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We study the graph coloring problem over random graphs of finite average connecti@ityen a number
g of available colors, we find that graphs with low connectivity admit almost always a proper coloring whereas
graphs with high connectivity are uncolorable. Dependinggpme find with a one-step replica-symmetry
breaking approximation the precise value of the critical average conneatiyitiMoreover, we show that
below c, there exists a clustering phase=[cy,cq] in which ground states spontaneously divide into an
exponential number of clusters. Furthermore, we extended our considerations to the case of single instances
showing consistent results. This leads us to propose a different algorithm that is able to color in polynomial
time random graphs in the hard but colorable region, i.e., whefcy,cq].

DOI: 10.1103/PhysReVvE.68.036702 PACS nuner02.70-c, 89.20.Ff, 75.10.Nr, 05.70.Fh

I. INTRODUCTION from the fact that many real-world combinatorial optimiza-
tion problems have component subproblems which can be

The graph coloring problem is a very basic problem ineasily represented as coloring problems. For instance, a clas-
combinatorics[1] and in statistical physic$2]. Given a sical application is the scheduling of registers in the central
graph, or a lattice, and given a numlapof available colors, processing unit of computefg]. All variables manipulated
the problem consists in finding a coloring of all vertices suchby the program are characterized by ranges of times during
that no edge has two ending vertices of the same color. Thehich their values are left unchanged. Any two variables that
minimally needed number of colors is thhromatic number change during the same time interval cannot be stored in the
of the graph. same register. One may represent the overall computation by

For planar graphs there exists a well-known theof8in  constructing a graph where each variable is associated with a
showing that four colors are sufficient, and that a coloringvertex and edges are placed between any two vertices whose
can be found by an efficient algorithm, while for general corresponding variables change during the same time inter-
graphs the problem is computationally hard to solve. In 1972al. A proper coloring with a minimal number of colors of
it was shown that graph coloring is NP complé#¢ which  this graph provides an optimal scheduling for registers: two
means, roughly speaking, that the time required for detervariables with the same color will not be connected by an
mining the existence of a proper coloring grows exponenedge and so can be assigned to the same re@sitee they
tially with the graph size. On the other hand, if an efficientchange in different time intervals
algorithm for solving coloring in its worst-case instances The g-coloring problem of random graphs represents a
exists, the same algorithm upolynomial reductioncan very active field of research in discrete mathematics which
be applied to efficiently solve all other problems in the classconstitutes the natural evolution of the percolation theory
NP (for a physicist's approach to complexity theory seeinitiated by Erds and Rayi in the 19509 8]. One point of
Ref.[5]). contact between computer science and random graph theory

In modern computer science, graph coloring is taken asrises from the observation that, for large random graphs,
one of the most widely used benchmarks for the evaluatiothere exists a critical average connectivity beyond which the
of algorithm performancg6]. The interest in coloring stems graphs become uncolorable hy colors with probability
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tending to one as the graph size goes to infinity. This transig-COL/UNCOL transition on random graphs. One of the first
tion will be called theg-COL/UNCOL transition throughout important finite-connectivity results was obtained by Luczak
this paper. The precise value of the critical connectivity de-about one decade add4]. He proved that the threshold
pends, of course, on the numteof allowed colors and on asymptotically grows likec,~2qInq for large numbers of
the ensemble of random graphs under consideration. Grapl§9lors, a result, which up to a prefactor coincides with the
generated close to their critical connectivity are extraordinaroutcome of a replica calculation on highly connected graphs
ily hard to color and therefore the study of critical instanced 15] [p=0(1) for largeN]. For fixed numbeq of colors, all
is at the same time a well posed mathematical question artices with less tham neighbors, i.e., oflegreesmaller
well as an algorithmic challenge for the understanding of théhang, can be colored for sure. The hardest to color structure
onset of computational complexity9,10]. The notion of is thus given by the maximal subgraph having minimal de-
computational complexity refers to worst-case instances anglree at least, the so-calledq core. Pittel, Spencer, and
therefore results for a given ensemble of problems might noyVormald[16] showed that the emergence of a 2-core coin-
be of direct relevance. However, on the more practical sidegides with the percolation transition of random graphg at
algorithms which are used to solve real-world problems dis=1 [8] and is continuous. Fog=3, however, theg core
play a huge variability of running times and a theory for theirarises discontinuously, jumping from zero to a finite fraction
typical-case behavior, on classes of nontrivial random inof the full graph. Forq=3 they found, e.g., that the core
stances, constitutes the natural complement to the worst-casgnerges at=3.35 and immediately contains about 27% of
analysis. Similar to what happens for other very well-knownall vertices. Shortly after, it was realized that the existence of
combinatorial problems, e.g., the satisfiability problemthe core is necessary, but in no way sufficient for uncol-
of Boolean formulas, critical random instancescptolor- orability [17]. In fact, the best lower bound for the 3-COL/
ing are a popular test bed for the performance of searck/NCOL transition is 4.0318] and numerical results predict
algorithms[6]. a threshold of about 4.719]. The currently best rigorous
From the physics sidg coloring has a direct interpreta- upper bound is 4.9920]. It was obtained using a refined
tion as a spin-glass modgl1]. A proper coloring of a graph first-moment method. In statistical mechanics, the latter is
is simply a zero-energy ground-state configuration of a Pottknown as the annealed approximation. More recently, a
antiferromagnet witly-state variables. For most lattices such replica-symmetric analysis of the problem has been per-
a system is frustrated and displays all the equilibrium andormed[21]. The resulting threshold 5.1 exceeds, however,
out-of-equilibrium features of spin glasseshe “Potts  the rigorous bound and one has to go beyond replica sym-
glass”). metry. At the level of one-step replica-symmetry breaking we
Here we focus on the-coloring problem(or Potts anti- are able to calculate a threshold valeg=4.69, which
ferromagnet over random graphs of finite average connec-we believe to be exact. We also describe the solution
tivity, given by theG(N,p) ensemble: Graphs are composedspace structure which undergoes a clustering transition
of N vertices, every pair of them independently being con-at cqy=4.42.
nected by an edge with probability and being not directly The remaining part of the paper is organized as follows.
connected with probability 4 p. The relevant case of finite- In Sec. Il we present the replica-symmetfitS) solution of
connectivity graphs is described Ipy=c/N, with ¢ staying the problem and discuss why it fails. In Sec. lll the one-step
constant in the thermodynamic limfit—oc. In this case, the replica-symmetry breakingRSB) solution is presented.
expected number of edges becorives c/N(’z\')=cN/2, i.e., From this we derive the average graph connectivity for the
proportional to the vertex number. Each of the vertices is, ofi-FCOL/UNCOL transition and demonstrate the existence of a
average, connected to other vertices. This connectivity dynamic threshold associated with the appearance of solution
fluctuates according to a Poissonian, i.e., the probability oflusters in configuration space. Then, in the following sec-
randomly selecting a vertex with exactyneighbors is given tion we show that the previous ideas are valid even in the
by e~cc9/d!. analysis of single-case instances. This allows us, in Sec. V, to
Two types of questions can be asked. One type is algoPropose an algorithm that colors, in the hard region, single
rithmic, i.e., finding an algorithm that decides whether ainstances in polynomial time. Finally, in Sec. VI some con-
given graph is colorable. The other type is more theoreticaflusions of the work are presented.
and amounts to asking whether a typical problem instance is
colorable or not and what the typical structure of the solution IIl. REPLICA-SYMMETRIC SOLUTION
space is. Here we ac_idress both questions gsing the _sojcalledAS stated above, the question if a given graplh lor-
cavity method[12]. First, we provide a detailed description able is equivalent to the question if there are zero-energy

of the analytical calculations beyond the results presented if,qund states of the antiferromagnetisstate Potts model
Ref.[13], where the questions of the coloring threshold andgefined on the same graph. Denoting the set of all edges by

typical solution properties were addressed. Second, this ang the problem can thus be described by the Hamiltonian
lytical description is modified and applied to single-graph

instances. This leads to an efficient graph coloring algorithm

for the region slightly below the COL/UNCOL transition. In Hg:{i%E 8(ai, o), @

this region, known, complete, and stochastic algorithms are '

known to fail already for moderate system sizes. where {0} €{1,2,...q} are the usual Potts spins and
Let us start with reviewing some known results on thes(---,---) denotes the Kronecker symbol. This Hamil-
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tonian obviously counts the number of edges being coloredymmetric notation. The structure of the cavity biases is eas-
equally on both extremities, a proper coloring of the graphily understood if we distinguish among two different cases:
thus has energy zero. Since this Hamiltonian cannot takg) h7>n!, ... h™ 1 h7*1 ... h9 for some = then U~
negative values, the comblnatorlal task of. finding a coloring_ _ 1 4h4(7=0 for all o= 7 (i) hi=h7=h?, ... h%for
is translated to the physical task of finding a zero-energy - thenti= (ot L9 = (0.0 06
ground state, i.e., to the statistical physics of the abovgOMeTL, 72! t erlu—'(u v ) =(0, )=0.
model at zero temperature. Only vectorsh with nondegenerate maximal component
give rise to nontrivial cavity biasl in the direction of the
A. The cavity equation minimal component. This is physically understandable: A

In this paper we therefore apply the cavity method in atNique maximal field component in fixes the correspond-
variant recently developed for finite-connectivity graphs di-"9 color, which thus is forbidden to the newly added site. If

rectly at zero temperatuf@2—24. This approach consists of there are_tW(_) or more maximal field components, the co_Ior of
a self-consistent iterative scheme which is believed to b&"€ old site is not fixed, thus there cannot be any forbidden

exact over local treelike graphs, lik§N,c/N), the set we

consider here. It includes the possibility of dealing with thethus belongs to the g+ 1)-element set{0,e, . ..

color for the new vertex. Each cavity bias in our problem
eql
) q )

existence of many pure states. One has to first evaluate theheree, has all components 0 but théh equal to—1.

energy shift of the system due to the addition of a new spin
0o Let us assume for a moment that the new spin is onlyyiih fields h,, .

connected to a single spin, say, in the preexisting graph.
Before adding the new site 0, the ground-state energy of t
system with fixedo; can be expressed as

q

EN<al>=A—§l hié(7,a1), (2)

where we have introduced the effective fieltil
=(hi, ... ,h{) and used the superscriptto stress that the
previous quantity refers to thi-site systems. Note that a

h

If the new spino is connected t& randomly chosen sites

..,ﬁk, the cavity bias has to be linearly
superposed and the resulting cavity field on vertex 0 is given
By ho==k_,0(h,). With high probability(tending to one for
largeN) thek sites will be far from each other in the original
graph: Although an extensive number of loops is surely
present forc>1 [8], these loops have lengths of the order of
InN. Inside one Boltzmann state we can thus invocate the
clustering propriety[11], resulting in a statistical indepen-
dence of thek selected sites and their cavity fielts (for a
more detailed discussion of this point see REZS8,24)). The
simplest ansatz assumes that there exists just one such state

(g—1)-dimensional field would be sufficient since one of (or a finite number, such as in ferromagnets at low tempera-

the g fields above can be absorbedAnWe, however, prefer

ture), which is equivalent to the Bethe-Peierls iterative

to work with g field components in order to keep evident thescheme or the replica-symmetric ansatz in the replica

global color symmetry. When we conneagg to o; we can
express the minimal energy of thl { 1)-site graph at fixed
0p,01 as

q
ENY(ag,00)=A= 2 hid(r,00)+8(00,00). (3

The minimum energy for theN+ 1)-site system at fixed-
is thus obtained by minimizingN* (o, o) with respect to
o, it can be written as

EN*Y(og)=min EN"Y(ag,04)

71

q

=A-o(h) =2, whpa(ro) (4
with
w(h)=—min(—h', ... ,—h9), (5)
u”(h)=—min(—h?, ... —h"+1,... —h%)—w(h),
(6)

where we have introduced theavity biasesA(ﬁ). This
choice ofw andu is not unique but, according to the previ-

ous discussion, we have chosen the only manifestly color-

method. Assuming furtheron the existence of a well-defined
thermodynamic limit of the energy densiB/N and of the
probability distributions of local fieldgfor recent rigorous
studies in this direction, see Ref25-27), the distribution

of the fieldsﬁo of the newly added vertex becomes the equal
to those of the&k neighbors. It is consequently determined by
the closed expression

“ cK . L -
P(hy=e ¢, o d%,, ...,d%, P(hy)---P(h,)
k=0 K:
k
X 8 H—ZO ai(ﬁ,)), (7)
Q(u)= f d9nP(h)s(u—u(h)), ®

where we have already used that the connectivikiemre
distributed according to a Poissonian of ma&amhe previ-
ous equations can be combined in order to have a closed

form for Q(J):

R ook X
Quy=e°> k—,f IT d;Q(uy)
k=0 K: i=1

(€)
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From the symmetry of our model under arbitrary permuta- 025
tions of the colors we conclude that

Q(e))=Q(e))=---=Q(g)=7 and Q(0)=1-q,
(10) 015 | ;

i.e., we need a single real number with 0<<1/q to S
completely specify the probability distribution function & oI} .
Q(u). Noting that the probabilityP™(h) for a site withk
neighbors can be expressed by 0.05 | .
P(k)(h)=J 11 dquiQ(ui)a(h—z ui), (11) 0= - . . ]
i=1 i=1 5 55 6 6.5 7
and recalling thati; e {0,€,, . . . ,éq} it is easy to rewrite this _ )
probability distribution in a compact multinomial form FIG. 1. Replica-symmetric order parametgivs average con-
nectivity ¢ for g=3 from Eq.(14).
P®(h)=P®(h,h?, ... hd .
(h)y=PX( ) A T
q q e Y —=1- T (15)
ki~ 2 h(1-qp** X h7 o
=1 =1
= g g ; (12)  The sum in Eq(14) converges very fast. It is therefore easy
ke S h 1 T (=h?)! to numerically construct a solution to this equation as a func-
= = ' tion of c. Forq>2 it turns out thaty jumps discontinuously

from zero to a finite value as shown in Fig. 1 where the order
with the convention that hi=0 for n<0. Note thath”  parametery jumps atc=5.141 in the case af=3.

€(0,—1,...,—k) and that there are correlations among the ~ This means that, up to=5.141 and at the level of the
different components of the cavity fields such thatreplica-symmetric assumption, we only find the paramag-
PR, ... h9)=119_,P(h7). Now we are ready to calcu- netic solutiony=0. The solutiony>0 would account in a
late the graph average over the Poissonian connectivity digiPontaneous breaking of this symmetry, there should be a
tribution of meanc, finite number of pure statesimilar to Neel order in Ising
antiferromagnets
k
B c
P(h', ... h9=e C; Hpk(hl, ....h9) B. The calculation of the energy
0 g One can easily compute the average shift in the ground-
B _qul—[ (cm)™ _ H D (h* state energy when a new spin is added toNhksite system
-€ =1 (—h7)l =1 en(N). and it is connected t& spins of the system. The energy of

the original graph is given bA—3S¥_,w(h;) while the en-
ergy of the (+1)-site system is A—3K [w(h))
It is interesting to note that after the average the correlations- w(ﬁ(ﬁi))]. Therefore the average shift is given by
among the different colors disappear d@nds the product of

Poissonian distributions with average. From Eq.(7) it - - - -
iqs possible to derive a seIf—consisten?unation fc?r (th)e order 8E1= _kzo e ct/k! f dfuy . .. duQ(uy) - .. dQ(uy)
parameter noting that the probabilityto obtain a nontrivial
cavity bias—sa)éT—is simply given by the probability that
the 7th component of the local field is the nondegenerate
smaller, so setting=1,

13

[’

X w

o

e . = —f d9h P(h)w(h). (16)
7= 2 - > P(hi .. h9) .
hl=0 h2=h1+1  h9=h1+1 One might be tempted to conclude that Eg6) equals the

energy density of the system, at least folarge enough, but
, (14) this is not true. There is a correction term due to the change

in the number of links per variable in the iteratibfi—N

+1. In fact, generating links with probabilitg/N in a N
where I'(n,x) is the incomplete Gamma function defined + 1 system, instead af/(N+1), we are slightly overgener-
from the following useful relation: ating links. So, we need to calculate the average energy shift

q-1

. 5 (cp)® I'(n+1cn)
—¢ ﬂnzo n! ( T TT(n+1)
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in a system when two sites—say, sping and o,—are
joined by an antiferromagnetic link.

Again, the energy of the original graph i%—w(ﬁl)

—w(h,), while the energy after the two spins are joined is

given by A—min, ,[—hi*~h}?+&o7,05)]. The difference
between the two contributions can be written as

AEjp=min{—h{*+min[ — 3+ 8(ay,05) 1} + w(hy)

g1 a2
+o(hy)

=min[ —h*—u"1(h,) — 0(hy) ]+ w(hy) + w(hy)

71

=—w(h+u(hy))+w(hy). (17)

PHYSICAL REVIEW E 68, 036702 (2003
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FIG. 2. Energy densitg vs average connectivity for g=3 in

This allows us to express the average link-energy shift as the RS approximation from E¢20).

AE,= f d9h;d9h,P(hy) P(hy)[ w(hy) — w(hy+U(hy))].
(18)

It is interesting to observe that Eq4.6) and(17) are model

negative, a particularly baffling result if we consider that
Hamiltonian(1) is at least positively defined. This phenom-
enon is analogous to what already observed for the RS ap-
proximation in random 3-SAT39], and is a consequence of
the approximation used. We will see in the following section

independenin the sense that the actual Hamiltonian is eN-how the one-step RSBL-RSB) ansatz cures this pathology.

coded into the functions(h) andu(h) defined by Eq(5).
Using Egs.(5) and (13) one shows easily that Eq16)
reduces to

AE;= X P, (hY)-- P, (h9)
hi...pa

xmin(—h,—h?, ...,—h9

gq-1 - —oo a
q
== ( i )E hPc,,(mq—a(E Pc,y(g>> :
a=0 \(—a/h=0 g<h

19

However, before leaving the RS approximation we would
like to compare our RS results with the RS approximation
presented recently by van Mourik and Saad in [R&f] since
their result clearly differs from ours. At the origin of the
discrepancy is the fact that they work a population dynamics
at very low but finite temperature finding a transition around
c=5.1 but without negative energy region. Analogous to
what is reported in Ref.23], if one works directly at a zero

temperature the distributiorP(ﬁ) must be concentrated
around integer field components, but this is not true anymore
at a temperature different from zero, as it happens in Ref.
[21]. They find that, in the zero-temperature limit, there re-
main noninteger field components. In our opinion these are a

It is also not hard to prove that the average link-energy shiftlirect hint to the existence of RSB. Instead of including these
AE,=q7?. This result can be obtained either by direct com-fields into an extended replica-symmetric approach, we di-
putation of the integral or following a simple probabilistic rectly switch to a replica-symmetry broken solution.
argument:AE;, is different from zero whenever the two
unlinked sites have the same color, but this happens with
probability 72 for each of the colors. Finally, we have the the
following equation for the energy which is equivalent to the
replica-symmetric approximation:

Ill. ONE-STEP RSB SOLUTION

The RS results show some evident pathologies and are at
odd with numerical simulation$19,21] which predict a
lower threshold around=4.7, and with the rigorous upper
boundc=4.99[20]. What can be wrong in our analysis? The
main assumption we have made is the statistical indepen-
dence of the of th& cavity fields. Is it true that long distance
among spins imply statistical independence? In general, the
answer we obtain from statistical mechanics is “no”: the
assumption holds only inside pure statfes a discussion on

c 5 20 the notion of pure state, see REZ8] and references thergin
zq” ' (20 In this section we will focus on how the cavity method
could be used to handle a situation in which there exist many
The behavior of the energy fay=3 as a function of the different pure states. More precisely we assume that their
average connectivitg is displayed in Fig. 2. Let us note that number NxeN* is exponentially large in N. The
for average connectivity 5.141c<5.497 the energy is connectivity-dependent exponentis calledcomplexityand

C
E=N(AE1—§AE2

q-1 —® —» @
q
=-> ( B )E hm(h)qa(E m(g))
a=0 \Q—a/h=0 g<h

036702-5
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denotes the entropy density of clusters. Note that it differs inmplies that there must exist unique functional probability

general from the solution entropy since each cluster mayjistributionsQ[ Q(u)] and [ P(u)] for all the surveys. One
contain as well an exponential number of solutions. The firsthnay wonder how could we handle such a big functional
basic assumption we made is that inside each pure state tagace: Fortunately th® surveys are described in terms of a
clustering condition holds. Under this assumption the iterasjngle real number € »<1/q, cf. Eq.(10), and scalar func-

tion can still be applied, but we have to take into account thgjon p( ) is enough for specifying their distribution:
reshuffling of energies of different states when new spins are

added.
Q[Q(U)]=f dzp(7) 6| Q(u)—(1—-qn)s(u)
A. 1-RSB cavity equation
We proceed following the same steps of the preceding d - -
section. Let us take the new spiry and let us connect it to - ’7241 o(u—e;) |, (26)

k spinsa, ...,0q in the same state. Thanks to the fast

decreqse of correlations msllde.a pure state the energy of Sta\}v?th 4] - - -] denoting a functional Dirac distribution. Assum-
«a for fixed value of thek spins is

ing that the survey of site 0 is distributed equally to those of
all its k neighbors, we can write

k g
EN(oy, ...,ak)=Aa—i21 21 hy o8(7,05 4).  (21) L
' e eSO aj 0q)- - -d9u 1

The optimization step within each pure stateruns still in Po(h)=e I(ZO k! Ckf d2Qu(Uy)- - ARyt
close analogy to the RS computation: when we conogdb K
o1, ...,0¢, We express the minimal energy of the X ex 2 G
(N+1)-site graph with fixedoy; by minimizing the ( yo =
+1)-site system at fixed is thus obtained by minimizing
EN*! with respect to thé spins:

k
5(5—2 Ji), (27)

) Qo(u)= j d9hPg(h)s(u—u(h)). (28)

k q
EN Ho0)=A,— 2 o(h )= 2 2 U(h;,)8(r,00).
=t st (22  Note the presence of theweighting factorexdyew(S_,U;)]
that arises after conditioning the probability distributions of
This last equation shows that the local field acting on theheh's to a given value of energj23], the prefactor<, are

new spinay in the statex is normalization constants depending €n(u), . . . .Qu(U).
K The reweighting parametgris a number equal to the deriva-
ﬁoa: 2 ach; ) (23) tive of the complexity (e) of metastable states with respect
T ’ to their energy densitg=E/N:
and that the energy shift inside a state is o3
K o y= % (29)
AE,=—2, o(U(h; »). (24)

=1 Intuitively, this reweighting factor can be understood as a

All the previous equations are completely equivalent to thos@€nalty e YA« one has to pay for positive energy shifts.
in the RS case except for the fact that now we haveran Note that Eqs(27) and (28) can be cast in the following
index labeling the different pure states. One natural questiof‘Prm:
is how cavity fields and the related cavity biases are distrib-
uted for a given site among the different pure states. This - e c a R a- -
leads us to the notion ourvey[22-24, i.e., the site- Qo(ug)=e go ﬁckf d%uQs(uy) - - - d Qi)
dependent normalized histogram over the different states of

both cavity biases and cavity fields:

k

k
xex;{ yw( Zl Gi) } 5(Go—ﬁ(ﬁl+ e +Gk))

I
Qi) =77 2 80Uy o), - o
M (25) =e‘°gogckf dhP(h)e’*™ suy—u(h)).
- 1 .
Pi(h) =7 2 ohi=hi). (30

In close analogy with what we have already done in the RSN the last line we have introduced the auxiliary distribution
case, the existence of a well-defined thermodynamic Iimifl5(ﬁ) which would result in Eq.(27) without reweighting
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(i.e., by settingy=0). It has no direct physical meaning in probability of having the survey in site fointingin direc-
this cpntext, but'lt will be of great technical help in the tion 53. Therefore combining Eq¢34) and (35) we obtain
following calculations.

Let us first concentrate on tlelorable phasgwhere the no:fk( IR %)
ground states are propegrcolorings and have zero energy.

Consequently no positive energy shifts are allowed, so this X X

phase qis chgracteeized t;yzomgl)_/et us first calculate the H (1=m) Iﬂl (1_27]i)+i1;[1 (1=3m)
value of the normalization constan@; in this limit. Note K K .
that w(h)<0 for all allowedh (each component of is 31‘[ (1= ) -3[1 (1=27)+T1 (1-37)
nonpositive ash results from a sum ovews). This means =1 =1

that the only surviving terms in E¢30) are those with zero- (36)

energy shiftw(h)=0, i.e., all fields must have at least one
zero component, allowmg for the selection of at least one
color without violating an edge. Let us first specialize to the

At this point we are ready to write the one-RSB iterative
equation for theQ surveys:

caseq=3 for clarity, the generalization to arbitrany is c
- —a—C
straightforward. Summing over, both sides of Eq(30) we p(n)=e go Hf d71p(71) - - -dmp(7i)
have
L Xo(mp—fu(m, ... ). (37)
C—IF’(O,O,O)+3 > P(hl00+3 X P(hth20), Equation(36) can be easily generalized to an arbitrary num-
k ht<o ht.h?<0 ber q of colors
(31 ’
qfl k
where the combinatorial factors 3 appearing on the right- - ( )H —(1+1) 7]
hand sides are obtained by noting tffgth,0,0)=P(0,h,0) Fm, ) = '=01 :
—P(0,0h) and thatP(h%,h2,0)=P(h,0h2) =P(0h1,h?). ( )
Combining Eqs(27), (28), and(10) we get Z H [1=(+1)m]
k (38
P0,00=]1 (1-37), (32)  The self-consistent equatiot37) resembles a replica-
i=1 symmetric equation and can be solved numerically using a

population dynamic algorithn{i) Start with an initial popu-

_ k B lation 7y, . .. ,7, of size M which can be easily chosen to
E P(hl,0,0)z_H (1—-27%;)—P(0,0,0 be as large as £0o generate high-precision datéi;) ran-
hl<o =1 domly draw a numberk from the Poisson distribution

k e Cck/k!; (iii) randomly seleck+1 indicesi,iy, .. ..k
- _ from {1, ... M}; (iv) update the population by replacing
1-2 (1-3 33
iﬂl ( ™) H ). (33 i, bY fa(7i ), - - 7i); and(v) go to (i) until convergence
of the algorithm is reached.

K One obvious solution of Eq$37) and (38) is the para-

> P(hth20)= H (1—m) E h',0,0) magnetic solutiod( 7). For small average connectivitiest
h',n?<0 ht< is the only one. The appearance of a nontrivial solution co-
~$(0,0,0 incides with a clustering transition of ground states into an

exponentially large number of extensively separated clusters.
p In spin-glass theory, this transition is called dynamical. Still,
“TT (1= n)—2]] (1-2 p(n) will contain a nontrivial peak inp=0 due to small
T i ] ( 7i) disconnected subgraphs, dangling ends, low-connectivity
vertices, etc. The shape pf ) in the casey= 3 is displayed
in Fig. 3 for connectivitiex ranging fromcy to ¢, .
+H (1-3%). (34 The weight t of this peak can be computed self-
=1 consistently. Let us again consider first the case3. Keep-
ing in mind that fory—oo the fieldh has at least one van-
ishing component, the only possibilities to obtaith)=0
1 are given byh=0 or by a fieldh with one single nonzero
C—=3H (1— 77i)_3H (1_2’7i)+H (1—-3%). component. So the probability that the cavity field acting on
ko=l =1 =1 a given site withk neighbors equals zero is given by the sum
(39 of the probabilities that all neighboring cavity fields are zero
equal tot¥) plus the probability that exactly one cavity bias
mong thek is nontrivial [equal tok(1—1t)t“"1]. The aver-
age over the Poissonian degree distribution leads to

k

Plugging these relations into E(R1) we finally get

Also note that in close analogy to the analysis that leads t
Eqg. (14), we can interpret Eq(34) as the(unnormalized
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pulyy b(y)=— Wln( f deé“{-ve+2<8>}) . (41)

12 446 ;’f LA

For largeN, we calculate this integral by its saddle point:
) 1 1
d(y)=min| e— yE(e) =€gp— yE(eSp). (42)
e

It is easily verified that potentiap calculated at the saddle
point energyes(y) fulfills the usual Legendre relation:

ay[y ¢(yaesp(y))]:espa (43

n yzay(ﬁ(yaesp(y))zz(esp)- (44)

FIG. 3. Probability distribution functiop(#) in the caseg=3

average connectivities 4.42<4.69. Note also that & peak in Around the saddle point the complexity can be approxi-

mated, according to Eq42), by
‘ 2(e)=2(espty(e—esp)=—yop(y)+ye. (45
We will now consider a cavity argument: let us denotely

(390  the energy of a system composed\b§ites, then the density
of configurations is given by

Generalizing Eq(39) to a general numbeg of colors easily
gives AN (Ep) e YONWDHYENGE, | (46)

Th
for
sol

—t

t:e—(l—t)cg‘f (1-t)'c with ®(y) denoting the extensive thermodynamic potential

40 with fimit dy(Y)/N— p(y). Now we add a spin to the sys-
tem. If we consider that the total energy . .1=Ey

is equation is quite interesting, since a nontrivial solutiont AE, we can express the density of configurations in terms

ms a necessary condition for E@7) to have a nontrivial  Of Ex andAE:

ution. In fact, this equation was first found in REE6],

=0 I

the fraction of edges belonging to tlecore is given by (1 dNys 1(En,AE) c @/ NOHY(ENT ARG E| P(AE)dAE.

min), With t..;, being the smallest positive solution of Eqg. (47)

(40). Thus, we also find that the existence of an extengive

core is necessary for a nontrivia ) and forms a lower

Integrating oversE we get

bound for theg-COL/UNCOL transition.

— —yd E
Unlike in the case of finite-connectivity-spin glasses or, ANy 1(Eng 1) =Ce ¥YONaWHYEadEy Ly, (49

equivalently, randonxor-SAT problems[30—-32, the exis-

tence of a solution<<1 is not sufficient for a nontrivigb( )
to exist. The latter appears suddenly at the dynamical transi-

1 1
C:§J P(AE)GVAEdAEE§<eyAE>P(AE)- (49

tion ¢4, which can be determined to high precision using the

population dynamical algorithm. This solution does not im-Comparing the previous equations with E46) we can de-
ply uncolorability, but the set of solutions is separated into arjuce that

exponentially large number of clusters. The number of these

clu
siz

sters, or more precisely its logarithm divided by the graph 1
e N, is called the complexity®, and can be calculated q’NH(Y):q’N(Y)—§|n<eXp(yAE)>P(AE)- (50

from p(7).

stable states at nonzero energy to exist. Hereafter we will

In the thermodynamic limit we can thus identify
B. The calculation of energy and complexity

- 1
More generally, we also expect a large number of meta b(y)=— yln(exp(yAE»p(AE). (51)

assume that they are exponentially many(e)

xe

XA NZ(e)], where the complexit (e) is (despite the use In close analogy with what we have already done in the RS

of a capital letteran intensive function of the energy density case, and using E@24), we can computeb as asite contri-

e=

E/N. We can introduce a thermodynamic potentialbution plus alink contribution in the 1-RSB scenario: site

o(y) [29] as addition
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- - - - = k
exr(—yAd)l):f quilQil(Uil)‘ ‘ 'quiink(Uik) lim _yA¢1:k21 efCE—'f dp(n1) ...dp(n)

Y*)OC

k
- 1
xexr{yw(jzl uiJ”:C_k’ (52 <In

link addition (57)

In order to compute the average link contributidrb,(y)
we need to evaluate the largdimit of Eq. (53), which gives

k
2 1>(|+1)1] [1-(+D)m]|.

exp(—yAg)= [ % P, (R, )d%, P, (F,)
im ~y3®)= [ dp(ndp(zIN(1-my7).

y—

xex —yw(h; ) +yo; +u(h;))]

(58)
:f dthil(h)duniz(U) This equation has a good probabilistic interpretation comple-
mentary to that used in the derivation®E, in the RS case.
xexg —y(w(h)— w(h+u))] In fact the integrand of Eq(53) is different from zero for
_ y—oco only when both site$; andi, have a different color,
=1+am,m,(e77-1). (53 and this happens with probability @qn; m,) (note that

d7i, 7, is the probability that the two sites have the same
Note that in the limity—0 and assumind®;=P for each color) It is now clear from Eq(42) that takingy— of
site, we obtain the RS expressmns Once the functional dis- y®d(y) gives us the complexity at least in the COL region
tributions Q[Q(u)] andP[P(h)] are known we can eventu- \wheree=0:
ally average the energy shifts¢,A ¢, in the usual linear

combination: ck

2(e= 0)—2 e C— dnip(71) ... dyp( )

q-1

Y S
$(Y)=D 1~ Ads, (54)
S S (- 1>(|+1)H[1 (1+1)7,]

XIn

where the overlines denote the average over both disorder

and functional distributions. One finally finds — ;J' dn1p(71)d720(72)IN(L—q 71 75).
14 g (59
s=-1 3 e | I Pegrer
- P i=0 C. Results
X a- - ‘. The previous analysis results for thcoloring problem
XIn i:HO d*uiQi(uj)exg yw Zl Ui in the existence of a dynamic transition, characterized by the

sudden appearance of an exponential number of clusters that
c disconnect the solutions of the problem. This is represented
+ EJ DPyA P, ]1DP,PLP,] in Fig. 4 forq=3 and 4, where the complexity is plotted as
a function of the graph connectivity. Note that at a certain
value average connectivitg=cy the complexity abruptly
jumps from zero to a positive value. Then it decreases with
growing ¢ and disappears a, where the number of solu-
S S LR tions become zero. It is not possible any more to find a
xexdyw(hy) yw(h1+u(h2))]>. ®9 zero-energy ground state for the system, i.e., the graph be-
comes uncolorable witly colors, and its chromatic number
In the limit y—oo these relations can be written in a more grows by one; see Fig. 5.
explicit form. Let us consider first the terthg, in Eq. (52). In Table I, we present the results fqe=3, 4, and 5; for
Referring to Eq.(35) it easy to see that the dynamical transition we show the corresponding values
of ¢4 of the entropys(cy) =In g+cyIn(1—1/q)/2[33] and the
q-1 ( k complexity 3 (cq). For the g-COL/UNCOL transition, the

lime Y2%1=> (—1) IEl)H [1—(1+21) %] critical connectivityc, and the solution entropy are given.
Yo =0 i=1

X In( f dqﬁlpl(ﬁl)quZPZ(HZ)

Like in random 3-satisfiability34] and vertex covering35],

(56) this entropy is found to be finite at the transition point.
In Fig. 6 we display the average complexiyas a func-
such that tion of the energy densitg in the 1-RSB approximation.
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3 4 5 6 7 8 9 10 TABLE |. Entropy and complexity at the static and dynamic
0.06 ' ' : ; ' ' thresholds fog=3, 4, and 5.
=4
004 | 4 l a Ca s(Cq) (cy) Cq s(Cq)
)> 3 4.42 0.203 0.0223 4.69 0.148
002 | -3 | 4 8.27 0.197 0.0553 8.90 0.106
= 5 12.67 0.196 0.0794 13.69 0.082
] —t—— ' : : 4
| ) .
51 | l r are expected to act as traps for local search algorithms caus-
q | | ‘ | ing an exponential slowing down of the search process. Well-
D S known examples of search processes that are overwhelmed
4r i * : | il by the presence of excited states are simulated annealing or
i | : greedy algorithms based on local information.
i | : To test this prediction, we have applied several of the best
3 ': L ] available solvers for coloring and SAT problems available in
3 s 5 6 7 8 ‘e 10 the net[6,38]. After some preliminary simulations we ob-

c served that the best results could be obtained with the smallk
program[38] and concentrated our efforts on it. The simula-
tion results, as shown in the lower half of Fig. 4, were ob-
tained in the following way: First, a random grapiN (

FIG. 4. Top: ComplexityX(c) vs average connectivity foq
=3 andg=4. Nonzero complexity appears discontinuously at the

dynamical thresholdy and goes down continuously to zero at the 108 ted and tried t lor it with I
g-COL/UNCOL transition. The curves are calculated using the ) was generated and we tried to color it with a sma

population-dynamical solution fop(#) with population sizeM number Of_ colors(hereq=_3). If, after some cutoff timéwe .
=10P. Bottom: The full line shows the chromatic number of large Probed with 10 s, 1 min, and 2 min without substantial
random graphs vs their connectivity The symbols give results of changes the graph was not colored, we stopped and tried to

smallk for N=10%, each averaged over 100 samples. color it with largerg. For each connectivity we averaged
over 100 samples. As it can be clearly seen, the algorithm

Recently Montanari and Ricci showed in RES6] that in the  fails with g colors slightly below the dynamical transition,
p-spin spherical spin glass the 1-RSB scheme is correct onlgonfirming our expectations. In Sec. IV we explain how the
up to a certain critical energy densiéy, above which this cavity approach helps to design an algorithm which is able to
solution becomes unstable and a FRSB calculation is realso deal with this problem.

quired. It is possible that such a phenomenon might occur
also in this case. The dynamical transition is not only char-
acterized by a sudden clustering of ground states, at the same
point an exponential number of metastable states of positiv
energy appears[24]. Such states(besides algorithm-
dependent entropic barriers which may exist even belgw

D. The large-q asymptotic

From Egs.(37) and(38) one can easily deduce the large-
8 asymptotics ofp( 7). For average connectivities>q [the
thresholdc is expected to scale lik€&(q Inq)], f, is domi-
nated by thd =0 contributions in the numerator and in the
denominator, leading tp(#n)= &6(»—1/q) in leading order.

0.008
AN c=45 —
N =50 _
0.006 | [ ¢ 0.025
0.004 | | .
0.002 0.02 1
- ;‘ 's‘i
2 0
by i 0015 f T
-0.002 | | >
N W 4
-0.004 ' 001 § ‘ .
-0.006 S e=450 ——
! . c=455
-0.008 : : ' : ' 0.005 S e=460
0 5 10 15 20 25 30 c=4.69
y ol €=5.00 -

0 0.004 0.008

e

0.012 0.0i6

FIG. 5. Average thermodynamic potentigl(y) vs y in the
HARDCOL phase ¢=4.5) and in the UNCOL phasec€5.0).
Note thate(y) above the paramagnetic regio#€ 0) is a monoto- FIG. 6. Average complexit®, as a function of the energy den-
nously increasing function of in the first case, while it displays a sity e for various average connectivities In this figure we only
maximum at finitey in the second one. display thephysicalbranchegsee text
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Plugglng this result into EC{59) one can eaSily calculate the SurveysQi_)j(J) and Qj—»l(l]) of messages trave”ng in the
COL/UNCOL thresholct, by setting the complexity to zero. two possible directions. The algorithm self-consistently de-
Taking care only of the dominant contribution we find termines these surveys by a message passing procedure to be
described below, and finds consequently all the thermody-
namic properties of the model defined on the specific graph.

This result coincides with the exact asymptotics found byLet us now describe below how SP works in practice for the

. 3-coloring problem:
Luczak [14]. Note, however, that the same dominant term
can also be obtained from the vanishing of the replica- (@) Selectagrapl:GﬂV,E_)._ .
symmetric(paramagneticentropys(c) which is expectedto (2 All the Q;_;(u) with {i,j} € E are randomly initial-
be exact up to the COL/UNCOL transition. This means that Z€d- _ . o
for q— o, the threshold entropy goes to zero. This behavior (3_) SeqU_entlally cor_15|der al! sitésand ra_ndomly update
could already be conjectured from the above table where thi€ links{i,j} to all neighborg in the following way.
threshold entropies are given for smallThe derivation of (@) For each neighboy of i we calculate
the subdominant terms in E460) requires a much more . - -
detailed analysis and goes beyond the scope of this paper. It Pilj(h):Ciljf ‘ 1\:([0/. d9u Qi (U)
will be presented in a future publication together with analo- =T

€q=29Ing+0O(qInq). (60

gous results foK-SAT [37]. R R .
X8 h— 2 Udexplyo| 2 G,
ke keVTy/j
IV. WORKING WITH SINGLE-GRAPH INSTANCES:
SURVEY PROPAGATION (61)

Up to now we have solved analytically the coloring prob- Where with the symboV/(i) denotes all neighbors of The
lem averaged over the set of EmdRenyi graphs at given PrefactorCy; is chosen such tha;; is properly normalized
average connectivity. In this way we derived thedependent 0 One. R
threshold connectivities of, at which the graph becomes  (b) FromP;j;(h) we derive the new surveys of all edges
almost surely uncolorable with colors, i.e., the location of {i,j}:
the COL/UNCOL transition. We have also demonstrated the . . oL
existence of another threshold valggabove which a clus- Qiﬁj(u)=f dhPj;(h) 8(u—u(h)). (62
tering phenomenon takes place in the space of solutions.

However, one of the relevant consequences of this cavity (4) The iteration step 3 is repeated until convergence is
approach is that it can be naturally implemented to studyeached.
single-case instances, i.e., specific nonrandom graphs which |t was already shown in Ref24] that the free energy of
have to have a locally treelike structure to fulfill the condi- the system may be written as
tions of the cavity approach. In the average-case analysis at 1
each step of the iteration, we selectatiddomly ksites from b(y)= _{2] eE ¢ (y)— > (n,—1)¢"%y),
the M possible ones to be used in E§6), and we substi- NI o i ' '
tuted another randomly chosen entpy from the M pos- (63
sible entries. From here on, we will assume that the iteration h isth fivity of th teix and &'k d
procedure used above is also valid for single instances—witwnfdree(m' 'Se eecgn??rf;wc}(;i N E{[_‘é?]r e'gfalf_‘ k¢i, j ((Bj/) aent' .
one significant change: For the generation of survey for on@i . (Y) represen ntributions of finks and vertices
vertex (or edgé we have to use its actual neighbors, theWhich are given by

connections between sites are fixed once forever by the spe- link 1 e - -
cific graph under consideration. i (Y)=-— y'n dhP;;(h)duQ;_;i(u)
The survey-propagation algorithm % exp{—y[w(ﬁ) _ w(ﬁ-f— G)]}) (64)

This algorithm works in a way similar to the sum product
algorithm[41]. In the latter, to each vertex arrivemessages and
from k—1 neighbors, then this messages are transformed
(becomeh fields) and sent as a new message through the link d)node(y) __ Eln
to the descendarkt neighbors. So, at each time step, in the ' y
links of the graphs we will have messages traveling, like in a K
communication network. The survey-propagati@® algo- < ex S G
rithm, works with the same principle. The basic difference is yo =
that now the messages are replaceditsurveyof the mes-
sages(i.e., by probability distributions of messageSP is Repeating the above procedure for various valuey, of
defined for one given value of the reweighting paramgter Egs.(64) and(65) do not only provide the values af(y),
that must be optimized to minimize the “free energy” of the but also> (y) = —y2d¢(y)/dy and the energy density(y)
system. To each edde,j} of the graph we associate two  =g(y®(y))/dy of states. The parametric plot &(y) vs

f [T d%uQu_i(uy
ke V(i)

. (65)
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e
0.002 ¢ 0.007 | Cgs T
0 0.006 | 1
-0.002 | 0.005
—_ _
< 0.004 ¢ S 0004 | 1
< LY
-0.006 | 0.003 | g
-0.008 | 0.002
-0.01 0.001 }+ _
-0.012 RS oo S 0 U e
0 1 2 3 4 5 6 7 & 9 10 44 445 4.5 455 4.6 4.65 4.7 475 4.8 485 4.9
y c
FIG. 7. Free energiegh as a function ofy for three given FIG. 9. Density of miscolored linksys vs average connectivity

samples ofN=10 000 of connectivities=4.60, 4.69, and 4.80. of the graphc (lower dotted curveand threshold energy density,
vs ¢ (upper continuous curyen the 1-RSB approximation.
e(y) gives the complexity of states as a function of their
energy. For example, Fig. 7 shows the free enapfy) of  branch of the complexity curve intersects the energy axis or
single graphs witiN=10 000 vertices as a function gffor it equals zero i (e=0)>0 on the lower branch.
three different values of the average connectigity The other relevant energy value is tti@eshold energy
We observe that for high-enough connectivities the maxie,,. It is determined by the point where the complexity
mum of ¢(y) is located at finite values of While decreas- reaches its maximum. It is therefore the point where, e.g.,
ing c, the location of the maximum grows and approachessimulated annealing gets stuck. The same remark of Sec.
y—o at the coloring threshold. From these curves and bylll C holds here: this calculation should be probably im-
means of numerical derivatives, we may also calculate thgroved along the line of Ref36] in order to take into ac-
complexity and energy. Figure 8 shows the two branchesount the FRSB instability at higher energy density as in the
obtained in the parametric plot &f(y) vs e(y) for various  case of thep-spin spherical model.
connectivitiesc. While the physical meaning of the upper  From the practical side this is, of course, not the way to
branches is not cled23] we wanted to stress that they in- determine this values, it is much more desirable to look for
terpolate between the RS solution and the maximum comthe value ofy at which ¢(y) becomes maximal, cf. E¢44).
plexity point. Figure 9 shows a plot of these two energies as a function
From the previous figure we may extract two characterisof the connectivities obtained using this single-instance
tic values of the energy: The first one is associated with thalgorithm.
minimal numberegN of miscolored edges in the graph, i.e.,  Of course, the exact meaning of the numerical values of
it gives theground-state energgf the instance. The value of these quantities is an open question. In principle, they were
eyS is determined as the positive point where the lowerdefined for infinite systems, whereas our single-instance al-
gorithm works for systems of finite sizé¢ We expect that

0.025 . - - - the numerical values give good approximations once we look
at large values o, where, e.g., the scales dividing distances
0.02 - of solutions inside one state from those between states are
well separated. A more detailed discussion about this may be
found in Refs[12,24].
0015 ¢
¥
d 0.01 V. APOLYNOMIAL ALGORITHM TO COLOR GRAPHS
The survey propagation described above was very useful
0.005 | for the design of an efficient algorithm to find a solution of
randomly generated 3-SAT formul§®2,24 in the hard but
satisfiable phase. Here we will show that, with small modi-
00 0.002 0.004 0.006 0.008 0.01 fications, the same idea can be extended toctueloring

problem.
The relevant idea in this algorithm is to fix spins which
FIG. 8. ComplexityS, as a function of for three given samples are strongly biased towar@r away from one color. There-
of random graph with average connectivities 4.60, 4.69, 4.80 fore, we have to first determine the distributions of local
and N=10000 sites. At odds with Fig. 6 here we display both magnetic fields in the system using SP and select those
physical and unphysical branches. which have the strongest bias. Once these are fixed the prob-

e
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lem is reduced. We can rerun SP on the reduced instanc&pm now on, all the discussion will be associated for the
new spins may be biased and fixed. The procedure will beaseq=3. The extension of the results to higheis, how-
repeated until only paramagnetic spins remain. At this poinever, straightforward although exponentialgn
SP cannot help any more, but surprisingly the decimated col- As mentioned above, the first things we should do are a
oring problem becomes “easy.” Using any reasonable locabeneralization of SP to non-color-symmetric situations, and
solver known in the literature, we can proceed to construct & correctly define a biased spin. Let us start first noting that
proper coloring. Eq. (26) may be written as

In the case ofg-COL the subject is technically slightly
more complex than iiK-SAT, since spins can be biaseddgn . .
different directions and it is hard to decide what do we mean o[Q(w]= f d9%p(7) 9
precisely by biased. In addition, by fixing the color of one
vertex, all its neighbors have to have different colors, i.e., q
they are left withg—1 colors. In the reduction process the - 7’8(u—e,)
problem, initially being a pure-coloring problem, becomes =1
a list coloring problem where each vertex has an own list of
allowed colors. In this way the permutation symmetry ofwhere we simply avoid to consider the color symmetry of the
colors is broken, which requires a modification of the SPproblem, and where we introduoé):(l—zlenf). Then,
given above to nhonsymmetric surveys. following the same lines of reasoning that lead from &)

In order to keep the presentation as simple as possible wie Eq.(36) we may deduce the following update of the sur-
concentrate our efforts on the 3-coloring problem and henceseys in the limity— oe:

Q(u)— 7°(u)

: (66)

[ a-7_0-2 1 mii+ao+ I 7

keV(i)/j PEr ke Vi)l ke V(i)/j
7]irﬂj: (67)

(I-mp_)— > H ,(778_4"'7754)4‘ H ,77(12_4
p=1,23 ke V(i)/j keV(i)/j

p=1.2,3 ke V(i)/j

forre{1,2,3}. The value ofni(Lj can be calculated by imposing the normalization condition. Using this update rule instead
of the one proposed in the above version of SP, we directly work with a reweighting paransetemhich forbids any
positive energy changes and thus characterizes proper colorings.

Having #», for all the sites of the graph, we have to define the site dependent color polarizations

11 | 1-7_n-> 1] ) (’”]Qai_kmpai)_’_j 1:/[0) 71

jeVv(i p#r jeV(
I a=apo= 3 I oo+ 11 o
p=123eVii) p=T23]eV(i) ke V(i)

for r=1,2,3. This equation is analogous to E7) but the turned out that many vertices get surrounded by neighbors
products are extended to all neighbors. The polarizafipn  Wwith fixed colors. In that case, the spin can be fixed to one of
is the probability that vertex is fixed to colorr in a ran-  their remaining allowed colors immediately, and it is re-
domly selected cluster of solutions. Vertices that may changgoved from the graph. _

their color within one cluster are characterized lj= (1 In practice, we put a cutoff for the value of the bias to be

—>3_1I7). Once these polarizations are known, many Strat_used for the previous criteria. We use ruig every time a

egies can be adopted for coloring the graph. We believe th las towards some color is greater than 0.8 and i) the
gies P S g the graph. YWe ias was lower than 0.15. There is no special reason for
the simplest and most intuitive one is the following

. - . ) _ selecting specifically these values, but we found numerically
(i) If one spin is very biased to one color, fix that spin and, tast convergence to solvable paramagnetic problem in-
remove it from the graph. Forbid this color to all neighbors.giances. It could be useful to make a systematic analysis for
(ii) If the bias of one spin toward some color is very low, jmproving this choice, and also to discuss other selection
forbid that color. S o rules. However, this is not the objective of the present work.
Forbidding colorc to nodei implies rewritting Eq.(67)  Here we just want to demonstrate that the algorithm works
using only two colors for that particular node. This can besubstantially better than every other local search algorithm
achieved simply by taking Eqg¢67) and (68) but setting we know, even without any parameter optimization.
7 =0 andzng ;=1 for all ke V(i). Summarizing the discussion above, our algorithm follows
Furthermore, during the processes discussed above, tihe following steps:
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I

region of the system. Note that strong finite size effects are
present, in fact the algorithm does not behave very well for
small lattice sizes. Two reasons may explain this: First, there
are short loops that disappear in the thermodynamic limit and
second, there is some shift in the location of the COL/
UNCOL transition towards higher connectivities for larger
graphs. This point should be clarified in a forthcoming work.

Another relevant feature of the curve is the following: The
closer our graph is to the critical point, the smaller is also the
percentage of spins we may fix in one algorithmic step.
However, extrapolating the results, the worst we can find is
to fix only one single spin at the time. This would change the
complexity of our algorithm fromNInN (resulting from
sorting spins with respect to their biasds N?, i.e., the
algorithm remains polynomial.

0.8

0.6

P(c)

04

0.2

ik &

4.65 4.7

0 1 I 1
44 4.45 4.5 4.55

c
FIG. 10. Probability of coloring a graph using our algorithm for
different lattice sizes. From left to rightN=4x10°, 8Xx10°
16x 10°, 32x10%, and 64< 10°.

4.75

VI. CONCLUSIONS AND OUTLOOK

In this work we presented a detailed derivation of the
one-step replica-symmetry broken solution of the coloring
problem on random graphs. The problem consists in finding
: . a coloring of all vertices of the graph such that no two adja-
version defined by E¢67). _ _ cent vertices carry equal colors. From the average case point

(2) Calculate the biases of all spins according to 88). of yiew, the one-step RSB approach allowed to determine the

(3) Select spins whose bias to one color is larger than 0.8, coL/UNCOL transitionc, for arbitrary color numbers.
and fix and remove these spins from the graph. Forbid thghis means that large random graphs of average connectivity
color to all neighbors. below ¢, have propex colorings with high probabilityap-

(4) Select spins whose bias to one color is lower than 0.1%roaching one foN—o), whereas graphs with higher con-
and forbid that color to these spins. nectivity require more colors for a proper coloring. More-

(5) Take all spins where just one color is allowed, fix over, we find the existence of a clustering transition in the
these spins, and remove them from the graph. Forbid theolorable region. This transition is characterized by the ap-
fixed color to all neighbors. pearance of an exponential number of states separated by

(6) If the the graph is not completely paramagnetic: rerunlarge energetic barriers. The clustering transition is accom-
SP and go to stef?). panied by the sudden appearance of an exponential number

(7) Run any smart program that solves the coloring subof metastable states that, intuitively, cause local the algo-

(1) Take the original graph and run SP in its infinyte-

problem.
Actually, we did not find any free program in the web

rithm to get stuck.
We also extended our results to the study of single-case

which was able to easily handle large graphs for the coloringnstances, i.e., specific realizations of random graphs, show-

problem. The best we could find was tB®RALLK program

ing that the previous analysis remains valid. With this under-

by Culbersori38], but even in the easy region it exploded in standing we also implemented a different algorithm, based
memory for graphs with sizes larger thair=2000. So step on the idea of a survey propagation that enabled us to solve

(7) above was changed into the followin@) Transform the
resulting graph into a satisfiability problert)) Run walk-
SAT [6] on this satisfiability problem.

the coloring problem in the hard clustering region in polyno-
mial time. We present results for sizes as largeNas10°
vertices, which is far beyond the performance of other algo-

An interesting point about the algorithm described aboveithms on random graphs.
is the fact that we can fix a certain percentage of spins in  There are many interesting directions in which we can
every algorithmic step, without rerunning SP every time.extend this work. The first one concerns the survey-
This drastically reduces the computational time. How manypropagation algorithm. We were able to report quite encour-
spins we may fix depends in a nontrivial way on the systemaging results for the SP inspired graph reduction procedure if
size and on the distance from the COL/UNCOL transition. applied to the clustered, i.e., hard but colorable phase on

Figure 10 shows the success rate of our algorithm irrandom graphs. These graphs are characterized by a local
3-coloring random graphs in the hard regioe treelike structure, loops are of leng®(In N). This structure
e[4.42,4.69. From left to right the sample sizes increase:allowed us to use the statistical independence of surveys re-
N=4x10% 8x10°% 16x10° 32x10°, and 64*<10° Inall  stricting a randomly selected vertex inside each pure state.
the cases we fixed the 0.5% of the spins in every iteratiorThis assumption fails, however, if the graph has some non-
step. Note that keeping this value fixed we find a clear im+rivial local structure as given by small loops, small highly
provement of the algorithm for sizes going frolN  connected subgraphs, etc. Before being of real practical
=4x10°, 8x10° to N=16x 10° the performance is roughly value, SP should be extended to such situations, following,
the same for larger lattices suggesting that we should reduaeg., the lines used by Yedidiet al. in Ref. [42] in their
the fraction of spins to fix. However, note that even within generalization of belief propagation to local nontreelike
these conditions the algorithm works quite well in the hardgraphs.
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The second possible extension of our work concerns théhe usual glassy phenomenology known from fully con-
interpretation of colorings as ground states of a Potts antifemected spin-glass models. Let us also point out that interest-
romagnet, which is a model known to show glassy behavioingly enough a similar scenario holds also in the random
at low temperature@he so-called Potts glassee, e.g., Ref. K-SAT [43] case. Using in addition the approach suitable for
[11]. In the present work we have directly worked at zerosingle-graph instances, one can, e.g., study inhomogeneities
temperature, but the extension to nonzero temperature grising in the glassy pha$é4] and thus go beyond the usual
straightforward. In this context it is interesting to see that forparadigm of disorder averaged results for randomly disor-
g=3 a continuous full replica-symmetry breaking transition dered models.
appears at the level of fields @(T)—before the one-step

solution appears for _fielc_Js di_)(l). So weexpect tha_lt the ACKNOWLEDGMENTS
one-step RSB transition in this model exists in a strict sense
only at zero temperature, in temperature it is onlisharp We are grateful to A. Montanari, J. Culberson, B. Hayes,

crossover to glasslike behavior. This phenomenon disappeaasnd F. Ricci-Tersenghi for their interest and many helpful
for largerq, but it is interesting in how far it can influence discussions.
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