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Abstract—The continuos improvement in manufacturing pro-
cess density for Very Deep Sub Micron technologies constantly
leads to new classes of defects in memory devices. Exploring
the effect of fabrication defects in future technologies, and
identifying new classes of realistic functional fault models with
their corresponding test sequences, is a time consuming task
up to now mainly performed by hand. This paper proposes
a new approach to automate this procedure. The proposed
method exploits the capabilities of evolutionary algorithms to
automatically identify faulty behaviors into defective memories
and to define the corresponding fault models and relevant test
sequences. Target defects are modeled at the electrical level
in order to optimize the results to the specific technology and
memory architecture.

I. INTRODUCTION

Semiconductor memories are the predominant majority of
semiconductor devices production, and have been used for a
long time to push the state-of-the-art in the semiconductor
industry. The Semiconductor Industry Association (SIA) fore-
casts that in the next 15 years up to 95% of the entire chip
area will be used to create memory blocks [1]. Precise fault
modeling and efficient test design are therefore key elements to
keep test cost and time within economically acceptable limits.

Complex Functional Fault Models (FFM) together with very
efficient test algorithms such as march tests are a very effective
solution to deal with emerging classes of memory defects
[2], [3]. Several algorithms are available in the literature to
automate the generation of march tests for a target set of FFMs
[4], [5], [6], [7], [8], [9].

While traditional memory FFMs (e.g., stuck-at faults, cou-
pling faults, address faults, etc.) are independent of the specific
memory technology and architecture, the continuos improve-
ment in manufacturing process density for Very Deep Sub Mi-
cron (VDSM) technologies leads to new classes of defects, in
most cases tightly linked to the internal structure and technol-
ogy of the target memory [10], [11], [12], [13]. Exploring the
effect of fabrication defects in future technologies by means of
simulations, and identifying new classes of realistic functional
fault models with their corresponding test sequences, is one of
the most time consuming tasks in defect-oriented testing. The
identification of automatic solutions for this complex task is
therefore a challenging problem of growing importance [14].

Only few publications partially addressed this area. In [15]
the authors presented FAME, a Fault-Pattern Based Memory
Failure Analysis framework. The proposed approach applies
diagnosis-based fault analysis to narrow down the potential
causes of failure for a specific memory architecture. The result
of this analysis is then used to optimize a given test sequence
(march test) by removing those operations introduced to test
faults that have never been observed during the fault analysis.
Even if the experimental results show the effectiveness of the
approach, it mainly targets the optimization of existing test
sequences designed for already known fault models. It does
not allow the automatic definition of new fault models and the
generation of new sequences customized for the target defects.
In [16] the authors proposed a framework for fault analysis
and test generation in DRAMs. The proposed approach uses
Spice to model both the memory under test and target defects.
Spice simulations are used to perform fault analysis starting
from well known test algorithms available in the literature. The
approach suffers of the same drawbacks of [15], moreover no
experimental results are provided in the paper to analyze the
effectiveness of the proposed solution.

This paper proposes a preliminary tentative of designing
a software framework to automate the process of memory
defects simulation and fault models extraction, trying to over-
come some of the limitations of previous publications. The
target memory is modeled at the electrical level using Spice,
and defects are directly inserted in this model. Even if the
proposed solution is built over a Spice simulator, it can be
easily extended to other types of electrical or layout level
models and simulators. In order to guarantee an efficient
exploration of a huge space of simulation alternatives, the
proposed framework implements an evolutionary approach
able to drive the simulation towards those sequences that more
probably allow to highlight faulty behaviors.

The effectiveness of the proposed solution has been vali-
dated by performing an extensive set of experiments on well
known memory defects, using different technologies.

The paper is organized as follows: Section II overviews
the characteristics of the different elements composing the
framework while Section III validates the effectiveness of
the proposed approach by proposing an extensive set of



experimental results. Finally, Section IV summarizes the main
contributions of the work and concludes the paper identifying
future research activities on the same topic.

II. GENERATION FRAMEWORK ARCHITECTURE

Figure 1 introduces the main functional blocks composing
the proposed framework.
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Fig. 1. Fault models extraction framework general architecture

The Fault Model Extractor (FME) represents the core of
the framework. It drives the modeling process and collects
the information required to identify and to define relevant
fault models. We use an electrical Spice model to represent
the internal memory design and behavior, as well as the
characteristics of the fabrication process (fault-free memory
of Figure 1). This provides a fairly accurate representation
of the specific behavior of the memory under analysis. Target
memory defects are directly modeled as electrical components
(e.g., resistors, capacitors, etc.) on the fault-free memory to
create the defective memory model. The Defect Injector is
the block in charge of modifying the fault free memory
by inserting the target defects according to the instructions
provided by the FME.

The identification of the set of target defects is usually the
result of layout read-back and Inductive Fault Analysis out of
the scope of this paper [17].

The fault model extraction process analyzes the behavior of
the defective memory in presence of a set of m Electrical
Memory Defects (EMD). All defects defined for a single
experiment are concurrently injected in the memory. An EMD
is characterized by a set of different parameters, e.g., type,
location, range of possible values, etc..

The goal of the FME is to efficiently explore the range
of values defined for the different EMDs to identify faulty
behaviors arising from the defects injection, and to derive the
corresponding fault models. This operation is assisted by the
Simulation Sequences Generator (SSG).

Given a set of EMDs values, the SSG is in charge of: (i)
generating a set of simulation sequences, (ii) applying them
to both the fault free and the defective memory, and (iii)
analyzing the simulation results to highlight faulty behaviors
correlated with the inserted defects. The comparison between
the fault-free and the defective memory outputs is performed
by analyzing their electrical simulations (Simulator block of
Figure 1) when the target simulation sequence is applied. To
be able to work with different types of memories, description
levels, description languages, and simulators, a Simulator
Interface is placed between the SSG and the Simulator to
virtualize the specific commands and result formats.

Simulation sequences are generated in the form of march
tests fully resorting to all degrees of freedom provided by
the march test definition [18]. The SSG returns the observed
faulty behaviors using the fault primitive formalism [3]. In
order to guarantee an efficient exploration of a huge space of
simulation alternatives the SSG implements an evolutionary
approach based on a genetic algorithm able to drive the
simulation towards those sequences that more probably allow
to highlight faulty behaviors, thus reducing the number of
required simulations.

The following subsections detail the characteristics of each
block composing the framework focusing on the FME and on
the SSG that represent the most relevant parts.

A. Fault Model Extractor

The Fault Model Extractor (FME) coordinates the overall
defect analysis process. Its main activity is the implementation
of an efficient strategy to analyze the memory behavior in all
considered defective conditions. This in turn requires exploring
the range of values the target EMDs can assume.

Each EMD is characterized by the following parameters:
• Type: any type of component that can be modeled into a

Spice netlist represents a potential defect type. Examples
are: resistors, capacitors, shorts, opens, etc.;

• Location: it represents the location of the defect in the
memory model. The location identifies the nodes where
the component modeling the defect should be placed;

• Range: represents the range of values
[EMDmin, EMDmax] the defect may assume during
the analysis (e.g., resistor’s size for resistive defects).

The defect range is one of the most critical parameters
affecting the efficiency of the defect analysis and fault ex-
traction process. An efficient exploration of this space of
values is mandatory to keep the simulation time and therefore
the overall fault model extraction time under control. In
this preliminary work, to allow a first assessment of the
proposed approach, we focused on single defects analysis.
This limitation concerns the defect range exploration strategy
implemented in the FME only. It does not impact all remaining



blocks of the framework that are already designed to work with
multiple defects. While representing a simplification of the
problem, this assumption still allows to propose a framework
and a set of results comparable with previous hand performed
memory defect analyses such as the one proposed in [19],
[20], [10].

By performing a preliminary and extensive campaign of
simulations with different defects/technologies, and by looking
at the defect analyses available in the literature ([19], [20],
[10]) we observed that typically, for a given defect (e.g.,
resistive defects), the memory behavior can be classified
according to the distribution proposed in Fig. 2.

EMDmin EMDmax

Fault Free
Hard to 
Detect 
Faults

Dynamic 
Faults Static Faults

EMD size

Fig. 2. Faults distribution for a single defect

Fig. 2 splits the defect range in four main defect areas:
• Fault free: the defect size is too small to cause any faulty

behavior;
• Hard to detect faults: represent a very particular defective

conditions already analyzed in [13]. The defects do not
produce any faulty behavior at the output of the memory.
Nevertheless, there is a strong degradation of the memory
internal signals (e.g., the differential value of the bit
lines almost equal to zero), that may in turn lead to a
faulty behavior with a small variation of the operational
conditions (e.g., voltage, temperature, etc.). The ability of
identifying these situations could be very useful to better
characterize the reliability of the target memory;

• Dynamic faults: with the increase of the defect size, faulty
behaviors start to appear. In many situations, with a small
defect size, the fault assumes a dynamic behavior, i.e., it
requires more than one operation to be sensitized;

• Static faults: when the defect size reaches a certain level,
the memory starts to show a static faulty behavior, i.e., a
single memory operation is enough to sensitize the fault.

Depending on the memory architecture, technology, and
defect type, some of the four areas may be missing. In
particular, dynamic faults and hard to detect faults are usually
observed in very specific conditions for very specific types of
defects. Moreover, depending on the defect type and location,
the order of the four defect areas may be specular.

Considering this fault distribution, the FME has to effi-
ciently identify the existing defect areas, and for each of
them provide the identified fault models. Being a complete
exploration of the defect range impossible under all possible
sensitizing sequences the FME explores the defect range using
the following heuristic:
• Each area is analyzed separately starting from the static

fault area;
• In order to efficiently identify the border between the

target area and the remaining ones a binary search is

applied. The two limits of the defect range are first
analyzed and characterized followed by the analysis of
the middle point of the range. The analysis of the two
limits is required to identify whether the target area
actually exists, and also to identify the order of the areas.
For example, considering the static faults area, at the
first step the two limits EMDmin and EMDmax of the
defect range are analyzed to check whether they actually
fall in the no fault area and in the static faults area
respectively;

• Based on the result of the middle point analysis the search
space is restricted. Considering the previous example, if
the middle point does not fall in the static fault area, the
search space is restricted to the upper half of the defect
range;

• The process is repeated until the border of target area is
identified;

• Each intermediate analysis is also used to restrict the
search space of the remaining defect areas.

This approach allows to reduce the number of required
simulations while still allowing to explore the full defect range.
For each analyzed defect point, the FME relies on the Defect
Injector to actually place the target defect in the defective
memory and to the SSG to analyze the behavior of the memory
in the defective condition. The output of the FME is the
characterization of the target memory in terms of identified
fault models in the four defect areas.

B. Defect Injector

The defect injector is a very simple block in charge of
injecting defects into the memory model in order to build the
target defective memory. The implementation of this block is
strictly dependent on the type of memory model and simulator
used to implement the framework. In the proposed Spice based
implementation this block, based on the information about
defect types, locations and values, modifies the Spice model
of the fault free model by adding the components modeling
the target defects. This is an easy task mainly involving the
elaboration of text files. For this reason no additional details
will be provided in the paper.

C. Simulation Sequences Generator

The Simulation Sequences Generator (SSG) is in charge
of analyzing a defective memory by performing a set of
electrical simulations in order to identify the occurrence of
faulty behaviors.

The complexity of this activity stems in the identification of
appropriate sequences of memory operations able to sensitize
and to observe faulty behaviors caused by the insertion of
memory defects. Besides considering a predefined set of fault
primitives and related test sequences such as the ones available
in the literature [3], we would like to be able to analyze a wider
space of test sequences comprising those not yet identified as
candidates for sensitizing faulty behaviors. This is particularly
important to possibly identify new fault models arising in
emerging technologies and memory architectures.



It is clear that, working with this assumption, the space of
candidate test sequences is too large to be explored exhaus-
tively, especially when working in the dynamic faults area
(see Section II-A) where more than one operation is required
to sensitize the fault.

To efficiently explore this search space the SSG resorts to an
evolutionary approach based on a genetic algorithm that tries
to drive the simulation toward those test sequences (solutions)
with higher probability of identifying faulty behaviors. Test
sequences are generated in the form of march tests fully
resorting to all degrees of freedom provided by the march
test definition [18]. Each element composing the march test
(i.e., memory operations, and addressing orders) represents a
gene. The genetic algorithm represents each solution of the
problem as a string (chromosome) of genes. The problem is
thus reduced to the identification of a chromosome (sequence
of memory operations) able to sensitize and to observe a faulty
behavior into the target defective memory.

A fitness value is assigned to each chromosome, based on
the value given by an evaluation function (fitness function).
The fitness function should somehow measure how close the
individual is to the optimum solution. A set of individuals
constitutes a population that evolves from one generation to
the next through a reproduction process that acts mixing the
genetic material that comes from chosen individuals (parents),
forming new individuals called children and deleting old ones.
The process starts with an initial population created in some
way (e.g., randomly).

The evolution is usually based on two different mechanisms:

• Cross-over: chromosomes of two individuals are com-
bined to obtain new individuals inserted in the population
to eventually replace existing ones, e.g., the ones with the
lowest fitness (elitism);

• Mutation: one or more genes of a selected individual are
randomly changed. This provides additional chances of
entering unexplored regions.

The fitness function is the key element used to drive the
evolution process and in particular to select those chromo-
somes that most likely lead to valid solutions of the problem.
In our specific problem, the idea is to identify a function that
privileges the ability of a chromosome of sensitizing faulty
behaviors, i.e., the ability of producing different electrical
signals at the nodes of the fault-free and of the defective
memory.

The proposed fitness function is based on the concept of
probe nodes, i.e., internal nodes of a memory cell, and output
nodes of a sense amplifier. The electrical signals (i.e., voltage,
current) produced at each probe node of the target memory
during the electrical simulation of the test sequence associated
with a chromosome are traced. These values are then analyzed
and combined to compute a fitness value.

The fitness, assigned with a chromosome x at the simulation
time t is expressed by Eq. 1 where Nprobe represents the
number of analyzed probe nodes:

ft(x) =
Nprobe−1∑

i=0

Di,t (1)

It is computed as the sum of the differential values Di,t

(Eq. 2) between the signal at probe node i in the fault-free
memory (Ngi,t) and the signal at the probe node i in the
defective memory (Nfi,t).

Di,t = |Ngi,t − Nfi,t | (2)

The values ft(x) obtained at each simulation time are then
combined to obtain the final fitness according to Eq. 3:

f(x) =
Tmax∑
t=0

ft(x) (3)

where Tmax is the total simulation time.
The proposed function has two main drawbacks:
• It can easily lead to populations with very small dif-

ferences between the individuals. This actually turns
the evolution process into a random selection among
the chromosomes reducing the efficiency of the genetic
approach;

• It can produce among a high number of similar indi-
viduals, a single chromosome (super chromosome) with
fitness much higher than all remaining ones. This is again
negative since the evolution will be completely polarized
by this chromosome and the space of solutions will not
be correctly explored.

To avoid these problems, we introduce a linear normal-
ization able to correctly distribute the fitness values. The
population is sorted by decreasing fitness. Chromosomes in
the sorted list receive a new scaled fitness fs(x) according to
Eq. 4.

fs(x) = C − n · L (4)

where C is a constant value, L represents the linear normal-
ization step (a parameter of the method), and n is the position
of the chromosome in the sorted list.

The generation process works by mutating the population
of chromosomes, and trying to maximize the fitness of the
solution. The mutation consists in modifying the genes com-
posing each chromosome, as well as adding additional genes.
This in turn means modifying the march elements composing
the march tests represented by the chromosomes. The search
process ends when either a chromosome able to sensitize
and detect a faulty behavior appears in the population, or a
maximum computation effort is reached. Several optimizations
are applied during the mutation process to guarantee that each
chromosome always represents a valid test sequence.

Every time a new chromosome is generated, the electrical
simulations of the fault-free and of the target defective memory
are compared in order to identify if the given test sequence
is able to identify a new erroneous behavior. In particular, the
analysis focuses on the portions of the simulation (samples)
corresponding to genes encoding read operations. The logic



value returned by the observations is calculated (taking into
account the electrical parameters of the target memory) for
the fault-free and the defective memory. When the two values
differ, a faulty behavior is detected and the generation ends.
Starting from a solution, and by also analyzing the internal
state of the memory cells during the application of the test
sequence, the fault primitive corresponding to the faulty be-
havior is finally generated.

III. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed frame-
work, we performed a set of experiments on a simple SRAM
architecture, considering different technologies and using a
well established set of defect locations.

A. Memory model and defect locations

The experiments have been performed considering a Spice
model of a Static Random Access Memory (SRAM) block.
Our reference architecture includes a cell array organized as a
512x512 matrix including, the pre-charge circuits for bit and
I/O data lines, the sense amplifier, the write circuitry, and the
address decoder. Due to the amount of required simulations, to
keep the simulation time into a reasonable level, the generated
test sequences have been applied to a reduced portion of the
cell array only. This simplification still allows us to obtain
realistic results since it has been demonstrated in [21] that
defects are usually localized in a range of a few cells.

We considered two implementations of the memory core,
using two different technologies with feature size of 130 nm
and 65 nm respectively. Both technologies are from Predictive
Technology Models [22].

Each memory cell consists of a standard 6-Transistors
architecture. Each bit line has a capacitance used to model the
parasitic capacitance associated with line metallization. Finally
the read path and the write path are enabled by independent
control signals.

Figure 3 proposes the architecture of a single memory cell
including our target collection of defect locations. DFR1-
DFR6 identify six typical resistive defects deeply analyzed
in literature [20], [13], whereas DFS1-DFS5 represent the set
of short defects analyzed in [23].

We considered a defect range between 1KΩ and 500MΩ
for resistive defects, while shorts have been modeled by a
resistor of 1.0Ω.

B. Experimental conditions

To correctly validate the results obtained by the experiments,
we considered similar working conditions for both technolo-
gies. The two technologies differ for the timing required for
the correct execution of each operation, and for the supply
voltage required by the circuitry, only. Considering the 130nm
technology, the operation cycle is 10 ns. The first 3.3 ns are
used by the internal precharge circuits to pre-charge the core
cell bit lines and the I/O data bit lines to Vdd. The next 3.3 ns
are dedicated to drive the write signals in the case of write
operations, while the last 3.3 ns can be used to enable the read
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Fig. 3. SRAM cell with defects

path of the memory. The 65 nm technology allows a faster
operation of 1.5 ns. The cycle is divided into three regions of
0.5 ns each corresponding to the three regions already defined
for the 130 nm technology.

The typical voltage supply is equal to 1.5 V for the 130 nm
memory, and 1.1 V for the 65 nm memory. For both tech-
nologies we considered the typical process, and three possible
operational temperatures of −40◦C, 27◦C, and 125◦C to
cover both normal working conditions and more extreme
once. Finally, we also considered the effect of the voltage
degradation by analyzing the 65 nm memory using a supply
voltage of 0.8 V .

C. Results

We implemented the proposed framework using the com-
mercial HSPICETMsimulator and about 3,500 lines of C code.
All experiments have been performed on a dual socket,
3.4 GHz Intel Pentium 4TMdesktop equipped with 2 Gb of
RAM and running the Linux Operating System.

Table I summarizes the results obtained by considering
resistive and short defects with the 130 nm technology based
memory. The table is divided in two parts, the left side refers
to the analysis of resistive defects while the right side refers
to the analysis of short defects (see Fig. 3).

Considering resistive defects, the first column identifies the
target defect, the second one expresses the minimum resistance
able to create a faulty behavior, the third and fourth columns
define the operational conditions in terms of temperature and
supply voltage applied to the memory circuit, and the last
column gives the fault primitive extracted by the framework.
In a similar way, for short defects Table I provides the same
information except for the defect value that in this case is fixed
to 1.0Ω.

Table I shows that, for this particular technology, all defects
lead to static faulty behaviors where Rmin represents the
border between the no fault and the static faults area (see Fig.
2). No dynamic or hard to detect faults have been identified.
Moreover, DFR4 leads to a faulty behavior only for very
extreme working conditions, i.e. 125◦C. These results are in



accordance with similar analyses proposed in [20], [13] for
resistive defects and [23] for shorts. The only difference we
highlighted concerns DFR4 where we were able to observe a
data retention fault not identified in previous studies. Neverthe-
less, this defect was already considered critical in the literature,
and the different technology and memory architecture used in
our experiments may lead to this difference.

Table II shows the main results obtained analyzing the
65 nm memory block in presence of resistive defects. Being
this technology more critical, we performed a deeper analysis
considering different working conditions. For each working
condition the table reports the characterization of the memory
behavior showing how, changing the defect value, the memory
behavior changes according to the four defect areas proposed
in Fig. 2.

As expected DFR2, DFR3 and DFR4 lead to faulty be-
haviors that are more difficult to detect, in particular when
considering defects in the dynamic range ([20], [13]). DFR2
and DFR3 show both static and dynamic faulty behaviors
while DFR1, DFR5 and DFR6 only lead to static faults. The
fault primitives extracted for DFR3 and DFR4 in the dynamic
defect area have a correspondence with the faulty dynamic
behaviors presented in the literature for the same defects and
similar technologies [20], [13]. It is interesting to note how
changing the working conditions the number of operations
required to sensitize dynamic faults changes.

The experiments also lead to the identification of an hard
to detect fault for DFR4 operating in normal conditions.
When the defect value is higher than 300MΩ the internal
core cell array signals have a very high degradation, even
if the entity of the degradation is not enough to lead the
cell to flip. This phenomena is depicted in Fig. 4 where the
voltage of the internal node F runs very close to the threshold
switching voltage without crossing it, regardless of the number
of applied read operations. Hard to detect faults requires a
few considerations. We defined hard to detect faults those
conditions in which there is a strong degradation of the internal
memory signals. There are different conditions that may fall in
this class. In the current implementation hard to detect faults
are identified looking at the internal nodes of the cell (i.e.,
nodes F and T of Fig. 3). When one of these nodes is close
to the threshold switching voltage less than a certain value δ,
configurable by the user, an hard to detect fault is extracted.

Finally, Table III shows the main results concerning the
injection of short defects in the 65nm technology based
memory. As in the case of 130nm based memory, all defects
led to a static faulty behavior, regardless the test conditions
applied to the circuit.

The generation time to perform a complete characterization,
e.g., the set of resistive defects for a given working condition,
was of about 6 hours of computation time. This includes the
complete exploration of the defect range of all defects.

To conclude, in order to show the effectiveness of the
proposed genetic algorithm in efficiently choosing the test
sequences to simulate, and in particular to assess the effec-
tiveness of the proposed fitness function, Fig. 5 depicts the

fitness value for the candidate solution during the analysis of
DFR4 with a temperature of 125◦C in the dynamic defects
area. The x axis reports the number of generations while the y
axis shows the fitness. The figure clearly shows how the fitness
correctly increases toward the generation process reaching the
maximum value at the end of the generation when the solution
is identified. The different steps are connected to mutations
inserting new operations in the test sequences, while the flat
areas identify the exploration with a fixed test sequence length.
Being the target fault dynamic, adding new operations allows
to better approach the solution.

Fig. 5. Fitness trend for DFR4 with a temperature of 125◦C in the dynamic
defects area

TABLE III
65 nm TECHNOLOGY ANALYSIS FOR SHORT DEFECTS

Short defects

#DFS Temp. Volt. supply Fault primitive

DFS1 27◦C 1.1V 〈1W0/1/−〉
DFS2 27◦C 1.1V 〈1W0/1/−〉
DFS3 27◦C 1.1V 〈1R1/0/0〉
DFS4 27◦C 1.1V 〈1R1/0/0〉
DFS5 27◦C 1.1V 〈1R1/0/0〉

IV. CONCLUSIONS

This paper proposed a set of preliminary results toward the
definition of an efficient framework for automatic memory
defects simulation and fault model extraction. The target
memory is modeled at the electrical level using Spice, and
defects are directly inserted in this model. A set of heuristics,
and the use of evolutionary techniques allow to keep the time
required to perform the overall analysis under control.

The effectiveness of the proposed solution has been val-
idated by performing an extensive set of experiments on
well known memory defects, using different technologies. The
results showed that we have been able to automatically extract,
with a reasonable execution time, most of the results manually



TABLE I
130 nm TECHNOLOGY ANALYSIS

Resistive defects short defects

#DFR Rmin Temp. Volt. supply Fault primitive #DFS Temp. Volt. supply Fault primitive

DFR1 25KΩ 27◦C 1.5V 〈0W1/0/−〉 DFS1 27◦C 1.5V 〈0W1/0/−〉
DFR2 20KΩ 27◦C 1.5V 〈1W0/1/−〉 DFS2 27◦C 1.5V 〈0W1/0/−〉
DFR3 7KΩ 27◦C 1.5V 〈1R1/0/0〉 DFS3 27◦C 1.5V 〈0W1/0/−〉
DFR4 64MΩ 125◦C 1.5V 〈0T / ↑ /?〉 DFS4 27◦C 1.5V 〈0W1/0/−〉
DFR5 2MΩ 27◦C 1.5V 〈0W1/0/−〉 DFS5 27◦C 1.5V 〈0W1/0/−〉
DFR6 2MΩ 27◦C 1.5V 〈1W0/1/−〉

TABLE II
65 nm TECHNOLOGY ANALYSIS FOR RESISTIVE DEFECTS

Condition: Temp = 27◦C / Vdd = 1.1V

#DFR No Fault Dynamic Fault Primitive Static Fault Primitive

DFR1 1.00KΩ - 184.99KΩ - - 185.00KΩ - 500.00MΩ 〈0W1/0/−〉
DFR2 1.00KΩ - 28.76KΩ 28.77KΩ - 28.79KΩ 〈0R0R0/1/1〉 28.80KΩ - 500.00MΩ 〈0R0/1/1〉
DFR3 1.00KΩ - 14.37KΩ 14.38KΩ 〈1R1R1/0/0〉 14.39KΩ - 500.00MΩ 〈1R1/0/0〉
DFR4 1.00KΩ - 500.00MΩ - - - -

DFR5 1.00KΩ - 589.99KΩ - - 590.00KΩ - 500.00MΩ 〈0W1/0/−〉
DFR6 1.00KΩ - 549.99KΩ - - 550.00KΩ- 500.00MΩ 〈0R0/1/1〉

Condition: Temp = −40◦C / Vdd = 1.1V

#DFR No Fault Dynamic Fault Primitive Static Fault Primitive

DFR1 1.00KΩ - 294.99KΩ - - 295.00KΩ - 500.00MΩ 〈0W1/0/−〉
DFR2 1.00KΩ - 2.16KΩ - - 2.17KΩ - 500.00MΩ 〈0R0/1/−〉
DFR3 1.00KΩ - 1.33KΩ 1.34KΩ - 1.45KΩ 〈1R1R1/0/0〉 1.46KΩ - 500.00MΩ 〈1R1/0/0〉
DFR4 - - - 1.00KΩ - 500.00MΩ 〈1W0/1/−〉
DFR5 1.00KΩ - 500.00MΩ - - - -

DFR6 1.00KΩ - 524.99KΩ - - 525.00KΩ - 500.00MΩ 〈0R0/1/1〉

Condition: Temp = 125◦C / Vdd = 1.1V

#DFR No Fault Dynamic Fault Primitive Static Fault Primitive

DFR1 1.00KΩ - 154.99KΩ - - 155.00KΩ - 500.00MΩ 〈0W1/0/−〉
DFR2 1.00KΩ - 30.20KΩ 30.21KΩ - 30.24KΩ 〈0R0R0/1/1〉 30.25KΩ - 500.00MΩ 〈0R0/1/1〉
DFR3 1.00KΩ - 14.21KΩ 14.22KΩ - 14.23KΩ 〈1R1R1/0/0〉 14.24KΩ - 500.00MΩ 〈1R1/0/0〉
DFR4 1.00KΩ - 9.99MΩ 10.00MΩ - 500.00MΩ 〈1W0R0R0R0R0/1/1〉 - -

DFR5 1.00KΩ - 974.99KΩ - - 975.00KΩ - 500.00MΩ 〈0W1/0/−〉
DFR6 1.00KΩ - 349.99KΩ - - 350.00KΩ - 500.00MΩ 〈0R0/1/1〉

Condition: Temp = 27◦C / Vdd = 0.8V

#DFR No Fault Dynamic Fault Primitive Static Fault Primitive

DFR1 1.00KΩ - 154.99KΩ - - 155.00KΩ - 500.00MΩ 〈0W1/0/−〉
DFR2 1.00KΩ - 154.50KΩ 154.51KΩ - 228.90KΩ 〈0R0R0/1/1〉 228.91KΩ - 500.00MΩ 〈0R0/1/1〉
DFR3 1.00KΩ - 79.71KΩ 79.72KΩ 〈1R1R1R1R1/0/0〉 79.73KΩ - 500.00MΩ 〈1R1/0/0〉
DFR4 1.00KΩ - 2.46MΩ - - 2.47MΩ - 500.00MΩ 〈1W0/1/−〉
DFR5 1.00KΩ - 499.99KΩ - - 500.00KΩ - 500.00MΩ 〈0W1/0/−〉
DFR6 1.00KΩ - 374.99KΩ - - 375.00KΩ - 500.00MΩ 〈0R0/1/1〉

obtained and published in previous works. The proposed
experiments mainly focused on memory cells defects, the
application to defects in the surrounding circuitry such as slow
write driver faults proposed in [24] is still under investigation.
While the proposed framework does not directly addresses

test generation, the identified list of fault models can be
directly used as starting fault list for march test generation
algorithms such as the ones proposed in [4], [5], [6], [7], [8],
[9] in order to generate test sequences customized for realistic
defects in the target memory/technology, and thus optimizing



Fig. 4. DFR4 hard to detect faulty behavior

the resulting test sequences. On going activities to enhance
the effectiveness of the approach concerns the extension to
the analysis of multiple defects, and the improvement of
the genetic approach in order to better explore the space
of possible test sequences, and to additionally reduce the
computation time.
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