
29 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

"Plug & Test" at System Level via Testable TLM Primitives / Alemzadeh, H.; DI CARLO, Stefano; Refan, F.; Navabi, Z.;
Prinetto, Paolo Ernesto. - STAMPA. - (2008), pp. 1-10. (Intervento presentato al convegno IEEE International Test
Conference (ITC) tenutosi a Santa Clara (CA), USA nel 28-30 Oct., 2008) [10.1109/TEST.2008.4700610].

Original

"Plug & Test" at System Level via Testable TLM Primitives

Publisher:

Published
DOI:10.1109/TEST.2008.4700610

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1801700 since:

IEEE

"Plug & Test" at System Level via
Testable TLM Primitives
Authors: Alemzadeh H., Di Carlo S., Refan F., Navabi Z., Prinetto P.,

Published in the Proceedings of the IIEEE International Test Conference (ITC), 28-30 Oct. 2008, Santa
Clara (CA), USA.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4700610

DOI: 10.1109/TEST.2008.4700610

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

!Politecnico di Torino

“Plug & Test” at System Level via Testable TLM Primitives

Homa Alemzadeh1, Stefano Di Carlo2, Fatemeh Refan1, Paolo Prinetto2, Zainalabedin Navabi1

1CAD Research Group
ECE Department

University of Tehran, Tehran 14399, Iran
{homa, refan, navabi}@cad.ece.ut.ac.ir

2Control and Computer Engineering
Department

Politecnico di Torino, I-10129 Torino, Italy
{stefano.dicarlo, paolo.prinetto}@polito.it

Abstract
With the evolution of Electronic System Level (ESL) design
methodologies, we are experiencing an extensive use of
Transaction-Level Modeling (TLM). TLM is a high-level
approach to modeling digital systems where details of the
communication among modules are separated from the
those of the implementation of functional units. This paper
represents a first step toward the automatic insertion of
testing capabilities at the transaction level by definition of
testable TLM primitives. The use of testable TLM
primitives should help designers to easily get testable
transaction level descriptions implementing what we call a
“Plug & Test” design methodology. The proposed
approach is intended to work both with hardware and
software implementations. In particular, in this paper we
will focus on the design of a testable FIFO communication
channel to show how designers are given the freedom of
trading-off complexity, testability levels, and cost.

Index Terms — Design for Testability (DFT), System Test,
Transaction Level Modeling (TLM), System Level Design

1. Introduction
With the increasing complexity of digital systems, and the
reduced time to market, Electronic System Level (ESL)
design has rapidly emerged as the main design
methodology for implementing large digital systems, with
a wider and wider usage of Transaction Level Modeling
(TLM).

TLM is a transaction-based approach to modeling digital
systems. It separates the details of communication among
modules from the implementation of functional units. In
the TLM notion, communication mechanisms such as
busses or FIFOs are modeled as abstract channels accessed
through interface functions. Transaction requests between
modules take place by calling these functions, which
encapsulate low-level details of the information exchange.
At the transaction level, the emphasis is more on data
transfer functionalities rather than on their actual
implementations [1].

Although in the recent years digital system design has
moved from gate and register transfer level to higher
abstraction levels such as TLM, testing and testability
techniques are still mostly performed at low abstraction

levels, and mainly at the gate level. System level designers
need new tools to insert test and testability requirements at
the TLM level in a completely transparent and automatic
way, without concerning themselves with the details and
intricacies of lower levels. These tools will play at system
level the same role that Electronic Design Automation
(EDA) tools play at gate and RT levels.

Test and testability requirements at TLM include those for
computational modules as well as the communication
channels. The added testing capabilities have to be
designed in order to be automatically synthesized, later in
the design process, either into hardware or software
modules according to the designer’s choices and needs.

This paper presents the preliminary results toward the
definition of a design methodology capable of
guaranteeing the implementation of “Plug & Test”
modules and communication channels. Different high-
level testing strategies and functional procedures are
proposed to verify the proper functionalities of TLM
channels with the goal of building a library of “Testable
TLM Primitives” characterized by having a specific
degree of testability and Built-in Functional Self Test
(BIFST). In particular, in this paper we will focus on the
tlm_fifo as a basic communication channel in the SystemC
TLM primitive channels library. The added testing
capabilities provide designers with the freedom of trading-
off complexity, testability, and cost in the early stages of
the design. To evaluate the quality of the proposed test
strategies, high-level coverage metrics are introduced
based on a behavioral model of the communication
channel.

The paper is organized as follows: Section 2 briefly
presents an overview of TLM whereas Section 3
overviews related works. Section 4 describes the proposed
testing approach at the TLM level. Section 5 introduces
the tlm_fifo channel and presents a model for its behavior.
The testable tlm_fifo and the procedure for testing its
different functions are proposed in Section 6. In Section 7
we evaluate the quality of the proposed testing capabilities
in terms of complexity, testability, and cost. Finally
Section 8 concludes the paper.

2. Transaction Level Modeling
This section gives a brief overview of the evolution of
abstraction levels in digital system design over the past

2

fifty years. The concepts introduced in this section
represent the motivation for the use of Electronic System
Level (ESL) tools in design of next generation hardware.

Every fifteen to eighteen years, digital design techniques
move to a higher abstraction level (Figure 1). With this
change, new tools and methodologies evolve, and
intermediate steps taken when moving to a higher
abstraction level become sample points that help us decide
on future trends.

a w

Every 15- 18 years

ALU

MUX

b w
a

c

Channel

T1

T2

T3

Transaction

Module 1 Module 2

More Abstract
Timings

Transferred
Higher Level

Descriptions

More Data

Figure 1 Design Evolution - Every 15 to 18 Years

Transistor level design of logic circuits that represented the
main design techniques fifty years ago involves wiring
individual transistors to form gates and Boolean functions.
At this level, interconnections are simple wires that serve
as carriers between various transistors. Data flowing in
these carriers are described at a very low abstraction level
with very little functionalities associated with this
description. By moving to the next abstraction level
represented by the gate level we start to have components
(gates) for which a clear functionality can be easily
defined. Interconnections at this level are Boolean signals
that carry binary data between gate level components.

Moving to higher abstraction levels, the RT level models
interconnections as word length busses, and components as
RT level functional blocks such as ALUs and register files.
Interconnections at this level carry far more information
and have structures that are far more complex than those at
the gate level.

The evolution of design abstractions has now got to its
next upper level that is the System Level. At this level
interconnections become complex busses or switches and
the components become complex processing elements that
are often themselves complex RT level systems. Designing
at the System Level involves defining the functionality of
individual processing elements and defining their
communications with abstract channels.

Transaction Level Modeling (TLM) is regarded as the next
step in the direction of system level design. TLM is a
transaction-based modeling approach originally based on
high-level programming languages such as C++ and
SystemC. It emphasizes on separating communications

from computations within a system. In the TLM notion,
computation units are modeled as modules with a set of
concurrent processes that calculate and represent their
behavior. These modules communicate in the form of
transactions through abstract channels [2]. Based on the
model accuracy and the incorporation of timing details
into the design, we can identify three classes of TLM: Un-
timed, Approximately-timed and Cycle Accurate. Un-
timed TLM level ignores many details and timing
annotations in design specification, and considerably
decreases the number of events to be processed by a
simulator. This provides a faster simulation than lower
modeling levels such as RT and gate levels.

3. State-of-the-art
Design for Testability is a set of design techniques
employed to ensure device testability. DFT is generally
used to reduce testing costs (including generation and
application), and to enhance the test quality (fault
coverage) [3]. Different from the design techniques
evolution that moved to the TLM abstraction level, most
of the testability techniques used in the recent years are
still inserted at the gate or register transfer level.

One of the most popular gate level DFT techniques at the
gate level is the scan design. Among different scan-based
designs, partial-scan gained the major attention in both
industry and research area. In the partial scan approach a
subset of the flip-flops of a design are used to form scan
chains used to reduce the test complexity. [4] categorizes
Partial scan designs into three main groups: testability
analysis based [5,6], structural analysis based [7,8], and
test generation based [9, 10, 11]. Another popular gate
level Testability solution is test points insertion, which
improves testability by adding control and observation
points to the circuit [12, 13, and 14].

Although gate-level techniques are usually applicable at
the RT level, there are testability studies that are
specifically focus on RT level circuit test. For example, in
order to improve fault coverage, [15] and [16] used some
testability measures. In a number of researches, hierarchal
test generation [17] based DFT method for testing
Datapath and Controller at RT level [18, 19, and 20] has
been used. There are also a number of works in RT level
test point insertion including BIST based [21, 22, 23], and
non-BIST based [24] methods. Furthermore there are
researchers which apply test synthesis at RTL, including
[25, 26].

To cope with the change in design complexity from wiring
gates to interconnecting complex processing elements at
TLM abstraction level, new DFT approaches are required.
TLM designers like to avoid concerning themselves with
details and implementations of lower levels. The challenge
is thus developing tools for automatic insertion of testing
capabilities at the TLM level.

To our best knowledge, this work is the first attempt to
tackle Design for Testability and BIST issues at the TLM

3

level by incorporating testing facilities and automatically
adding testability features into the TLM primitive
channels. It is worth mentioning that the added testing
capabilities will then be synthesized either in hardware or
software modules, according to the designer’s choices and
needs.

4. TLM Testing Methodology
Testing strategies at TLM have to be defined at a very
high abstraction level, even before deciding whether the
communication channels will be implemented in
hardware, in software, or in a proper mixing of both. The
challenge here is to allow the designer to automatically
include testing capabilities in the design at the very early
stages of the design process. Obviously, since we are
working at a very high abstraction level, typical design for
testability approaches targeting structural fault models
(e.g., scan chains) cannot be applied. Actually, the concept
of hardware components still has to be defined at this
level. Thus the only possible and reasonable solution to
guarantee a certain level of testability at TLM level is
resorting to pure functional testing.

Test and testability requirements include those for
computational modules as well as the communication
mechanisms. In this work we will focus on the testability
of TLM primitive channels and on the development of
approaches for testing their functionality. We consider a
typical portion of a system modeled at TLM composed of
two functional modules called Writer and Reader and a
single communication channel connecting the two
modules (Figure 2). The Writer is in charge of sending
information to the Reader over the defined channel.

ChannelWriter Reader

Figure 2 System Architecture: Writer-Channel-Reader

This architecture can fit any type of TLM communication
channel; nevertheless, for the sake of simplicity in this
paper we will focus on the basic TLM primitive, tlm_fifo
which implements the unidirectional TLM
communications.

The overall idea is to define for each TLM primitive
channel, based on its behavioral model, a suitable
functional test strategy. This strategy should allow the
Communication Channel (CC) to test its behavior
regardless of the actual final implementation. To achieve
this goal, we introduce the concept of “Plug and Test” at
system level design. We provide a design methodology
capable of adding test functionalities to the blocks
composing a TLM design to be translated later on into
Built-in Functional Self Test (BIFST) facilities in the final
product. In particular, our design methodology comprises
the idea of enriching each computation unit of a design
with predefined Test Facilities and replacing each original

communication channel with its corresponding new
BIFST-able version.

A basic test architecture at the TLM level is proposed in
Figure 3. In this architecture, each computation unit as
well as the communication channel is modified to include
the required BIFST facilities. From a practical point of
view, this requires adding some new classes and methods
to the modules and communication channel.

Channel
Test Facilities

Writer Reader

BIFST-able
Channel

Channel

WR Test
Facilities

RD Test
Facilities

Figure 3 Test Architecture: Test Facilities Added

The added BIFST facilities can be implemented by
instantiation of different BIFST units including Test Data
Generators (TDG), Test Response Evaluators (TRE), and
Test Controllers as depicted in Figure 4. In addition, some
Interfaces are needed to support the communication of
modules and controllers with the rest of system for the
management of test execution.

TREFIFO

Writer Reader
BIFST-able
Channel

Channel

TDGFIFOTDG(WR)

Controller

Interface

TRE(RD)

Controller

InterfaceControl

Interface

Figure 4 Test Facilities Implementation

The proposed test architecture can support three different
testing strategies:

1. Transaction Testing: Testing the transactions
between the channel and Writer/Reader separately.
This includes:

a. Write Transactions: Testing the
functionality of the interconnection
between the Writer and the Channel
without using the Reader;

b. Read Transactions: Testing the
functionality of the interconnection
between the Channel and the Reader
without using the Writer;

2. Channel Self-Testing: Testing the Channel as an
isolated component, without considering its
connections with the Writer and the Reader;

3. Integration Testing: Testing the integration
between Writer, FIFO and Reader.

4

Each of these testing strategies requires the
implementation of a set of different functional blocks in
the test architecture of Figure 4. For example the
implementation of Write Transaction Test strategy consists
of the definition of the TDG and Controller blocks of the
Writer as well as the TRE and Controller units inside the
channel.

To implement the above testing strategies, different
working modes are also required for the computation units
and the communication channel:

• Communication Channel Working Modes:
o Normal Mode
o Write Transaction Test Mode
o Read Transaction Test Mode
o Self-Test Mode

• Computation Units Working Modes:
o Normal Mode
o Blocked Mode (Waiting for Channel to

perform Write/Read or Test)
o Write/Read Transaction Mode
o Integration Test Mode

In the sequel of this paper, we will focus on the
Transaction Test Strategy while leaving the Self Test and
Integration Test Strategies for future works.

Transaction Testing Strategy has several advantages. First
of all the “write” and “read” functionalities of the channel
can be easily tested autonomously (e.g., testing the writing
functionalities does not require the reader to be involved).
This minimizes the actors involved during the test and
consequently the impact of the test on the normal behavior
of the system. Also since the reader and the writer are not
concurrently involved in the test, their related activities do
not need any ad-hoc timing and synchronization. Each of
them has the responsibility of testing the functionalities of
the channel actually used. The main drawback of this
approach is that the communication channel and the
computation units have to be modified to include the
BIFST facilities leading to some overhead.

5. tlm_fifo Primitive
This section introduces the tlm_fifo and provides a
description of its functionalities that will be used in the
rest of the paper as a starting point for the definition of a
testable version of this primitive.

SystemC TLM standard [27] released by OSCI is currently
the most widely-used approach to transaction level
modeling. The reason of choosing SystemC for modeling
at transaction level is the close correspondence of
SystemC with lower RT level descriptions, and its high
level interface with C++. SystemC is a class library based
on C++, an object-oriented language extensively used by
software developers. It implements main hardware-
oriented parameters like Time, Concurrency, and
Hardware data types [28].

The basis of SystemC TLM is on classes and methods for
modeling bidirectional, unidirectional, blocking and non-
blocking communications. Interface classes form the heart
of the SystemC TLM standard and TLM primitive
channels are the implementations of these interfaces. Core
TLM interfaces presented in this standard include:

• The Unidirectional Blocking Interfaces:
o tlm_blocking_get_if
o tlm_blocking_peek_if
o tlm_blocking_put_if

• The Unidirectional Non Blocking Interfaces
o tlm_nonblocking_get_if
o tlm_nonblocking_peek_if
o tlm_nonblocking_put_if

• Bidirectional Blocking Interface
o tlm_transport_if

The basic TLM primitive channel is tlm_fifo, a class which
implements all the unidirectional interfaces mentioned
above. Other primitive TML channels including
tlm_req_rsp_channel and tlm_transport_channel
implementing bidirectional interfaces are based on
tlm_fifo.

The implementation of tlm_fifo is based on the
implementation of SystemC sc_fifo with the additional
capability of having a zero or infinite size [29]. The class
description provides access methods for Write to, Read
from, Peek, Resize and Debug the tlm_fifo.

The tlm_fifo primitive in addition to being a channel for
implementing TLM unidirectional communications is also
used as a primitive in more advanced TLM channels.
Therefore making this channel testable is useful for direct
use of tlm_fifo, and at the same time for providing
testability for more complex channels.

The TLM specification itself is not formal enough to
systematically enable the development of a complete test
and to enable the evaluation of its coverage. Therefore the
first step toward the realization of a testable TLM channel
is its representation using a more formal model. It is
necessary to identify a suitable formal representation
capable of capturing a wide variety of TLM specifications.
For this purpose we decided to adopt the UML state
charts. UML state charts allow an effective representation
of the communication channel behavior. Moreover, they
can be easily inserted in a more complex UML model
allowing the description of additional information and
eventually automating test generation activities.

Figure 5 shows a UML state chart modeling the
functionality of the tlm_fifo channel. Labels on the arcs
(transitions in the UML formalism) correspond to the
execution of the FIFO methods. Transitions can be
conditioned through the use of guards reported in square
brackets. For the sake of readability, transitions with

5

multiple labels are equivalent to multiple transitions, each
one fired by one of the labels displaced on the arc.

0: Empty

nb_get()
nb_peek()

[used()>1] get()
[used()>1] nb_get()
[used()+1<size()] put()
[used()+1<size()] nb_put()
peek()
nb_peek()

nb_put()
peek()
nb_peek()

get()

put()
nb_put()

peek()

put()
nb_put()

[used()-1==0] get()
[used()-1==0] nb_get()

[used()+1==size()] put()
[used()+1==size()] nb_put()

put()
nb_put()

get()
nb_get()

put()

nb_get()
get()

1: Empty
(Blocked Reader)

2: Empty
(Blocked Reader)

3: Semi-Full

4: Full 5: Full
(Blocked Writer)

Figure 5 tlm_fifo UML State Chart

The tlm_fifo has three main working states:

• Empty: the buffer associated with the FIFO does
not contain any information;

• Full: the buffer associated with the FIFO is
completely full;

• Semi-Full: the FIFO is partially full, it contains
information but its buffer is not completely full.

The FIFO evolves among these three states depending on
the call of its put(), get(), and peek() (blocking and non-
blocking (nb_)) methods from the modules connected to
its communication ports.

In particular, the put() method allows writing a new
element into the FIFO, the get() method reads an element
from the FIFO (removing the element after the read) and
finally the peek() method reads an element from the FIFO
but do not remove the element from the buffer. These
three methods are blocking methods, meaning that in case
they cannot complete their execution the caller is blocked
until the failing condition is resolved. For example trying
to call a get() or peek() method on an empty FIFO will
block the caller until an element will be written in the
channel. This situation is modeled by the two states
labeled with Empty (blocked reader). We have to
distinguish between the call of a get() and the call of a
peek() since the status where the FIFO is resumed when an
element is written is different in these two cases. The same

situation happens when trying to write a new element in a
full FIFO. In this case the writer will be blocked and the
FIFO will be pushed in state Full (blocked writer) waiting
for an element to be read from the channel. The non-
blocking versions of the put(), get(), and peek() methods
are nb_put(), nb_get(), and nb_peek(), respectively. They
behave as the blocking versions but do not block the caller
in case of failure.

The condition of FIFO full or empty is checked through
the guards placed on some of the transitions. These guards
resort to the methods used() and size() provided by the
tlm_fifo, that return the number of elements already in use
and the maximum allowed elements respectively.

To conclude, The model also includes the execution of
other non-blocking methods like nb_can_put(),
nb_can_get(), and nb_can_peek() which are not shown on
the diagram because they do not change the state of FIFO.

6. Test Strategy Implementation
The architecture proposed in Section 4 is general enough
to implement different test strategies. In this section we
show the implementation of the Transaction Test Strategy
providing a sample of a test program, and the related
implementations of the testable tlm_fifo. The test approach
we adopt here is based on the FSM model of tlm_fifo
communication channel presented in Figure 5. We
implement the test strategy by going through the following
steps:

• Defining a test procedure able of testing the
functionalities of each Transaction (method call
implemented by the tlm_fifo);

• Identifying the additional test functionalities the
tlm_fifo, the Writer, and the Reader should
provide to realize the testing procedure defined
before;

• For each additional functionality, defining the
corresponding SystemC implementation.

For the sake of readability, in this paper we will show a
single example of testing procedure for the put() method
involving the Writer and the FIFO, together with the
corresponding SystemC TLM descriptions.

Before detailing the actual test procedure we need a
preliminary consideration. The put() method allows
writing a data X into the FIFO. Working at the TLM
abstraction level the semantic of X is undefined (e.g., a
single bit, a jpeg image, an NoC packet, an mp3 file, etc.).
In order to be as general as possible, our test procedures do
not take into account the semantic of the data associated
with X, considering it as an abstract element. In a real
implementation the proposed testing solution should be
completed with additional operations designed to test the
consistency of the particular data type transmitted over the
channel and to the specific type of faults affecting this
data.

6

Figure 6 shows the test procedure for a testable_tlm_fifo
with a four-element buffer. The test procedure is depicted
using an UML sequence diagram showing the Writer and
the FIFO as actors performing the sequence of actions. The
overall idea in developing this procedure is trying to stress
the put() method in different operational conditions and
verifying its correct behavior.

The Writer starts the test procedure by issuing put()
transactions. Each of the written values has to be verified
once written in the FIFO. Here we encounter the first
testing requirement for the testable_tlm_fifo: we need to be
able to read the content of the most recently written
element, (without modifying the actual content of the
internal buffer) and we need to compare this value with the
expected one. This requirement leads to the definition of
the following two test facilities:

• t_peek(): performs a peek operation, i.e., reads
the last written element internally to the FIFO.
After the execution of the operation the content of
the FIFO is unchanged;

• t_compare(A,B): compares the two values A and
B and returns a Boolean result.

FIFOWRITER

1:put(A) 1:t_compare
(t_peek(),A)

2:put(B) 2:t_compare
(t_peek(),B)

3:put(C) 3:t_compare
(t_peek(),C)

4:put(D) 4:t_compare
(t_peek(),D)

5:put(E) 5:t_compare (t_peek(),E)
6:t_compare (t_get(),A)
7:t_compare (t_peek(),E)
8:t_compare (t_get(),B)
9:t_compare (t_get(),C)
10:t_compare (t_get(),D)
11:t_compare (t_get(),E)
12:x=t_get()

6:put(F) 13:t_compare (x,F)
14:x=t_peek()

7:put(G) 15:t_compare (x,G)
16:x=t_peek(t_get(),G)

Figure 6 Test Procedure for the put() Method

These testing methods are used during steps 1 to 4 in the
FIFO side in the testing procedure and more generally after
the completion of each put() method to control whether the
corresponding write operation succeeded. Any unexpected
failure in the compare methods must be interpreted as a
detected fault in the write functionality.

Figure 7 and Figure 8 show the SystemC TLM description
for t_peek() and t_compare() respectively. t_peek() is a
modification of peek() from the TLM library which reads
the most recently written element of FIFO.

After performing the first four operations, the FIFO is full,
and we have to test its correct behavior in this condition.
At this point, Step 5 of the Writer side tries to write an
additional element in the FIFO. This operation should
block the WRITER and the value (E) should not be
written. The Compare method at Step 5 of the FIFO side
should return false to check the correct blocking operation.
Since this is an expected failure in the compare operation,
it will not be considered as a fault.

At this point, in order to test that the writer is correctly
unblocked when a value is read from the FIFO, we have to
simulate a get operation. For this purpose, we introduce an
additional test method:

• t_get(): it works exactly as the get() method but
internally to the FIFO.

Figure 9 shows the SystemC TLM description for t_get().
Steps 6 and 7 of the FIFO side read the top value from the
buffer (it should be value A) by issuing a t_get() and then
checking that the writer is correctly unblocked and enabled
to write value E using a compare operation.

//t_peek()
template < typename T>
inline
T
testable_tlm_fifo<T>::t_peek(tlm_tag<T> *)
const
{

//While (FIFO == Empty) Wait
while (!tlm_fifo<T>::nb_can_get())
{

 const_cast< testable_tlm_fifo<T> *>
(this)->wait(m_data_written_event);

}
 return

buffer->peek_data(m_num_readable-1);
}

Figure 7 t_peek() SystemC TLM Description

//t_compare()
template < typename T>
inline
bool
testable_tlm_fifo<T>::t_compare

 (const T& val1_,const T& val2_){
if (val1_ == val2_)

 return true;
else {

 cout << "Fault Detected" << endl;
 return false;

}
}

Figure 8 t_compare() SystemC TLM Description

7

At this point, steps 8 to 11 of the FIFO side are used to
empty the FIFO and to obtain again an empty channel by
successively calling t_get() methods. When the FIFO gets
empty again, step 12 of FIFO side performs an additional
t_get() to check the correctness of the blocking read
operation. Since the t_get() method is blocking, the FIFO
starts waiting for a new value. Step 6 of the WRITER side
writes this value and operations 13 and 14 of the FIFO side
check that this value is correctly stored in the channel.
Finally the same procedure is repeated but using a testing
version of the peek method (t_peek()) in steps 7 of the
WRITER and 15 of the FIFO.

The complete procedure for the WRITER and FIFO sides
can finally be translated into additional SystemC methods
in both sides for implementing TDG and TRE units. In the
WRITER side, TDG is a method running in test mode
which generates Test Data by issuing the put() transactions
introduced in Figure 6. Figure 10 shows a possible
SystemC TLM description for a writer with two Normal
and Test modes. The WRITER side procedure can be re-
used for any other writers by automatically adding the
proposed test method to their descriptions.

Figure 11 shows the SystemC TLM description of the
testable_tlm_fifo class which inherits from the tlm_fifo
primitive channel and implements the proposed testing
facilities for testing the put() method as the TRE of FIFO.
testable_tlm_fifo has an extra internal buffer (m_test_buff)
to store test data used during t_compare() operations to
check the writing functionalities. The previously
introduced testing methods (t_peek(), t_compare() and
t_get()) are defined in this class and are called by the
overridden put() method which implements the FIFO side
test responses.

//t_get()
template < typename T>
inline
T
testable_tlm_fifo<T>::t_get(tlm_tag<T> *)
{
 return tlm_fifo<T>::get();
}

Figure 9 t_get () SystemC TLM Description

void Writer::run()
{
 //Normal Mode

if (N_T_mode == 0){
 //Normal Operation

}
//Test Mode
else
{

 //Steps 1-4: While FIFO is not Full
 while (write_port->nb_can_put())
 {

in >> testData;
 write_port->put(testData);
 }
 //Step 5: Full -> Full(Blocked Writer)
 in >> testData;

write_port->put(testData);

//Step 6: Empty(Blocked Reader)->Empty
 in >> testData;
 write_port->put(testData);

//Step 7: Empty(Blocked Reader)->SemFull
 in >> testData;
 write_port->put(testData);

}
}

Figure 10 SystemC TLM Description of Writer

8

We also defined similar test procedures and methods for
other tlm_fifo operations.

Table 1 shows the test procedures for the get() and the
peek() functions of tlm_fifo as examples of Read
Transaction Test Strategy. In these procedures only the
Reader and the FIFO are involved in test. As for the test
procedure of Figure 6 an additional test method is defined
to simulate the put() method internal to the FIFO:

• t_put(): works exactly as the put() method but it
is internal to the FIFO.

Table 1 Test Procedures for get() and peek() Methods

get() peek()

READER FIFO READER FIFO
x = get(A) - x = peek(A) -

- t_put(A) - t_put(A)
t_compare (x, A) - t_compare (x, A) -

- t_put(B)
 - t_put(B)

t_compare (get(),B) - t_compare (peek(),A) -

- t_put(C) - t_put(C)
- t_put(D) t_compare (peek(),A) -

t_compare (get(),C) - - t_put(D)
- t_put(E) t_compare (peek(),A) -
- t_put(F) - t_put(E)

t_compare (get(),D) - t_compare (peek(),A) -
- t_put(G) - t_get()
- t_put(H) t_compare (peek(),B) -
- t_put(I) - t_get()

t_compare (get(),E) - t_compare (peek(),C) -
t_compare (get(),F)

 - - t_get()

t_compare (get(),G)
 - t_compare (peek(),D) -

t_compare (get(),H)
 - - t_get()

t_compare (get(), I) - t_compare (peek(),E) -
 - t_get()

7. Test Quality Evaluation
To evaluate the proposed testing strategies, early quality
evaluation metrics are needed during the design phase.
These metrics should be easily measurable, available and
acceptable at this very high level of abstraction and should
be re-useable on the final product with the same semantic
and accuracy.

Performing test coverage/quality evaluation at very high
abstraction levels is always a complex task. At this level,
information about the actual implementation of the
elements composing the system are completely missing
(the same component may lead to a software routine or to
a hardware element). For this reason any tentative of using
coverage metrics defined for different abstraction levels
will probably lead to erroneous results. In order to evaluate
the quality of the proposed test strategy we have to
introduce coverage metrics at the same abstraction level
used to model our tlm_fifo.

Concerning high-level techniques, at a first look,
similarities can be found with functional verification
approaches and their related coverage metrics. Actually,
the basic difference with respect to functional verification
is that, since we are dealing with testing, our goal is to
“embed” the testing procedures directly into the system
itself. On the other hand, functional verification is usually
performed using an external verification environment
providing a much higher set of verification capabilities.
Evaluating the effectiveness of our approach in terms of
coverage metrics used to evaluate verification sequences
generated by functional verification tools such as
SpecMan™ from Cadence is thus not a viable solution.
The results would be probably affected by the different
evaluation conditions.

The only feasible solution to perform our test quality
analysis is thus to identify new metrics. In order to avoid
the definition of new custom metrics, being TLM

template <class T>
class testable_tlm_fifo:public tlm_fifo<T>,
 public sc_module
{
public:
 SC_HAS_PROCESS(testable_tlm_fifo);

testable_tlm_fifo(sc_module_name name,
 bool mode = false,
 int size = 1):

 sc_module(name),
 tlm_fifo<T>(size)

 {
m_N_Tmode = mode;
m_test_size = size + 3;

 m_test_buf = new T[m_test_size];
 m_test_num = 0;
 SC_THREAD(test_unblock_writer);
 SC_THREAD(test_unblock_reader);
 }
 //Overridden put
 void put(const T&);

protected:
 void test_unblock_writer();
 void test_unblock_reader();

 T t_peek(tlm_tag<T> *t = 0) const;

bool t_compare (const T&, const T&);
T t_get(tlm_tag<T> *t = 0);

bool m_N_Tmode;
int m_test_size;
T* m_test_buf;
int m_test_num;
sc_event fifo_full_event;
sc_event fifo_empty_event;

};

Figure 11 testable_tlm_fifo Class Description

9

descriptions basically C++ programs, we decided to adopt
metrics widely used in the software community.

The coverage metric we exploit in this paper is related to
the state chart model of the tlm_fifo introduced in Section
5. The proposed test procedure was developed by trying to
stress each method of the FIFO in different operational
conditions. Since calling a method is equivalent to firing a
transition on the state chart model of the FIFO, a possible
measure concerns checking whether the test is able to fire
all the possible transitions and to reach all possible states.
This measure can be used as a coverage metric.

Table 3 reports the coverage evaluation for the test
procedure of the put() method proposed in Figure 6. For
each step of the testing procedure we report the actual
content of the FIFO, the initial state, the fired transition
and finally the final state. The initial state and the final
state are identified with the corresponding state numbers
shown in Figure 5, whereas the transition is identified by
the corresponding method call placed on the arc. A
consideration is required regarding transitions. The
introduction of the testing methods introduces additional
transitions. These transitions are perfectly equivalent to the
one already reported in Figure 5 for the equivalent normal
methods (i.e., an additional transition for the t_get()
method is introduced for every transition labeled with the
get() method).

Looking at the results of Table 3 we can conclude that the
proposed procedure allows reaching 100% of coverage of
the FIFO states (it reaches each state of the state diagram
of Figure 5). Concerning the coverage of the transitions we
have 28 normal mode transitions in the diagram of Figure
5. The test of the put() method covers 6 of these transitions
(the remaining used transitions are testing mode
transitions) allowing to reach 21.4% coverage of all
transitions. Obviously the remaining transitions have to be
covered by the test procedures of the remaining methods.

We performed the same evaluation for the test procedures
defined for the remaining tlm_fifo methods. Table 2
summarizes the results of this evaluation. For each method
we provide state coverage, transition coverage, and finally
the number of state transitions required to perform the test.
The latter can be considered as a cost factor for the given
test procedure. By looking at the full set of test procedures
we have been able to reach 100% of both states and
transition coverage.

Table 2 Coverage Evaluation

tlm_fifo
Methods

State
Coverage

Transition
Coverage

Number of
State

Transitions
put() 100% 21.4% 23

 nb_put() 83.3% 21.4% 24
nb_can_put() 83.3% 17% 24

get() 83.3% 17% 19
nb_get() 66.6% 17% 25

nb_can_get() 66.6% 14.2% 21
peek() 83.3% 14.2% 20

nb_peek() 66.6% 14.2% 29
nb_can_peek() 66.6% 14.2% 21

7. Conclusions
This paper presented the first steps towards the definition
of a design methodology capable of guaranteeing the
implementation of “Plug & Test” (test-enriched)
communication channels at the TLM level. The proposed
methodology relies on introducing additional test
functionalities to the blocks composing a TLM design to
be translated later on into Built-in Functional Self Test
(BIFST) facilities in the final product.

The paper focused on the definition of a testable tlm_fifo,
representing one of the main TLM primitives. We gave an
overview of the approach we followed to add test
functionalities to tlm_fifo, trying to highlight how the same
methodology can be applied to other TLM primitives with
the goal of defining a complete system level library of
“Plug & Test” primitives.

To evaluate the quality of the proposed test strategies, we
presented the results obtained by applying coverage
metrics widely used in the software community to the
proposed problem. These high-level evaluation metrics
also have the capability of being re-used in the final
product with the same semantics and accuracy.

8. Acknowledgements
We acknowledge the contributions of Marco Cimei from
Politecnico di Torino who significantly helped us in this
work.

9. References
[1] T. Grötker, S. Liao, G. Martin, S. Swan, System

Design with SystemC. Springer, 2002, Chapter 8, pp.
131.

[2] Frank Ghenassia (editor), Transaction-level
Modeling with SystemC: TLM Concepts and
Applications for Embedded Systems, Springer, 2005.

[3] M. Abramovici, M. Breuer, and A. Friedman. Digital
SystemsTesting and Testable Design. IEEE Press,
1990.

[4] L. Lingappan and N. K. Jha. Unsatisfiability based
Efficient Design for Testability Solution for Register-

10

Transfer Level Circuits. In Proc. VLSI Test
Symposium, pages 418–423, 2005.

[5] D. Xiang and J. H. Patel, “Partial scan design based
on circuit state information,” IEEE Trans.
Computers, vol. 53, pp. 276–287, Mar. 2004.

[6] X. Lin, I. Pomeranz, and S. M. Reddy, “Full scan
fault coverage with partial scan,” in Proc. Design,
Automation & Test Europe Conf., pp. 468–472, Mar.
1999.

[7] K. T. Cheng and V. D. Agarwal, “A partial scan
method for sequential circuits with feedback,” IEEE
Trans. Computers, vol. 39, pp. 544–548, Nov. 1990.

[8] S. T. Chakradhar, A. Balakrishnan, and V. D.
Agrawal, “An exact algorithm for selecting partial
scan flip-flops,” in Proc. Design Automation Conf.,
pp. 81–86, June 1991.

[9] V. Chickermane and J. H. Patel, “A fault oriented
partial scan design approach,” in Proc. Int. Conf.
Computer-Aided Design, pp. 400–403, Nov. 1991.

[10] M. S. Hsiao, G. S. Saund, E. M. Rudnick, and J. H.
Patel, “Partial scan selection based on dynamic
reachability and observability information,” in Proc.
Int. Conf. VLSI Design, pp. 174–180, Jan. 1997.

[11] V. Boppana and W. K. Fuchs, “Partial scan based on
state transition modeling,” in Proc. Int. Test Conf.,
pp. 538–547, Oct. 1996.

[12] V. S. Iyengar and D. Brand, “Synthesis of pseudo-
random pattern testable designs,” in Proc. Int. Test
Conf., pp. 501–508, Aug. 1989.

[13] B. H. Seiss, P. M. Trouborst, and M. H. Schulz,
“Test point insertion for scan-based BIST,” in Proc.
European Test Conf., pp. 253–262, Apr. 1991.

[14] N. A. Touba and E. J. McCluskey, “Test point
insertion based on path tracing,” in Proc. VLSI Test
Symp., pp. 2–8, Apr. 1996.

[15] I. Ghosh, A. Raghunathan, and N. K. Jha, “A design
for testability technique for register-transfer level
circuits using control/data flow extraction,” IEEE
Trans. Computer-Aided Design, vol. 17, pp. 706–
723, Aug. 1998.

[16] S. Ravi, G. Lakshminarayana, and N. K. Jha, “TAO:
Regular expression-based register-transfer level
testability analysis and optimization,” IEEE Trans.
VLSI Systems, vol. 9, pp. 824–832, Dec. 2001.

[17] B. T. Murray and J. P. Hayes: “Hierarchical test
generation using pre computed tests for modules,”
IEEE Trans. on CAD, Vol. 9, No. 6, pp. 594–603,
June 1990

[18] H. Wada, T. Masuzawa, K. K. Saluja and H.
Fujiwara, “Design for strong testability of RTL data
paths to provide complete fault efficiency,” Proc.
13th Int. Conf. on VLSI Design, pp. 300–305, 2000.

[19] S. Ohtake, H. Wada, T. Masuzawa and H. Fujiwara:
“A non-scan DFT method at register-transfer level to
achieve complete fault efficiency,” in Proc. of Asian
South Pacific Design Automation Conference (ASP-
DAC), pp. 599–604, 2000.

[20] I. Ghosh, A. Raghunath and N. K. Jha: “Design for
hierarchical testability of RTL circuits obtained by
behavioral synthesis,” in Proc. of IEEE Int. Conf. on
Computer Design, pp. 173–179, 1995.

[21] S. Boubezari and et. al. Testability Analysis and
Test-Point Insertion in RTL VHDL Specifications for
Scan-Based BIST. IEEE Transactions on CAD,
18(9):1327– 1340, Sept. 1999.

[22] J. Carletta and C. Papachristou. Testability Analysis
and Insertion for RTL Circuits Based on
Pseudorandom BIST. In Proc. IEEE International
Conference on Computer Design, pages 162–167,
1995.

[23] S. Roy, G. Guner, and K.-T. Cheng. Efficient Test
Mode Selection and Insertion for RTL-BIST. In
Proc. of International Test Conference, pages 263–
272, 2000.

[24] L. Fang, NEC Laboratories America and K.J.
Balakrishnan, NEC Laboratories America, "RTL
Test Point Insertion to Reduce Delay Test Volume",
Proceedings of VLSI Test Symposium 2007

[25] An approach for redesign for testability at the
register-transfer level Harmanani, H M; Harfoush, S,
CAN J ELECTR COMPUT ENG. Vol. 25, no. 4, pp.
163-168. Oct. 2000.

[26] Zhiqiang You, Ken-ichi Yamaguchi, Michiko Inoue,
Jacob Savir, Hideo Fujiwara: Power-Constrained
Test Synthesis and Scheduling Algorithms for Non-
Scan BIST-able RTL Data Paths. IEICE Transactions
88-D(8): 1940-1947 (2005).

[27] OSCI SystemC TLM 2.0 Standard,
http://www.systemc.org/projects/tlm/document/TLM
_2.0_Overview/en/l

[28] S. Mirkhani, Z.Navabi, System Level Design
Languages, The VLSI Handbook, Chapter 86, CRC
Press, 2nd Edition, Dec. 2006.

[29] A. Rose, S. Swan, J. Pierce, J.-M. Fernandez,
Transaction Level Modelling in SystemC, OSCI
white-paper, 2004.

Table 3 Coverage Evaluation for the put() Method

WRITER FIFO FIFO Content Initial

State Transition Final
State

put(A) - A 0 put 3
- t_compare (t_peek(), A) A 3 t_peek 3

11

put(B) - B A 3 put 3
- t_compare (t_peek(), B) B A 3 t_peek 3

put(C) - C B A 3 put 3
- t_compare (t_peek(), C) C B A 3 t_peek 3

put(D) - D C B A 3 put 4
- t_compare (t_peek(), D) D C B A 4 t_peek 4

put(E) - D C B A 4 put 5
- t_compare (t_peek(), E) D C B A 5 t_peek 5
- t_compare (t_get(), A) E D C B 5 t_get 4
- t_compare (t_peek(), E) E D C B 4 t_peek 4
- t_compare (t_get(), B) E D C 4 t_get 3
- t_compare (t_get(), C) E D 3 t_get 3
- t_compare (t_get(), D) E 3 t_get 3
- t_compare (t_get(), E) 3 t_get 0
- x = t_get(F) 0 t_get 2

put(F) - 2 put 0
- t_compare (x, F) 0 - 0
- x = t_peek(G) 0 t_peek 1

put(G) - G 1 put 3
- t_compare (x, G) G 3 - 3
- t_compare (t_get(), G) 3 t_get 0

