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Perturbation Schemes for Passivity Enforcement of
Delay-Based Transmission Line Macromodels

Alessandro Chinea and Stefano Grivet-Talocia, Senior Member, IEEE

Abstract—This paper introduces two different algorithms for
passivity enforcement of transmission-line macromodels based on
the generalized method of characteristics (MoC). The first scheme
corrects passivity violations via perturbation of purely imaginary
solutions of a nonlinear Hamiltonian eigenvalue problem. The
second scheme is based on a linearly constrained quadratic opti-
mization formulated at carefully selected frequency samples. Both
schemes can be viewed as extensions to the case of MoC-based
macromodels of existing techniques that were only available for
lumped macromodels. The resulting passive delay-based macro-
models can be safely employed in system-level signal integrity
simulations, due to their inability to produce any spurious energy
gain. Several numerical examples illustrate the behavior of both
schemes on transmission line structures of practical interest, high-
lighting their main differences and the open problems deserving
further research work.

Index Terms— Hamiltonian matrices, method of characteristics,
passivity, perturbation, transmission lines.

I. INTRODUCTION

L INEAR macromodeling has become a standard practice
for the analysis and design of electrical interconnects.

Macromodels provide simplified approximations of the ter-
minal port behavior of possibly complex interconnect structures
and allow very fast transient simulations using standard circuit
solvers. Therefore, a lot of research activities have been carried
out during the recent years, trying to define numerically robust
methodologies for the identification of macromodels known
either from electromagnetic simulation or direct measurement
[1]–[12].

In this work, we concentrate on the problem of transmission-
line macromodeling. Transmission lines are inherently of dis-
tributed nature, with possibly large propagation delays. When
conductor and dielectric losses are included in the model, diffi-
culties arise in the conversion of frequency-domain telegraphers
equations to a circuit stamp that can be efficiently used in a stan-
dard transient solver. Many approaches have been presented for
this task [13]–[24], mainly differing on how the propagation
delay is handled. Some methods approximate the delay term
with rational functions, leading to lumped macromodels, see
e.g., [14]–[17]. Some other techniques try to extract the delay
[18]–[24], leading to much more efficient models for long lines.
In particular, macromodels based on the generalized method of
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characteristics (MoC) are widely recognized as the most effi-
cient [19]–[24] for structures with significant propagation delay.
Therefore, we will concentrate on this macromodel class.

Interconnect macromodels must be passive. If this property is
not fulfilled, instabilities may arise during time-domain simula-
tion, due to an unphysical energy gain produced by the model
[32], [35]. The enforcement of passivity is a quite challenging
problem, which still presents several open issues. For instance,
several algorithms are available for the generation of guaranteed
passive lumped macromodels [25]–[41]. However, for delay-
based transmission line macromodels with MoC structure, there
is currently no general method allowing to enforce passivity.
In [44], [45], [46], a fundamental result has been achieved, by
providing a theoretical formalization of the MoC structure by
casting the model equations in a form that allows a purely al-
gebraic passivity check. These results have been exploited in
[47], [48] to derive a preliminary scheme for a posteriori pas-
sivity correction. An alternative method, applicable to scalar
lines only, is available in [49].

In this work, we extend the results of [47], [48] by providing
two alternative perturbation schemes for passivity enforcement
of MoC-based transmission line macromodels. The results in
this paper strongly depend on the background material in [46],
which is shortly recalled in Sections II and III. The two passivity
enforcement schemes are presented in Section IV and applied
to practical application examples in Section V. Section VI dis-
cusses the main results and draws some conclusions.

II. PRELIMINARIES

We consider a lossy multiconductor transmission line of
length described, in the Laplace domain, by the telegraphers
equations

(1)

where is the longitudinal coordinate, , and
denote the frequency dependent per-unit-length

( -PUL) resistance, inductance, conductance and capacitance
matrices, respectively. Following the method of characteristic
(MoC) approach, the solution is written as [24]

(2)
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where and represent the terminal voltages and
currents of the line and where

, and are the propagation op-
erator, propagation constant, and characteristic admittance ma-
trices, respectively. A SPICE-compatible stamp is derived from
(2) by extracting the asymptotic modal delays
from the propagation operator

(3)

using the asymptotic modal decomposition matrix , and by
approximating the remaining matrix operators
with low-order rational functions , respectively.
The well-known vector fitting algorithm [1] can be used for this
task, leading to the state-space realizations

(4)

where denotes the identity matrix. The MoC macromodel can
be characterized using the short-circuit admittance matrix ,
which can be obtained as in [44] from (2)––(4)

(5)

where

(6)

III. PASSIVITY CHARACTERIZATION

It is well known that a model is passive if and only if its admit-
tance matrix is positive real. If , and are
asymptotically stable (do not have poles in the closed right-half
plane of the -domain) with for , the positive
realness of is equivalent to the condition

(7)

The latter condition can be further simplified [46], by requiring
that the two subsystems defined as

(8)

are nonnegative definite, where

(9)

Following the procedure in [46], we can derive a time-domain
representation of these subsystems via inverse Laplace trans-
form combined by simple algebraic manipulations. First, we de-
fine

(10)

Fig. 1. Graphical illustration of the internal structure of the two subsystems
� ���. See also text. The small clock icon denotes a dynamical system with
time delays.

as the delayed state-space realization of . Then, a
delayed state-space realization of is obtained by
cascading the three partial realizations of and
according to (9), as illustrated in Fig. 1. Detailed expressions
of all matrices are reported in [46] and are not repeated here.

Also in [46], it is proved that the nonnegative definiteness of
is equivalent to requiring that there are no simple pure

imaginary eigenvalues satisfying the two following frequency-
dependent eigenvalue problems (FD-EP):

(11)

where

(12)

The constant matrices and are given in terms
of the state-space realizations in (4) and (10). Their detailed
expressions are as follows:

(13)

(14)
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(15)

(16)

(17)

A tedious but simple check shows that are Hamiltonian
matrices for , i.e.,

(18)

where

(19)

The Hamiltonian structure will be useful in the following.
The result in (11) is very important under a theoretical stand-

point, since, in principle, it allows checking model passivity
via algebraic eigenvalue conditions (11), thus avoiding any di-
rect frequency sampling process applied to (7). On the other
hand, the solution of (11) is a quite challenging numerical task,
since standard algorithms for nonlinear eigenvalue problems
may easily become ill-conditioned even for a moderate matrix
size. Due to these difficulties, the approach in [46] performs
an initial frequency sampling to find the regions where imag-
inary eigenvalues are potentially present. Then, using a suit-
able Chebychev polynomial approximation, the FDEP in (11)
is transformed in a local polynomial eigenvalue problem, which
is more tractable. Nonetheless, we have experienced numerical
difficulties in the application of this approach when more eigen-
values are clustered in small frequency bands. This situation
typically occurs when the number of line conductors grows, as
will be shown in Section V.

In order to overcome these problems, we step back and resort
to a more conservative adaptive frequency sampling process,
similar to [36] and [37]. The generalized Hamiltonian formu-
lation (11) will however play a key role in the formulation of
the passivity enforcement scheme based on the eigenvalue per-
turbation, see Section IV-A. Passivity check is here based on a
direct verification of the conditions (7), by explicitly computing
the eigenvalues of at carefully selected frequency points.
The guidelines for the definition of the highest frequency sample
and the sampling interval are given below.

• An upper frequency limiting the region where imaginary
solutions to (11) can be located can be derived by applying
the triangle inequality to matrix . Using (12) and
omitting subscripts, we can write

(20)

where the adopted norm denotes the maximum singular
value of its matrix argument. We also have [54]

(21)

where is the spectral radius defined as

(22)

with denoting the set of all eigenvalues. Com-
bining (20) and (21), we obtain an explicit upper bound for
all eigenvalues of , independent of , and therefore
also valid for all the solutions of the FD-EPs (11). We use
this bound to limit the frequency interval to be searched.

• The sampling interval is defined by noticing that the ele-
ments of in (9) are linear combinations of delay ele-
ments, the largest delay being . It is sufficient to
sample with at least points the corresponding
minimum period, resulting in a frequency resolution

(23)

Additional frequency samples are located near each pole
of and , in order to capture possible fast eigen-
value variations induced by the macromodel poles.

• The above rules give an initial set of frequency samples.
Then, an iterative refinement process is started to find the
zero crossings of each eigenvalue up to arbitrary precision.
This is achieved by a combination of eigenvalue tracking
and iterative bisection, as detailed in [37].

The outcome of the proposed passivity check algorithm is de-
picted in Fig. 2 for a 5-conductor coupled stripline structure,
whose detailed analysis is postponed to Section V. The figure
shows the five eigenvalues of (the corresponding ones for

result positive and are not shown) as functions of frequency,
plotted using all frequency samples selected by the above proce-
dure. Only a zoom on the frequency interval where passivity vi-
olations are found (highlighted by the shaded areas) is depicted.
The dots denote the crossings with the zero baseline and corre-
spond to the solutions of the FDEP (11).

For this case, the initial number of frequency points was set
to 105, and we used a very stringent relative accuracy threshold

to stop the iterative refinement process. The final
number of frequency samples was 1720. The computing time
required to find these results is 6.5 s on a notebook (1.66 GHz
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Fig. 2. Results of the passivity check for a 5-conductor coupled stripline. Fre-
quency-dependent eigenvalues of ��� are plotted (solid lines) with the corre-
sponding zero-crossings (dots), which are the solutions of the FDEP in (11).
Passivity violation intervals are highlighted.

Fig. 3. Graphical illustration of horizontal and vertical displacement schemes
for MoC passivity enforcement (see text).

CPU). We remark that the direct solution of the FDEP problem
(11) could not find all eigenvalues to a precision sufficient to
ascertain if they were purely imaginary, and it took longer (75 s
on the same computer).

IV. PASSIVITY ENFORCEMENT

This paper presents two alternative algorithms for MoC pas-
sivity enforcement. Both schemes share the common objective
of removing the passivity violation intervals, but use different
perturbation approaches to meet this goal. We introduce them
qualitatively with the support of Fig. 3. We label the first
scheme, detailed in Section IV-B, as horizontal displacement.
This scheme is a generalization of [34] to delay-systems in form
of MoC macromodels. It is aimed at collapsing the passivity
violation intervals by iteratively perturbing their edges to
new locations until passivity is obtained. Horizontal arrows
in Fig. 3 provide a graphical illustration. The second scheme,
developed in Section IV-D, is denoted as vertical displacement.
This scheme is similar to the approaches in [29]–[33], since it
formulates the passivity constraints at selected frequencies, by
directly perturbing the eigenvalues of . The vertical arrows
of Fig. 3 give a snapshot of this process.

The presentation of the two algorithms is organized as
follows. We first recall, in Section IV-A, some general per-
turbation results applied to the FDEP (11), which provide the
background material for the horizontal displacement scheme.
The horizontal displacement scheme is then introduced in

Section IV-B, followed by a list of possible strategies for accu-
racy preservation during the passivity enforcement, discussed
in Section IV-C. The vertical displacement scheme is presented
in Section IV-D. Finally, some more practical considerations
on convergence and computational complexity of both schemes
are provided in Section IV-E.

A. Perturbation of Frequency-Dependent Eigenvalues

This section recalls some results from [47] and [48] on first-
order perturbation of the FDEP in (11). We assume that the
system matrix depends on an external parameter . As a
consequence, the eigensolution becomes parameter-dependent

(24)

where and are the right and left eigenvectors associ-
ated to the eigenvalue . Neglecting higher order terms, we
have the following perturbation result:

(25)

where

(26)

In (26), superscript denotes partial differentiation with re-
spect to , and subscript denotes evaluation for . Details
can be found in [52], [47], and [48]. This result will be applied in
Section IV-B as an inverse perturbation scheme, in order to de-
termine the model perturbation (here represented by the scalar
variable ) required to displace the frequency-dependent eigen-
values by a desired amount.

B. Horizontal Displacement

The horizontal displacement scheme applies the above first-
order perturbation results to find new model coefficients such
that the resulting MoC equations satisfy the passivity constraints
(8). The particular choice of candidate coefficients for pertur-
bation is somewhat arbitrary. In principle, all state-space ma-
trices of and in (4) can be perturbed. However, a
common strategy [25]–[37] is to preserve the poles and the di-
rect couplings, and to perturb only the residues of the rational
approximations, which are usually directly stored in and
for characteristic admittance and the propagation operator, re-
spectively. In order to simplify the presentation, we consider
only the perturbation of the characteristic admittance system,
although the same procedure can be applied to the propagation
operator. Therefore, our “free variables” will be the entries of a
matrix , defined as

(27)

where is the state space matrix of the perturbed system.
The derivation of all perturbation results is here detailed only

for of (11), similar results holding for . Given this as-
sumption, we will drop the subscript to simplify the notation.
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A direct application of the results of Section IV-A for the per-
turbation of the th imaginary eigenvalue leads to

(28)

where

(29)

and

(30)

(31)

(32)

Since is a Hamiltonian matrix for , the left and
right eigenvectors are related by . Therefore, (28)
becomes

(33)

In order to derive a linear constraint between and , we
exploit the block structure of matrix , as derived
in (13)–(17). Inducing the same partitioning on the eigenvector

, after some straightforward manipulations
we obtain

(34)

with

(35)

Combining now (33) and (34), we obtain

(36)

where is the Kronecker product [53] and the operator
stacks the columns of its matrix argument. Collecting (36) for
all imaginary eigenvalues leads to an underdetermined system,
whose solution forces the displacement of all imaginary eigen-
values to new target locations . Iterative application of
the above procedure leads to passivity enforcement when the
eigenvalues are perturbed inwards for each of the passivity vio-
lation intervals, as depicted in Fig. 3.

The presented horizontal displacement scheme extends the
approach of [34], valid only for lumped macromodels, to delay-
based MoC macromodels. The structure of the linear constraint
(36) is indeed very similar to (60) of [34], although the deriva-
tion is more complicated in the MoC case due to a different in-
ternal structure of the macromodel.

C. Strategies for Accuracy Preservation

Let us examine (36) more closely. The number of linear con-
straints equals the number of imaginary eigenvalues of (11),
whereas the number of unknowns is , where is the
number of poles used in the rational approximation of the char-
acteristic admittance operator. In most practical applications the
passivity violations are located at low frequencies, since con-
ductor and dielectric losses effectively contribute to the high
frequency passive behavior of the model. This typically results
in a small number of imaginary eigenvalues. As a consequence,
system (36) is underdetermined. This enables the inclusion of
additional constraints on its solution, which can be effectively
chosen so that the extent of the model perturbation is minimized,
thus preserving model accuracy.

The standard approach for accuracy preservation is to enforce
a minimum-norm constraint, where the particular norm must be
carefully selected depending on the application. The most com-
monly employed norm is equivalent to the cumulative energy of
the model perturbation in sense

(37)

where represents the perturbation of the element
of the characteristic admittance operator of the model, and
is the associated controllability Gramian, defined as the unique
symmetric and positive definite solution of the Lyapunov equa-
tion

(38)

Consequently, the natural accuracy constraint to be associated
to (36) reads

(39)

Recent developments have shown that alternative norms can
be used instead of (37), leading to some advantages for spe-
cific applications. In particular, we can cite norms equivalent
to the relative error [38], [39], obtained via inverse magnitude
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weighting, and bandlimited norms allowing to fine-tune the ac-
curacy metric in specific frequency bands [40]. All these cases
lead to an alternative definition of the Gramian matrix and
are therefore compatible with (39). In this work, we use both the
standard norm (37) and the relative norm [38], [39].

D. Vertical Displacement

In this section, we present an alternative perturbation scheme
for MoC passivity enforcement. As outlined in Section IV and
depicted in Fig. 3, the vertical displacement scheme works on
the negative eigenvalues of defined in (8) and lifts them
above the zero-level. As in Section IV-B, we consider
only in the presentation, and we omit the subscript in order to
simplify the notation. Also, the presentation of the perturbation
scheme is limited to the characteristic admittance only, although
the procedure is general and can be applied to the propagation
operator with minor modifications.

We start by considering the results of the passivity char-
acterization process of Section III, which outputs a set of
frequency bands, delimited by the imaginary eigenvalues of
(11), where passivity violations are localized. Within each of
these frequency intervals , we denote the minimum (nega-
tive) eigenvalue as , and with the frequency where the
lowest value is reached; see also Fig. 3. The direct application
of a standard eigenvalue perturbation analysis [52] to the
Hermitian matrix results in

(40)

where is the right (left) eigenvector of corresponding to
the eigenvalue and where is the matrix perturbation re-
quired for a first-order relocation of into . This perturba-
tion is now expressed in terms of the characteristic admittance
perturbation . Using (8) and (9), we obtain

(41)

where

(42)

Using now the properties of the Kronecker product and as-
suming that , we obtain

(43)

Combining now the passivity constraint with (40) and
(43), we have the final result

(44)

A set of linear inequality constraints is obtained by writing (44)
for all passivity violation intervals. Combined with the min-
imum norm condition (39), this set of inequalities results in a
linearly-constrained quadratic optimization program, which can
be efficiently solved using standard convex optimization tech-
niques [56]. We remark that the above vertical displacement
scheme is a direct extension of the results in [29], [30], [32],
[33], which hold for lumped (delayless) macromodels only.

E. Computational Complexity and Practical Considerations

In this section, we compare the computational complexity of
horizontal and vertical displacement schemes, by providing the
relevant operations count scaling with the number of ports/poles
of the macromodel.

Each step of the horizontal displacement algorithm requires
the solution of an underdetermined system with equations
and free variables, where is the number of imagi-
nary eigenvalues of FD-EP, is the number of coupled lines and

is the number of poles used in the rational approximation of
. As explained in [54] the required computational complexity

is . Instead, each step of the vertical displacement
method involves a linearly constrained quadratic optimization
problem with constraints and free variables again,
where is the number of nonpassive frequency bands

. The computational complexity of this type of problems
cannot be provided explicitly, since iterative schemes are used,
with results that depend on the particular implementation. How-
ever, it can be proved that such quadratic optimization prob-
lems have at most polynomial computational complexity. A pes-
simistic estimate given in [55] reads , which
is consistent with the discussion in [25].

An upper bound for the number of iterations is very difficult
to find, even on a statistical basis. In general, the experimental
results of all tested examples show that the number of iterations
required by the horizontal and vertical displacement schemes is
very similar. The actual figures for each example are reported
in Section V.

A final remark on convergence. Both discussed methods are
based on perturbation. In principle, there is no guarantee that the
model perturbation based on a local constraint in a given pas-
sivity violation region will not create other passivity violations
at different frequency points, especially out of the frequency
range of interest. However, the specific accuracy constraints dis-
cussed in Section IV-C guarantee a minimal model perturbation
throughout the frequency axis. Therefore, in case a new pas-
sivity violation arises, it is guaranteed to be very small, hence
easy to be removed at the next iteration. In addition, new out-of-
band passivity violations are not a practical issue for the struc-
tures that we are interested here, since high-frequency losses
(both metal and dielectric) do guarantee significant energy atten-
uation outside the modeling bandwidth. In fact, the passivity vi-
olations for all investigated test cases are actually concentrated
in the low frequency range, where the interconnect is nearly
lossless. As a result, local constraints prove to be sufficient for
global passivity enforcement.

V. EXAMPLES

A. Microstrip Line

The first example we consider is a single cm mi-
crostrip line, whose cross-sectional geometry is specified in
Fig. 4. The frequency-dependent per-unit-length parameters
have been computed over a broad frequency range, from dc
up to 10 GHz, using a combination of the 2-D method-of
moments (MoM) techniques of [50] and [51]. Then, an initial
MoC macromodel in the form (2)–(4) has been derived using
the standard delay extraction process combined with vector
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Fig. 4. Geometry specification for the microstrip example of Section V-A. Pa-
rameter values are � � ���� � � ��� mils, � � ���� � � � � mils.

Fig. 5. Passivity enforcement of the microstrip example of Section V-A. The
first eigenvalue is depicted before (solid line) and after passivity enforcement
using horizontal (dashed line) and vertical (dash-dot line) displacement
schemes.

fitting (VF). Six poles were used in the rational approximation
(4) of both characteristic admittance and propagation operator.
Application of the passivity check outlined in Section III
highlights two frequency bands where the eigenvalue of (a
scalar quantity in this case) is negative, as depicted in Fig. 5,
with four purely imaginary eigenvalues of the FDEP (11). All
eigenvalues of are instead uniformly positive.

Application of the proposed horizontal displacement scheme
leads to passivity compensation in only one iteration, with a
total runtime of about 0.4 s on a notebook (1.66 GHz CPU).
Conversely, the vertical displacement scheme generates a
passive model in three iterations, with a total runtime of 0.44 s
on the same hardware. The results are depicted in Fig. 6, where
the scattering responses of all models are compared. These
plots show that the accuracy is well-preserved during passivity
compensation. The maximum deviation (computed among all
responses and all frequency samples) from the raw scattering
responses obtained via direct frequency-domain solution of (1)
was 0.0025, 0.0027, and 0.0345 for nonpassive, vertical-dis-
placement based and horizontal-displacement based passive
models, respectively. We remark that the vertical displacement
scheme provides slightly better accuracy with respect to the
horizontal scheme, as can be noted also from Fig. 5. This fact
will be further confirmed also for the other test cases analyzed
in this work.

Fig. 7 reports the transient port responses of nonpassive and
passive macromodels to a trapezoidal voltage pulse applied on
one end of the line with 50 terminations. Both passive macro-
models produce very consistent results. However, changing the
termination into a simple RL load drives the nonpassive model
to instability, while the passive models remains well-behaved;
see Fig. 8. This plot is a further confirmation that passivity is

Fig. 6. Scattering frequency responses of the microstrip line macromodel be-
fore and after passivity enforcement via horizontal (top) and vertical (bottom)
displacement. The scattering responses obtained via direct frequency-domain
solution of (1) are not reported since undistinguishable from those of the non-
passive macromodel.

Fig. 7. Transient responses (obtained with SPICE) of the microstrip line macro-
model before and after passivity enforcement via horizontal (top) and vertical
(bottom) displacement.

a fundamental property that must be guaranteed in any macro-
model. In both cases, a SPICE realization of the macromodel
with standard circuit elements was used. The required CPU time
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Fig. 8. Nonpassive microstrip line macromodel looses stability when loaded
by a simple � ��� � ��� termination at all ports (component values � �
����	� � � ��
��	� � � ����H. A nonuniform (piecewise linear) scale
for the time axis is used to highlight the instability.

Fig. 9. Geometry specification for the coupled stripline example of
Section V-B. Parameter values are � � ��� � � ��m, � � �����m,
	 � �� mils, 
 � � mils, and � � � mils.

was 0.65 s and 108 s for the results of Fig. 7 and Fig. 8, respec-
tively. It should be noted that a kernel-based implementation
of the macromodel [24] would achieve the same results with a
much reduced runtime.

B. Two-Conductor Coupled Stripline

The second example is a 3-cm two-conductor coupled
stripline having a cross section depicted in Fig. 9. The same
procedure described in Section V-A was applied to derive a
MoC macromodel, which resulted nonpassive. Fig. 10 depicts
the three distinct passivity violation intervals and the 12 imagi-
nary eigenvalues of the FDEP (11) for (subsystem does
not show any passivity violation). Application of horizontal
displacement scheme leads to passivity enforcement in three
iterations, with a total runtime of 5.0 s. Vertical displacement
scheme required five iterations in 5.9 s. The eigenvalue pertur-
bation results for both schemes are reported in Fig. 10, which
shows that the performance of the vertical displacement scheme
is notably better than the horizontal scheme. Fig. 11 depicts
one of the scattering responses of passive and nonpassive
macromodels. The maximum deviation (computed among all
responses and all frequency samples) from the raw scattering
responses obtained via direct frequency-domain solution of (1)
was 0.0010, 0.0032, and 0.0048 for nonpassive, vertical-dis-
placement based and horizontal-displacement based passive
models, respectively.

C. Five-Conductor Coupled Stripline

The last example is more challenging. A 10-cm five-con-
ductor stripline structure is depicted in Fig. 12. A MoC macro-
model was derived as for previous examples, and the proposed

Fig. 10. Passivity enforcement of the coupled stripline of Section V-B. Top
and bottom panels report the results of the horizontal and vertical displacement
schemes, respectively.

Fig. 11. Scattering response �� � of nonpassive and passive macromodels of
the 2-conductor stripline of Section V-B. The scattering responses obtained via
direct frequency-domain solution of (1) are not reported since undistinguishable
from those of the nonpassive macromodel. Similar results were observed for
other scattering responses.

passivity checking procedure was applied. The results are de-
picted in Fig. 2. Four passivity violation intervals are detected
using the adaptive sampling process described in Section III. As
a byproduct, a total of 44 eigenvalue intersections with the zero-
level are found, which correspond to the imaginary eigenvalues
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Fig. 12. Geometry specification for the coupled stripline example of
Section V-C. Parameter values are � � ���� � � ���m, � � ����m,
� � ���m, and � � ���m.

Fig. 13. Passivity enforcement of the 5-conductor stripline of Section V-C via
vertical displacement. The passivity violation intervals depicted in Fig. 2 have
been removed completely.

of (11). Unfortunately, the direct solution of (11) failed, due to
the presence of several clustered eigenvalues, which leads to
numerical ill-conditioning. Due to these difficulties, the eigen-
values can only be computed with insufficient precision to as-
certain if they are purely imaginary or not. Several linear algebra
packages were tested, including HAPACK [57] and the polyno-
mial eigenvalue routines available in MATLAB [56], leading to
the same negative results.

The above ill-conditioning severely affects also the horizontal
displacement scheme, which failed to converge. Conversely,
no problems were encountered by the vertical displacement
scheme, which computed a passive macromodel in ten iter-
ations and 124 s. We remark that 121 s were spent by the
adaptive sampling process for the passivity check, and only
3 s were required for the solution of (44). The results of the
passivity enforcement are depicted in Fig. 13, showing that all
violation intervals have been removed and all eigenvalues of

are positive at all frequencies.

VI. DISCUSSION AND FUTURE DIRECTIONS

This paper contributed several results towards the generation
of guaranteed passive macromodels for transmission line struc-
tures. Assuming a model structure derived from the generalized
method of characteristics (MoC), Section III discussed two
alternative methods for checking the model passivity. The first
method is based on the direct solution of a frequency-dependent
eigenvalue problem (FDEP), first derived in [45], whereas the
second method is based on an iterative sampling and tracking
process. The presented numerical examples show that the latter
seems to be more reliable and robust when the number of
line conductors increases. This is mainly due to the numerical
difficulties arising in the solution of the nonlinear eigenvalue
problem (11).

Fig. 14. Comparison of 			 eigenvalues for nonpassive and passive macro-
models of the 5-conductor stripline of Section V-C.

The main contributions of this work are two alternative
methods for enforcing the passivity of a MoC-based macro-
model. The first method, named horizontal displacement
scheme, performs an iterative perturbation of purely imaginary
eigenvalues of a FDEP, thus extending the technique of [34] to
the case of delayed macromodels. The second method, named
vertical displacement scheme, solves a linearly constrained
quadratic optimization aimed at enforcing the positive realness
of the macromodel admittance matrix at carefully selected
frequency points. It turns out that the latter is more reliable
and robust, again due to the intrinsic numerical difficulties in
handling the aforementioned FDEP. The general conclusion is
that the combination of adaptive sampling and constrained op-
timization provides an accurate and efficient way of correcting
and removing passivity violations in MoC-based transmission
line macromodels.

Some open problems remain and are now discussed. Despite
the explicit accuracy preservation constraints that are used
during passivity enforcement (see Section IV-C), the pertur-
bation induced in the model responses may be too large for
practical applications. As a demonstration, we consider again
the five-conductor stripline example of Section V-C. Fig. 13
shows the passivity-enforced eigenvalues of . In Fig. 14,
we report instead the eigenvalues of , computed using the
passive macromodel obtained from the vertical displacement
scheme. We remark that these eigenvalues were uniformly
positive in the original nonpassive macromodel (also shown
in the plot), so that no direct perturbation was applied to
them during passivity enforcement. Fig. 14 shows that these
eigenvalues undergo a quite significant perturbation in the
low frequencies range. This can be readily explained from
the structure of (8) and (9). It can be noted that assumes
large values (hence large eigenvalues) at low frequencies, due
to numerical cancellation effects in the matrix to be inverted.
This causes large sensitivities of the entries to any model
perturbation. This fact is intrinsic in the MoC model structure
and independent on the perturbation approach being devised
for passivity enforcement. As a further confirmation, Fig. 15
compares selected scattering responses of nonpassive and pas-
sive models. Although some responses remain well-behaved
and accurate, some other responses are excessively deteriorated
at low frequencies.

Various countermeasures were attempted in order to preserve
a good low-frequency macromodel behavior, including relative
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Fig. 15. Selected scattering responses of nonpassive and passive macromodels
of the 5-conductor stripline of Section V-C.

error control [38], [39] and hard constraints on the dc macro-
model response added to (44). Both approaches did not provide
significantly different results. Therefore, although the presented
techniques seem to provide efficient and sufficiently accurate re-
sults for passivity enforcement of low-complexity transmission
line macromodels, further work is needed for a robust solution
of general applicability.
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