a larger effect on the estimates 

based on signal peaks than on estimator which use the entire 

waveform. 
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Figure 5. Comparison between the proposed method (CVnew), 

spectral matching [11] (SP) and minimum CV estimate [9] 

(MCV) for simulated monopolar motor unit action potentials, 

using the model described in [10] (skin layer thickness 1 mm, 

conductivity mS /5.0 , fat layer thickness 3 mm, 

conductivity mS /05.0 , muscle thickness 26 mm, 

longitudinal conductivity mSl /5.0 , transversal 

conductivity mSt /1.0 , bone radius 20 mm, 

conductivity mS /02.0 ). In all cases, the motor unit 

had 50 fibers randomly distributed in a circular territory 

(motor unit fiber density 20 fibers/mm
2
). The scatter of the 

end-plates and tendon endings was 5 mm in all cases. The 

inter-channel distance was 5 mm. (a) Example of 

reconstruction (dashed line) of a motor unit action potential 

(four monopolar recordings) with depth of the center of the 

motor unit territory within the muscle 7 mm, semi-fiber length 

50 mm, signal-to-noise ratio 15 dB (left plots). The 

reconstructed signals is almost identical to the original one, 

thus the two signals are completely superimposed. The 

propagating and non-propagating parts of the signal, as 

extracted by the method, are also shown (right plot). CV 

estimates (mean ± SD, over 20 noise realizations in each 

condition) from signals generated by motor units with mean 

semi-fiber length in the range 40-60 mm, and depth 1 mm (b), 

4 mm (c) and 7 mm (d) within the muscle. Signal-to-noise ratio 

15 dB in all cases. Symbols not shown are out of the reported 

range of CV values. 

 

 

C. Experimental signals 

From the set of identified motor units, we excluded from the 

analysis those resulting in CV estimates larger than 7 m/s. This 
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occurred for four out of 13 identified motor units. The method 

was thus applied to a total of nine motor units from the eight 

investigated subjects. Figure 6 reports an example of 

separation of propagating and non-propagating components for 

one of these motor units. The average (±SD) reconstruction 

error over the 9 experimental motor unit action potentials was 

2.9 ± 0.9 % of the signal energy, indicating good identification 

of the two signal components. 
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Figure 6. Example of application of the proposed method to 

the separation of propagating and non-propagating 

components from an experimental monopolar single motor unit 

recording. (a) The reconstructed signals are shown in dashed 

lines while the original recordings are in solid lines. (b) The 

two separated components. The reconstructed propagating 

component is normalized with respect to the minimum value of 

the original signal for comparison. 

 

IV. DISCUSSION  

A method for the identification of propagating and non-

propagating signal components based on optimal spatial filter 

pairs was proposed. The starting point for this method is the 

approach for CV estimation proposed by Farina & Merletti 

[9], which integrates the selection of spatial filters for EMG 

signal detection with the method for CV estimation. According 

to this technique, surface EMG signals are first spatially and 

then temporally filtered. The spatial and temporal filters are 

equivalent for propagating components up to a scaling factor 

on the frequency axis, which reflects the relation between time 

and space for propagating waves. Two signals filtered by 

different spatial filters are identical after the application of two 

temporal filters which compensate for the transfer functions of 

the spatial filters.  

This study focused on the application of this approach for the 

identification of the propagating and non-propagating 

components in single motor unit signals detected by linear 

electrode arrays. This allowed an estimation of CV in principle 

not affected by end-of-fiber components [see Eq. (4) for 

0]. The method is based on the relation between the 

coefficients of the spatial filters that remove the non-

propagating components and the amplitude of non-propagating 

signals at the different electrodes. Since the spatial filters 

produce a linear combination of the non-propagating 

components, the knowledge of the weights of the filters which 

cancel out these components provide information on their 

amplitude and thus allows the reconstruction of the shape of 

the propagating and non-propagating signal parts. It has thus 

been shown that knowledge of the spatial filters that show this 

cancellation property allows the determination of all the 

unknown elements of the model of signal generation. 

A few previous methods have been proposed for separating 

propagating and non-propagating components from surface 

EMG signals. Rubio et al. [17][18] used a neural network for 

this purpose, assuming non-propagating signals with different 

amplitudes and equal shape on the detected channels. His 

method was, however, very sensitive to additive noise [17][18] 

and could not be applied in practical cases. The method 

proposed in this study is based on an innovative approach and 

provides lower CV estimation bias with respect to previous 

techniques (Figure 5). Moreover, its sensitivity to noise is 

comparable to previous approaches which make use of the 

entire signal waveform (Figure 5). It has to be noted that in 

ideal conditions of absence of noise and of shape variations in 

the signals, correct estimates of delay may be obtained by 

considering only part of the waveforms, for example the peak 

[12]. However, local methods are more sensitive to noise, as 

shown in this study, than the one proposed. In cases in which 

averaging processes can be performed, noise and shape 

variations may not be a problem and thus the use of reference 

points for delay estimation may be the less sensitive to non-

propagating signals. However, in studies dealing with single 

action potential CV the signal-to-noise ratio is usually poor [3] 

and methods more robust to noise are necessary. The relations 

between spatial filter pairs and non-propagating components 

are also important from the theoretical point of view since they 

add to the spatial filter theory. Important limitations of this 

approach should, however, be considered. 

The method can only be applied to single motor unit 

recordings and not to the interference surface EMG signal. 

Indeed, the derivations of the method are based on a model 

with a single non-propagating and a single propagating 

component [Eqs. (1)]. The detection of single motor unit 

action potentials requires a pre-processing of the signal, either 

based on surface EMG signal decomposition [15][16] or on 

spike-triggered averaging of the surface EMG after 

intramuscular EMG decomposition [19].  

The analytical method used to derive the method is rather 

simple [Eq. (1)]. In particular, the model assumes that the non-

propagating component has the same shape on all channels, 

which does not occur exactly in practical cases. The relations 

between the optimal spatial filters and the amplitude of the 

non-propagating components, and thus the estimation of the 

shapes of the two components, are based on this hypothesis. In 

practical cases, the hypothesis can be reasonably well satisfied 

depending on the recording conditions. The sensitivity analysis 

provided in this study by simulation indicates the limitations of 

the approach when some of the hypotheses of the model in 

Eqs. (1) are not met (Figure 4). These problems were probably 

the reason for the failure of the method when applied to 

experimental motor unit recordings in four out of 13 motor 

units. However, simulations with the structure-based model 

have shown that the method performs better than previously 

available ones on realistic simulated action potentials which do 

not exactly match all the hypothesis of the method. 

In conclusion, we proposed a novel approach for selecting 

pairs of spatial filters that remove the influence of non-
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propagating signal components on the estimation of CV. The 

determination of this filter pair also allows the separation and 

estimation of the propagating and non-propagating 

components from the EMG recordings. The technique 

provides additional results on spatial filter theory and may find 

application in single motor unit studies for decreasing the bias 

and variance of CV estimates due to different weights of the 

non-propagating components in different recordings, muscles 

and/or subjects. 

REFERENCES 

 

[1] L. Arendt-Nielsen and M. Zwarts, “Measurement of muscle 

fiber conduction velocity in humans: techniques and 

applications”, J. Clin. Neurophysiol., vol. 6, pp. 173-90, 1989. 

[2] D. Farina, W. Muhammad, E. Fortunato, O. Meste, R. 

Merletti and H. Rix, “Estimation of single motor unit 

conduction velocity from surface electromyogram signals 

detected with linear electrode arrays”,  Med. Biol. Eng. 

Comput., vol. 39, pp. 225-36, 2001 

[3] D. Farina, R. Merletti, “Methods for estimating muscle 

fiber conduction velocity from surface electromyographic 

signals”, Med. Biol. Eng. Comput., vol. 42, pp. 432-445, 2004. 

[4] N.A. Dimitrova, G.V. Dimitrov and Z.C. Lateva., 

“Influence of the fiber length on the power spectra of single 

muscle fiber extracellula rpotentials”, Electromyogr. Clin. 

Neurophysiol., vol. 31, pp. 387-98, 1991. 

[5] D. Farina, C. Cescon, R. Merletti, “Influence of 

anatomical, physical, and detection-system parameters on 

surface EMG”, Biol Cybern., vol. 86, pp. 445-56, 2002.  

[6] E. Schulte, D. Farina, G. Rau, R. Merletti and C. 

Disselhorst-Klug, “Single motor unit analysis from spatially 

filtered surface electromyogram signals. Part 2: Conduction 

velocity estimation”, Med. Biol. Eng. Comput., vol. 41, pp. 

338-45, 2003. 

[7] D. Farina, L. Mesin, S. Martina, R. Merletti, “Comparison 

of spatial filter selectivity in surface myoelectric signal 

detection: influence of the volume conductor model”, Med. 

Biol. Eng. Comput., vol. 42, pp. 114-20, 2004.  

[8] H. Broman, G. Bilotto, C. De Luca, “A note on non 

invasive estimation of muscle fiber conduction velocity”, IEEE 

Trans. Biomed. Eng., vol. 32, pp. 341-343, 1982. 

[9] D. Farina, R. Merletti., “A novel approach for estimating 

muscle fiber conduction velocity by spatial and temporal 

filtering of surface EMG signals”, IEEE Trans. Biomed. Eng., 

vol. 50, pp. 1340-51, 2003. 

[10] D. Farina, L. Mesin, S. Martina, “A Surface EMG 

generation model with multylayer cylindrical description of the 

volume conductor”, IEEE Trans. Biomed. Eng., vol. 51, pp. 

415-26,  2004. 

[11] K.C. McGill, L.J. Dorfman, “High-resolution alignment 

of sampled waveforms”, IEEE Trans. Biomed. Eng., vol. 31, 

pp. 462-8, 1984. 

[12] T.I. Arabadzhiev, G.V. Dimitrov, N.A. Dimitrova, 

“Simulation analysis of the ability to estimate motor unit 

propagation velocity non-invasively by different two-channel 

methods and types of multi-electrodes”, J. Electromyogr. 

Kinesiol., vol. 13, pp. 403-15, 2003. 

[13] D. Farina, M. Gazzoni, F. Camelia, “Low-threshold motor 

unit membrane properties vary with contraction intensity 

during sustained activation with surface EMG visual 

feedback”, J. Appl. Physiol., vol. 96, pp. 1505-15, 2004.  

[14] B. Winter, J. Webster, “Driven-right-leg circuit design,” 

IEEE Trans. Biomed. Eng., vol. 30, pp. 62–66, 1983. 

[15] M. Gazzoni, D. Farina, R. Merletti, “A new method for 

the extraction and classification of single motor unit action 

potentials from surface EMG signals”, J. Neurosci. Methods, 

vol. 136, pp.165-77, 2004 

[16] C. Disselhorst-Klug, G. Rau, A. Schmeer, J. Silny, “Non-

invasive detection of the single motor unit action potential by 

averaging the spatial potential distribution triggered on a 

spatially filtered motor unit action potential”, J. Electromyogr. 

Kinesiol., vol. 9, pp. 67-72, 1999. 

[17] J. Rubio, R. Merletti, Y. Fan, “Separation of travelling 

from non-travelling components in surface myoelectric 

signals”, Proc. VI Mediterranean Conference on Medical and 

Biological Engineering, vol. I, July 5-10, 1992, Capri, Italy.  

[18] R. Vela, “Characterization and separation of propagating 

and stationary myoeletric signals”, Master Thesis, Boston 

University, 1990  

[19] D. Farina, L. Arendt-Nielsen, R. Merletti, T. Graven-

Nielsen, “Assessment of single motor unit conduction velocity 

during sustained contractions of the tibialis anterior muscle 

with advanced spike triggered averaging”, J. Neurosci. 

Methods, vol. 115, pp. 1-12, 2002. 

 

 

 

 

 

Luca Mesin graduated in electronics engineering in December 

1999 from Politecnico di Torino,  Torino, Italy, he received 

the Ph.D. in Applied Mathematics in 2003, from the same 

university. Since March 2003, he is a Fellow of the Laboratory 

for Neuromuscular System Engineering in Torino. He was 

involved in research activities in the fields of Kinetic theory 

and Deformable Porous Media theory, with applications to 

Biomathematics and Composite Materials. Now, his main 

research interests concern signal processing of biomedical 

signals and modeling of biological systems. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=1748076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22Arabadzhiev+TI%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22Dimitrov+GV%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22Dimitrova+NA%22%5BAuthor%5D

