
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Functional Testing Approaches for "BIFST-able" tlm_fifo / Alemzadeh, H.; Navabi, Z.; DI CARLO, Stefano; Scionti, A.;
Prinetto, Paolo Ernesto. - STAMPA. - (2008), pp. 85-92. (Intervento presentato al convegno IEEE International High
Level Design, Validation and Test Workshop (HLDVT) tenutosi a Hyatt Regency Lake Tahoe Resort Incline Village (NV),
USA nel 19-21 Nov. 2008) [10.1109/HLDVT.2008.4695882].

Original

Functional Testing Approaches for "BIFST-able" tlm_fifo

Publisher:

Published
DOI:10.1109/HLDVT.2008.4695882

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1856181 since: 2016-09-16T17:13:05Z

IEEE

Functional Testing Approaches
for "BIFST-able" tlm_fifo
Authors: Alemzadeh H., Navabi Z., Di Carlo S., Scionti A., Prinetto P.,

Published in the Proceedings of the IEEE International High Level Design, Validation and Test

Workshop (HLDVT), 19-21 Nov. 2008, Hyatt Regency Lake Tahoe Resort Incline Village (NV), USA.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4695882

DOI: 10.1109/HLDVT.2008.4695882

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

!Politecnico di Torino

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4695882
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4695882
http://dx.doi.org/10.1109/HLDVT.2008.4695882
http://dx.doi.org/10.1109/HLDVT.2008.4695882

Functional Testing Approaches for “BIFST-able” tlm_fifo

Homa Alemzadeh1, Stefano Di Carlo2, Alberto Scionti2, Paolo Prinetto2, Zainalabedin Navabi1

1CAD Research Laboratory, ECE Department
School of Engineering, University of Tehran, Iran

Email: {homa, navabi}@cad.ut.ac.ir

2Dipartimento di Automatica e Informatica

Politecnico di Torino, Italy
Email: {stefano.dicarlo, alberto.scionti,

 paolo.prinetto}@polito.it

 Abstract

Evolution of Electronic System Level design me-
thodologies, allows a wider use of Transaction-Level
Modeling (TLM). TLM is a high-level approach to
modeling digital systems that emphasizes on separat-
ing communications among modules from the details of
functional units. This paper explores different func-
tional testing approaches for the implementation of
Built-in Functional Self Test facilities in the TLM pri-
mitive channel tlm_fifo. In particular, it focuses on
three different test approaches based on a finite state
machine model of tlm_fifo, functional fault models, and
march tests respectively.

Index Terms — Design for Testability (DFT), Sys-

tem Test, Functional Testing, Transaction Level Mod-
eling (TLM), System Level Design

1. Introduction

With the increasing complexity of digital systems,
and shrinking time to market, Electronic System Level
(ESL) design has emerged as the main design metho-
dology for implementing large digital systems. The
evolution of ESL design methodologies has introduced
Transaction Level Modeling (TLM). TLM is a transac-
tion-based modeling approach, originally based on
high-level programming languages such as C++ and
SystemC, which emphasizes on separating communi-
cations from computations within a system. In the
TLM notion, communication mechanisms are modeled
as abstract channels accessed resorting to interface
functions. Transaction requests between modules take
place by calling these functions that encapsulate low-
level details of the information exchange. At the trans-
action level, the emphasis is more on data transfer
functionalities rather than on their actual implementa-
tions.

Contrary to the migration of digital system design
methodologies from gate and register transfer levels to
higher abstraction levels such as TLM, testing and tes-

tability techniques are still mostly performed at the
lower abstraction levels. It is thus gaining importance
for system level designers the introduction of new
tools to insert test and testability features directly at
TLM level in a completely transparent and automatic
way, without concerning themselves with the details
and intricacies of lower level implementations. These
tools will play, at system level, the same role that today
EDA tools play at the gate and RT levels.

In [1] we presented a functional testing methodolo-
gy applicable at the TLM abstraction level during the
system level design phase, even before hard-
ware/software partitioning. Functional testing is the
only possible and reasonable testing strategy at this
very high level of abstraction. The added testing capa-
bilities can be later synthesized either into hardware or
software according to the designer’s choices and needs.

In the present paper we propose three different
functional testing approaches for the implementation of
TLM testing strategies introduced in [1].

This paper is organized as follows: Section 2
presents a background of the TLM testing methodolo-
gy presented in [1]. Section 3 presents a FSM based
testing approach, while Section 4 presents a pure func-
tional fault based testing. Section 5 introduces a func-
tional testing approach based on march tests and Sec-
tion 6 concludes the paper.

2. TLM Testing Methodology

For the sake of clarity, this section briefly introduc-
es the basis of the high-level TLM testing methodology
proposed in [1]. The basic idea relies on introducing
additional test functionalities to the blocks composing
a TLM design to be translated later into Built-in Func-
tional Self Test (BIFST) facilities available in the final
product. In particular, the design methodology com-
prises the idea of enriching each computation unit of a
design with predefined test facilities, and replacing
each original communication channel with a corres-
ponding new BIFST-able version. In addition, in order
to evaluate the proposed testing strategy, early quality
evaluation metrics must be introduced during the de-

sign phase. These metrics should be easily measurable,
available, and acceptable at a very high abstraction
level.

The added BIFST capabilities can then be synthe-
sized along with the whole TLM system either into
hardware or software modules according to the design-
er’s choices and needs. Also the evaluation metrics
used during the design phase can be re-used on the
final product with the same semantics and accuracy.

The preliminary test architecture for TLM designs
presented in [1] is depicted in Figure 1. Each computa-
tion unit (Writer/Reader) as well as the communication
channel is modified to include the required BIFST fa-
cilities. This architecture can fit any type of TLM
communication channel; nevertheless, for the sake of
simplicity and without any loss in generality, in this
paper we will only focus on a specific channel: the
basic TLM primitive tlm_fifo. tlm_fifo implements
TLM unidirectional communications, and it is used in
the implementation of all other TLM communication
channels.

Figure 1 - Test Architecture - Added Test Facilities

The architecture proposed in Figure 1 can support
three different testing strategies:

1. Transaction Testing: testing the transactions be-
tween the channel and Writer/Reader separately.
It includes Write Transaction Testing and Read
Transaction Testing;

2. Channel Self-Testing: testing the channel as an
isolated component, without considering its con-
nections with the Writer and the Reader;

3. Integration Testing: Testing the integration be-
tween Writer, Channel, and Reader [1].

Each of these testing strategies requires the im-
plementation of a set of different functional blocks.
Figure 2 shows a possible instantiation of the different
blocks (BIFST units) required to implement the differ-
ent test facilities. They include interfaces, Test Data
Generators (TDGs), Test Response Evaluators (TREs),
and controllers, each implemented according to the
chosen functional test.

The proposed architecture is general enough to
implement different test strategies. Moreover it can
easily fit different types of user defined test strategies.

Figure 2 - Test Facilities Implementation

In the sequel of the paper we will propose three

different functional testing approaches for the imple-
mentation of BIFST units. They include FSM model-
based, functional fault model-based, and march-based
test approaches.

3. FSM Model-Based Testing

Functional testing is the procedure of deriving test
cases from functional specifications of the target im-
plementation. One of the approaches to functional test-
ing is the so-called model-based testing [2], which
aims at deriving models of expected behaviors of the
target system to produce test case specifications. Mod-
els can be expressed either in formal or semiformal
ways.

Finite State Machines (FSM) are one of the com-
mon formal models used in the automatic generation of
test cases. FSMs are often used to specify the se-
quences of interactions between a system and its envi-
ronment, especially in control and reactive systems
such as communication protocols [2].

In [1] an FSM model was defined to formally
represent the tlm_fifo channel and to generate function-
al test cases for it. This state machine was extracted
from the semi-formal specification of the tlm_fifo
available in SystemC TLM Standard released by OSCI
[3]. The test generation approach presented in [1] was
rather intuitive, being mostly derived from test engi-
neers' experiences. In this paper we present a more
formal approach, based on software testing methodolo-
gies.

FSM models can be used both for generating test
cases and for constructing Test Oracles. Oracles are
units that inspect the test results and judge whether
each observed behavior is correct or not [2]. In the
architecture introduced in Figure 2, the implementation
of TDG and TRE units correspond to the definition of
both test cases and oracles for all methods of the
tlm_fifo under test.

One of the most common ways of generating test
cases from FSMs is checking state transitions. The
transition coverage criterion, widely used within the
software testing community, requires each transition of
a FSM model to be traversed at least once [2]. We gen-
erated the test cases for each method of tlm_fifo by

trying to stress this method in different operational
states in order to traverse all transitions it fires on the
FSM tlm_fifo model. As an example, Table 1 shows a
sequence of method calls which covers all transitions
of the put() method in the FSM tlm_fifo model [1].
The first column shows the number of calls of each
method in a tlm_fifo of size n. The rows indicated by
check marks show the put() method in all possible
states and the full coverage of transitions on the FSM
tlm_fifo model. Test cases for other methods of
tlm_fifo have been generated in a similar way.

Table 1 - Covering all Transitions of put() Method

TLM Method Initial State Final State
1 9 put() Empty Semi-Full
n-1 9 put() Semi-Full Full
1 9 put() Full Blocked put()
1 get() Blocked put() Full
1 get() Full Semi-Full
n-2 get() Semi-Full Semi-Full
1 get() Semi-Full Empty
1 get() Empty Blocked get()
1 9 put() Blocked get() Empty
1 peek() Empty Blocked peek()
1 9 put() Blocked peek() Semi-Full
1 get() Semi-Full Empty

After generating the test cases and driving them
into the tlm_fifo, we need to introduce test oracles.
Test oracles are typically used in the software testing
community [2], and they are here intended as the set of
operations performed in response to test cases to check
their correct execution. These operations include com-
parisons to check the correctness of the tlm_fifo state
and the correctness of values returned by the execution
of each called method, as well as methods called dur-
ing the test procedure to put the tlm_fifo in the required
working states, and to prepare it for test execution.

In other words, we need comparison-based oracles
to verify the data written by each write operation
(put(), nb_put()), each data read (get(),
nb_get(), peek(), nb_peek()) from the
tlm_fifo, and the return values of each non-blocking
method. The t_peek() and t_compare() me-
thods introduced in [1] are examples of oracles defined
internally to the BIFST-able tlm_fifo for inspecting the
last value written into its buffer.

In addition, we need some oracles implemented
using TLM methods to move the tlm_fifo among its
working states. As an example of these test oracles, see
the get() transactions performed in the test sequence
of Table 1 for testing the put() functionality. These
get()calls are used for unblocking the n+1th put()
which is called when the tlm_fifo is full and then bring-
ing back the tlm_fifo into its Empty state. The last two

get() and peek()calls in this table are required to
check the functionality of put() when a blocking
read is called on an Empty tlm_fifo.

0: Empty

nb_get()/nb_peek()
t_compare (nb_get()/nb_peek(), false)

t_put(X1)

[used()>1]:get()
t_compare(get(), X2)
[size()-1] t_put() = X5...Xsize()+3

t_put() = Blocked

nb_get()
t_compare(nb_get(), Xi, true)
t_put(Xi+2), t_put(Xi+3)

[used()+1<size()]:
put(Xi)/nb_put(Xi)
t_compare (t_peek(), Xi)

peek()
t_compare(peek(), X1)
[size()-2] t_put() = X3...Xsize()+2

nb_peek()
t_compare(nb_get(), X1, true)
t_put(Xi+1)

nb_put(Xsize()+1)
t_compare (t_peek(), Xsize()+1)
t_get() = X1

[size()+1] t_get() = X2...Xsize()+1

t_get() Blocked

peek()
t_compare (peek(), X1)

nb_peek()
t_compare(nb_get(), X1, true)
t_put(Xi+1)

put(Xsize()+2)/nb_put(Xsize()+2)
t_compare (get(), Xsize()+2)
t_peek() = Blocked

nb_get()/get()
t_compare(get(), X4)

1: Empty
(Blocked Reader)

2: Empty
(Blocked Reader)

3: Semi-Full

4: Full 5: Full
(Blocked Writer)

put(Xsize()+3)/nb_put(Xsize()+3)
t_compare (peek(), Xsize()+3)
t_get() = Xsize()+3

nb_get()/get()
t_compare(get(), X5)

put(X1)/nb_put(X1)
t_compare (t_peek(), X1)

peek()
t_put(X1), t_put(X2)
t_compare(peek(), X1)

[used()+1==size()]:
put(Xsize())/nb_put(Xsize())
t_compare (t_peek(), Xsize())

put(Xsize()+1)
t_compare (t_peek(), Xsize()+1)
t_get() = X1

t_compare (t_peek(), Xsize()+1)
[size()] t_get() = X2...Xsize()+1

t_get() Blocked

get()
t_put(X1), t_put(X2)
t_compare(get(), X1)

[used()-1==0] get()/nb_get()
t_compare(get(), X2)
t_put(X3), t_put(X4)

Figure 3 - BIFST-able tlm_fifo FSM Model -
Oracles added into State Diagram

Based on the chosen test strategy, the involved test
blocks, and the location of TDG and TRE units, the
implementation of test cases and oracles would be dif-
ferent. For example, in a Integration Test Implementa-
tion of the put() method (see Section 2, Figure 2),
the put()and get() calls of Table 1 are called by
the Writer and the Reader respectively. Actually the
sequence of put() methods plays the role of the TDG
unit within the Writer. In a similar way, the TRE unit
of the Reader is implemented by the sequence of
get()call and by some comparison methods in re-
sponse to each put().

On the other hand, in a Transaction Test imple-
mentation, the Writer and tlm_fifo are responsible for
generating the sequence of actions to perform the
Write Transaction Test for put(). In this case new
facilities must be added to the tlm_fifo to perform
get()calls internally. These test oracles will be im-
plemented as part of the TRE inside the tlm_fifo as new

TLM methods defined for BIFST-able version of the
tlm_fifo.

Figure 3 shows the FSM model for the BIFST-able
version of tlm_fifo. This diagram shows the functional-
ity of BIFST-able tlm_fifo in a transaction testing im-
plementation for testing write and read transactions.
Test oracles discussed earlier are added on the arcs of
the FSM as the responses to each issued transaction.
As a concluding remark, while the FSM presented in
[1] can be considered as modeling the test specification
for the tlm_fifo, the modified FSM model in Figure 3
represents the test implementation by introducing the
concept of oracles.

4. Functional Fault Model-Based Testing

This section exploits an alternative approach to
functional testing widely used within the verification
and validation community. According to this approach,
test cases are generated by defining a set of high level
fault models based on the behavioral description of the
system. These fault models are defined based on either
the textual behavioral descriptions or some other mod-
els of the system, like Control Data Flow Graphs
(CDFGs), state machines, etc. [5]. In addition, several
works present application specific functional fault
models like those used in microprocessor [6, 7, 8],
memory [9, 10] and NoC testing [11, 12].

The proposed functional fault model based testing
here considers the definition of a set of high level func-
tional faults based on the description of tlm_fifo as
provided in OSCI SystemC TLM Library [3]. The set
of functional faults is split into three subsets based on
the functionalities of tlm_fifo as follows:
1. Faulty put()/nb_put()/nb_can_put();
2. Faulty get()/nb_get()/nb_can_get() ;
3. Faulty peek()/nb_peek()/nb_can_peek().

Table 2 lists the complete set of high level func-
tional faults defined for these subsets and their possible
low level causes. It is worth mentioning that these low
level faults are manually derived from the tlm_fifo
structure based on its description from SystemC TLM
Library. Although these faults look similar to faults
occurring in a hardware implementation, a software
implementation may still encounter the same problems
due to faults in its memory structure.

As one can see from the table, since the main
functionalities of blocking and non-blocking versions
of each method are the same and their differences lie in
their blocking or non-blocking natures, the same low
level faults will cause faulty operations in both cases.
Also get() and peek() methods of tlm_fifo both
perform a read operation on the circular_buffer em-
bedded inside the fifo itself. The main difference is that

the get() method updates the value of the read poin-
ter and the used() variable of circular_buffer, while
peek() just returns the data without any update. So
the faulty operation of these two methods would also
have the same causes. This also means that the good
functionality of the get() method assures us about
the healthy read operation of circular_buffer and the
only remaining possible causes of faulty operation of
the peek() method would be faults in the controller
or input and output busses.

Based on the set of functional faults of Table 2, we
defined the functional test sequence of Table 3. This
sequence is generated by trying to force the tlm_fifo in
different states, and test as many methods as possible
in each state to detect the related faults. The first col-
umn of this table shows the number of repetitions in
performing each method. The second and fourth col-
umns show the test data and the expected response
from the tlm_fifo respectively. The last column shows
the set of faults of Table 2 detected by performing each
test transaction.

The test sequence starts by issuing put() trans-
actions to the tlm_fifo until it becomes full, and then
performing get() operations to read the written data.
The pseudorandom sequence X1..N+1 is used as test data.
This sequence will test the functionality of put() and
get() in Empty, Semi-Full, and Full states of
tlm_fifo. The sequence detects many faults of Table 2
related to the blocking behavior of put(), get(),
and peek() (because of its similarity to get()),
Data-in/Data-out Busses, and Controller and Emp-
ty/Full Flags. In order to optimize the test sequence
and to avoid additional put() and get() calls re-
quired to make tlm_fifo full and empty, we also per-
form nb_can_put(), nb_can_get(), and
nb_peek()calls in the middle of successive put()
and get()calls. This gives us the added advantage of
testing the functionality of these methods.

After this first sequence, the tlm_fifo has been
checked for all possible faults in read and write opera-
tions. Additional tests should be added to inspect the
functionality of the tlm_fifo controlling unit. This starts
by doing a blocking get() and peek()calls in the
Empty state followed by nb_can_put() and put()calls.
This tests the blocking behavior of get() and
peek() as well as the functionality of
nb_can_put() and put() when tlm_fifo get()
and peek() are blocked.

After this set of tests, the portions of the tlm_fifo
control that is related to nb_can_get(),
nb_peek(), get(), nb_can_put(), and put()
methods are checked. The sequence is continued in a
similar manner to check the control functionalities of

peek(), nb_can_peek(), and nb_put().The
total number of test transactions performed in this se-
quence is 3n+35. This means that all faults listed in
Table 2 are detected with an order of O(3n).

The proposed test approach does not consider the

possible faults of the memory inside circular_buffer
but just tries to detect some of the memory faults by
writing different orders of data in the process of writ-
ing to the tlm_fifo.

Table 2 - List of Functional Faults for tlm_fifo

Fault Subset Functional Faults Possible
Low-level Causes

(Set A)

Faulty
put()
nb_put()
nb_can_put()

1. tlm_fifo is Full but: a. put() is done without blocking.
 b. nb_put() is done and returns true.
 c. nb_can_put() returns true.

Faulty Full Flag
Faulty tlm_fifo Controller
Faulty Return Data
Faulty Increment of used()
Faulty used() Register
Faulty Comparator

2. tlm_fifo Not Full but: a. put() is blocked.
 b. nb_put() is not done and returns false.
 c. nb_can_put() returns false.
3. put() is blocked for writing something but never returns. Faulty Controller

Faulty get()/nb_get()
4. put()/nb_put() always write to the same place of tlm_fifo. Faulty Write Pointer (m_wi)

Faulty Inc. of Write Pointer
5. put()/nb_put() always write the same data to the tlm_fifo. Faulty Data in Bus
6. put()/nb_put()/nb_can_put() called but other function is

done.
Faulty Controller
Other Faulty Function

(Set B)

Faulty
get()
nb_get()
nb_can_get()

1. tlm_fifo is Empty but: a. get() is done without blocking.
 b. nb_get() is done and returns true.
 c. nb_can_get() returns true.

Faulty Empty Flag
Faulty tlm_fifo Controller
Faulty Return Data
Faulty Decrement of used()
Faulty used() Register
Faulty Comparator

2. tlm_fifo Not Empty but: a. get() is blocked.
 b. nb_get() is not done & returns false.
 c. nb_can_get() returns false.
3. get() is blocked for reading something but never returns. Faulty Controller

Faulty put()/nb_put()

4. get()/nb_get() always returns the same data from tlm_fifo. Faulty Read Pointer (m_ri)
Faulty Inc. of Read Pointer
Faulty Data out Bus

5. get()/nb_get() called but peek()/nb_peek() is done. Faulty peek()/nb_peek()
Faulty Controller
Faulty Read Pointer
Faulty Inc. of Read Pointer

6. get()/nb_get()/nb_can_get() called but other function is
done.

Faulty Controller
Other Faulty Function

(Set C)

Faulty
peek()
nb_peek()
nb_can_peek()

1. tlm_fifo is Empty but: a. peek() is done without blocking.
 b. nb_peek() is done and returns true.
 c. nb_can_peek() returns true.

Faulty Empty Flag
Faulty tlm_fifo Controller
Faulty Return Data
Faulty Decrement of used()
Faulty used() Register
Faulty Comparator

2. tlm_fifo Not Empty but: a.peek() is blocked.
 b. nb_peek() isn’t done & returns false.
 c. nb_can_peek() returns false.
3. peek() is blocked for reading something but never returns. Faulty Controller

Faulty put()/nb_put()
4. peek()/nb_peek() always returns the same data from

tlm_fifo.
Faulty Read Pointer (m_ri)
Faulty Inc. of Read Pointer
Faulty Data out Bus

5. peek()/nb_peek()/nb_can_peek() called but other func-
tion is done.

Faulty Controller
Other Faulty Function

Table 3 – Fault-Based Test Sequence for tlm_fifo

Test Data tlm_fifo
Status

Expected
Response

Faults
Detected

1 nb_can_put() Empty true

Set A: 2.c

Set A:2.a
Set A: 1.c

1 put(X1) Empty -----
1 nb_can_put() Semi-Full true

n-1 put(X2..N) Semi-full -----
1 nb_can_put() Full false
1 put(XN+1) Full Blocked Set A: 1.a
1 nb_can_get() Full true

Set A:1.a,3

Set A:3,4,5
Set B:2.a,2.c
Set B:4,5
Set C:2.b

1 nb_peek() Full X1, true
1 get() Full X1 ,blocked

put(XN+1)
1 nb_can_get() Full true
1 nb_peek() Full X2, true
1 get() Full X2
1 nb_can_get() Semi-full true
1 nb_peek() Semi-full X3, true

n-1 get() Semi-full X3...N+1
1 nb_can_get() Empty false Set B: 1.c
1 nb_peek() Empty false Set C: 1.b
1 get() Empty Blocked Set B: 1.a
1 nb_can_put() Empty true Set A: 2.c
1 put(X1) Empty Blocked

get() = X1
Set B:1.a,3,6

1 nb_can_peek() Empty false Set C: 1.c
1 peek() Empty Blocked Set C: 1.a
1 nb_can_put() Empty true Set A: 2.c
1 put(X2) Empty Blocked

peek()=X2
Set C: 1.a,3
Set A: 6

1 nb_can_peek() Semi-full true Set C: 2.c
1 peek() Semi-full X2 Set C: 2.a
1 nb_get() Semi-full X2, true Set B: 2.b
1 nb_get() Empty false Set B: 1.b
1 get() Empty Blocked Set B: 1.a
1 nb_put(XN+1) Empty true blocked

get() = XN+1
Set A: 2.b
Set B: 1.a,3

1 peek() Empty Blocked Set C: 1.a
1 nb_put(XN+1) Empty true,

blocked
peek():XN+1

Set A: 2.b
Set C: 1.a,3

n-1 nb_put(XN...2) Semi-full true Set A: 2.b
1 nb_put(X1) Full false Set A: 1.b
1 put(X1) Full Blocked Set A: 1.a
1 nb_can_peek() Full true Set C: 2.c
1 peek() Full XN+1 Set C: 2.a
1 nb_get() Full XN+1, true

Blocked
put(X1)

Set B: 2.b
Set A: 1.a, 3

1 nb_can_peek() Full true Set C: 2.c
1 peek() Full XN Set C: 2.a, 5
1 nb_get() Full XN, true Set B: 2.b, 6

5. March-Based Testing
March-test based test tries to solve some of the

problems of functional fault model based testing and in

particular it tries to specifically address the problem of
testing the memory elements composing the tlm_fifo.

March tests are a very established and efficient cat-
egory of memory test algorithms with linear complexi-
ty [13]. A march test is a finite sequence of march
elements delimited by a pair of braces. Each march
element is composed of a sequence of memory opera-
tions applied to each element of a memory array deli-
mited by parentheses. March elements are characte-
rized by an addressing order, determining the order the
memory elements are traversed during the test. March
tests define two types of addressing orders: (i) direct
order denoted by � (i.e., the scanning sequence goes
from cell 0 to cell n-1), and (ii) reverse order denoted
by (i.e., the scanning sequence goes from cell n-1 to
cell 0). In a single march element the possible memory
operations are:

• Write Operation (WP): a pattern P is written in
the current memory cell;

• Read & Verify (RP): the content of the memory
cell is read and verified whether it is equal to P.

To efficiently perform a march test, for each test
pattern P, a complemented pattern P* should be de-
fined. For example, the march element M2 showed
Figure 4 uses a direct addressing order to apply the
sequence of three operations RP

*, Wp, Wp
* to each ele-

ment of the cell array.
Besides their low complexity (linear in the number

of memory cells), one of the main advantages of march
tests is that they are built over a set of functional fault
models that allow to design test algorithms indepen-
dent of the current implementation of the memory un-
der test [14, 15].

This section tries to extend this property at the
TLM level. From a functional point of view the
tlm_fifo is actually a memory array of abstract ele-
ments (objects), and it thus fulfills all requirements for
the application of march tests. The question in this con-
text is: are memory fault models designed for march
based test meaningful when working with such high-
level descriptions?

The answer to this question is for sure positive
whenever the communication channel is designed to be
mapped into a hardware component. In this case the
testing scenario is exactly the one march tests are de-
signed for. Nevertheless, even when considering a
software implementation, the application of march tests
could still provide very interesting functionalities.

Lets us consider a typical memory functional fault
model addressed by march tests: the stuck-at fault, i.e.,
a memory cell is fixed at a certain value P . Consider-
ing a software implementation of the tlm_fifo, any
software fault leading to the impossibility of changing
the value of one of the fifo elements is equivalent to a

stuck-at fault and can be efficiently identified by a
march test based test. The same is for other types of
functional faults such as address faults, and read faults.
We can thus conclude that march-based BIFTS is valu-
able for both hardware and software implementation of
the tlm_fifo. Considering the possible functional faults
that may appear in the tlm_fifo, a march test solution
offers the same coverage as in the case of hardware
implementation.

While Section 5.1 will provide details on how
march tests can be implemented using TLM primitives,
a few considerations concerning the concept of test
pattern must first be introduced.

In a typical march test, a test pattern represents a
value (i.e., a single bit equal to 0 or 1) to be written
into a memory cell. In the tlm_fifo , each element of the
array is instead an abstract object, such as, for instance,
a JPG image. We exploit the concept of object seriali-
zation [16]. In computer science, serialization is the
process of saving an object onto a storage medium
(such as a file, or a memory buffer) or to transmit it
across a network connection link in binary form. Ap-
plying this concept we can define a test pattern P, as
the serialization of an object O to be stored in the
tlm_fifo. With this definition the complemented pattern
P* can be defined as the serialization of an object O*
with all bits complemented with respect to the seriali-
zation of O.

The next subsection will detail how march tests can
be efficiently implemented using tlm_fifo primitives.

5.1. March Test for tlm_fifo

The problem of applying march tests to fifo memo-
ries has already been addressed in the literature [10,
17]. It stems from the impossibility of applying the
reverse addressing order due to the first-in-first-out
access policy of the memory and from the limited pos-
sibility of performing multiple operations (e.g., mul-
tiple write operations) on a single cell.

Concerning the first limitation, in [18] the authors
show how to build SAO (Single Addressing Order)
march tests easy to be applied in all situations where a
reverse addressing order is difficult to implement. In
our march-based BIFST we will consider the use of
SAO test algorithms.

Concerning the limitation on the sequence of opera-
tions, the TLM standard primitives represent a perfect
support to implement any type of marching sequence.
In order to detail how this implementation is possible
we need to introduce a few assumptions on the internal
behavior of the tlm_fifo. We consider a tlm_fifo im-
plemented as a circular buffer of N elements as pro-
posed in the OSCI SystemC TLM Library [3]. The
next location to be written and the next location to be

read are always identified by two pointers named m_wi
and m_ri, respectively, and implementing the circular
buffer. We also consider the following behavior of the
main tlm_fifo methods that will be used to build the
march test:
• nb_get(): returns the element pointed by m_ri

and then increments the read pointer as (m_ri +1)
mod N;

• nb_put(P): inserts the object P in the element
pointed by m_wi and increment the write pointer
as (m_wi +1) mod N;

• nb_peek(): is equivalent to nb_get() but m_ri
is not incremented after the read operation;

• nb_poke(P): is equivalent to nb_put(P) but
m_wi is not incremented after the write operation.

We consider non blocking primitives since the
blocking poke primitive is not available in the tlm_fifo.
We also resort to the additional t_compare() primi-
tive introduced in [1] to check whether two values are
equal. Considering the previous set of primitives, a
generic march element can be applied to the tlm_fifo as
follows:
• Translate each write operation except the last of

the march element into a nb_poke() operation
with the same pattern;

• Translate the last write operation of the march
element into a nb_put() operation with the same
pattern;

• Translate each read operation except the last of the
march element into a nb_peek() followed by a
test on the returned data;

• Translate the last write operation of the march
element into a nb_get() followed by a test on the
returned data;

• Repeat the sequence of operation N times.

Appling this rule, it is possible to apply any SAO
march test to the tlm_fifo guaranteeing to maintain, by
construction, exactly the same fault coverage and com-
plexity of the original test. Table 4 shows the applica-
tion of the first two march elements of SOA March B-
(Figure 4) to a 4 elements tlm_fifo.

{�(WP); �(RP,WP
*,RP

*,WP,RP,WP
*);

 M0 M1
�(RP

*,WP,WP
*); �(RP

*,WP,WP
*,WP); �(RP)}

 M2 M3 M4
Figure 4: SOA-March B-

Table 4 - Application of SOA-March B-

 Content m_ri m_wi
Initial Pointers Position 0 0

nb_put(P) P 1 0
nb_put(P) P P 2 0
nb_put(P) P P P 3 0
nb_put(P) P P P P 0 0
compare(nb_peek(),P) P P P P 0 0
nb_poke(P*) P* P P P 0 0
compare(nb_peek(),P*) P* P P P 0 0
nb_poke(P) P P P P 0 0
compare(nb_get(),P) P P P P 0 1
nb_put(P*) P* P P P 1 1
compare(nb_peek(),P) P* P P P 1 1
nb_poke(P*) P* P* P P 1 1
compare(nb_peek(),P*) P* P* P P 1 1
nb_poke(P) P* P P P 1 1
compare(nb_get(),P) P* P P P 1 2
nb_put(P*) P* P* P P 2 2
compare(nb_peek(),P) P* P* P P 2 2
nb_poke(P*) P* P* P* P 2 2
compare(nb_peek(),P*) P* P* P* P 2 2
nb_poke(P) P* P* P P 2 2
compare(nb_get(),P) P* P* P P 2 3
nb_put(P*) P* P* P* P 3 3
compare(nb_peek(),P) P* P* P* P 3 3
nb_poke(P*) P* P* P* P* 3 3
compare(nb_peek(),P*) P* P* P* P* 3 3
nb_poke(P) P* P* P* P 3 3
compare(nb_get(),P) P* P* P* P 3 0
nb_put(P*) P* P* P* P* 0 0
… … … … … … …

6. Conclusions

In [1] we presented a testing methodology applica-
ble at the TLM abstraction level, during the system
level design phase, before hardware/software partition-
ing, with a particular emphasis on TLM communica-
tion channels. This paper explored three different func-
tional testing approaches for testing tlm_fifo as the ba-
sic primitive in the library of TLM communication
channels. These testing approaches were based on
three common methods in functional testing: FSM
model based, functional fault based, and march-based
testing. All the proposed test approaches have been
used in the implementation and definition of a BIFST-
able tlm_fifo.

References

[1] H. Alemzadeh, S. D. Carlo, F. Refan, P. Prinetto, and Z.

Navabi, “Plug & Test at System Level via Testable TLM
Primitives,” To appear in Proc. of International Test Con-
ference (ITC’08), Pre-prints available at:
http://orion.polito.it/~dicarlo/plist/ITC08.pdf.

[2] M. Pezzè and M. Young, Software Testing and Analysis:
Process, Principles, and Techniques, WILEY, 2007.

[3] OSCI SystemC TLM 2.0 Standard, [Online Document],
http://www.systemc.org/downloads/standards/tlm20/ (cur-
rent Sep. 2008).

[4] A. Rose, S. Swan, J. Pierce, J.-M. Fernandez, Transaction
Level Modelling in SystemC, OSCI white-paper, 2004.

[5] I.G. Harris, “Hardware-software co-validation: fault mod-
els and test generation,” In Proceedings of Sixth IEEE In-
ternational High-Level Design Validation and Test Work-
shop, pp 151 – 156, 2001.

[6] J. Shen and J. A. Abraham, “Native mode functional test
generation for processors with applications to self test and
design validation”, In Proc. of International Test Confe-
rence, pp. 990–999, October 1998.

[7] D. Brahme and J. A. Abraham, “Functional testing of
microprocessors”, IEEE Transactions on Computers, pp.
475–485, June 1984.

[8] A. J. van de Goor and Th. J. W. Verhallen, “Functional
testing of current microprocessors”, In Proc. of Interna-
tional Test Conference, pp. 684–695, September 1992.

[9] A.J. Van de Goor, Y. Zorian, “Fault models and tests
specific for FIFO functionality”, In Records of the 1993
IEEE International Workshop on Memory Testing, 1993.,
9-10 Aug. 1993 pp.72 – 76.

[10] Barbagallo, S., et al, “A Parametric Design of a Built-in
Self-Test FIFO Embedded Memory,” In Proceedings of
the 1996 Workshop on Defect and Fault-Tolerance in
VLSI Systems, pp 221, November 1996.

[11] Tomas Bengtsson, Shashi Kumar and Zebo Peng, “Appli-
cation Area Specific System Level Fault Models: A Case
Study with a Simple NoC Switch”, In Proceedings of In-
ternational Design and Test Workshop (IDT), 2006.

[12] M. Sedghi, A. Alaghi, E. Koopahi, and Z. Navabi, “An
HDL Based Platform for High Level NoC Switch Test-
ing”, In Proc. of Asian Test Symposium (ATS), Beijing,
China, October 2007, pp. 453-458.

[13] A. J. van de Goor, “Testing Semiconductor Memories:
theory and practice”, Wiley, Chichester (UK), 1991.

[14] Z. Al-Ars, Ad J. van de Goor, “Static and Dynamic Beha-
vior of Memory Cell Array Opens and Shorts in Embed-
ded DRAMs”, In Proc. of IEEE Design Automation and
Test in Europe (DATE 2001), 2001, pp. 496-503.

[15] Z. Al-Ars and A.J. van de Goor, “Approximating Infinite
Dynamic Behavior for DRAM Cell Defects”, In Proc. of
20th IEEE VLSI Test Symposium, 2002, pp.401-406.

[16] B. Carpenter, G. Fox, S. Ko, S. Syrac, “Object serializa-
tion for marshalling data in a Java interface to MPI”, In
Proceedings of the ACM 1999 conference on Java Grande,
San Francisco, California, United States, pp.: 66 – 71.

[17] A.J. Van de Goor, Y. Zorian: “Functional tests for arbitra-
tion SRAM-type FIFOs”, In Proc. of First Test Symposium
(ATS '92), 26-27 Nov. 1992, pp. 96 – 101.

[18] A.J. Van de Goor, Y. Zorian “Effective march algorithms
for testing single-order addressed memories”, In Proc. of
4th European Conference Design Automation, 22-25 Feb.
1993 Page(s):499 – 505.

