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Abstract 
With the evolution of Electronic System Level (ESL) design 
methodologies, we are experiencing an extensive use of 
Transaction-Level Modeling (TLM). TLM is a high-level 
approach to modeling digital systems where details of the 
communication among modules are separated from the 
those of the implementation of functional units. This paper 
represents a first step toward the automatic insertion of 
testing capabilities at the transaction level by definition of 
testable TLM primitives. The use of testable TLM 
primitives should help designers to easily get testable 
transaction level descriptions implementing what we call a 
“Plug & Test” design methodology. The proposed 
approach is intended to work both with hardware and 
software implementations. In particular, in this paper we 
will focus on the design of a testable FIFO communication 
channel to show how designers are given the freedom of 
trading-off complexity, testability levels, and cost. 

Index Terms — Design for Testability (DFT), System Test, 
Transaction Level Modeling (TLM), System Level Design 
 

1. Introduction 
With the increasing complexity of digital systems, and the 
reduced time to market, Electronic System Level (ESL) 
design has rapidly emerged as the main design 
methodology for implementing large digital systems, with 
a wider and wider usage of Transaction Level Modeling 
(TLM). 

TLM is a transaction-based approach to modeling digital 
systems. It separates the details of communication among 
modules from the implementation of functional units. In 
the TLM notion, communication mechanisms such as 
busses or FIFOs are modeled as abstract channels accessed 
through interface functions. Transaction requests between 
modules take place by calling these functions, which 
encapsulate low-level details of the information exchange. 
At the transaction level, the emphasis is more on data 
transfer functionalities rather than on their actual 
implementations [1]. 

Although in the recent years digital system design has 
moved from gate and register transfer level to higher 
abstraction levels such as TLM, testing and testability 
techniques are still mostly performed at low abstraction 

levels, and mainly at the gate level. System level designers 
need new tools to insert test and testability requirements at 
the TLM level in a completely transparent and automatic 
way, without concerning themselves with the details and 
intricacies of lower levels. These tools will play at system 
level the same role that Electronic Design Automation 
(EDA) tools play at gate and RT levels.  

Test and testability requirements at TLM include those for 
computational modules as well as the communication 
channels. The added testing capabilities have to be 
designed in order to be automatically synthesized, later in 
the design process, either into hardware or software 
modules according to the designer’s choices and needs. 

This paper presents the preliminary results toward the 
definition of a design methodology capable of 
guaranteeing the implementation of “Plug & Test” 
modules and communication channels. Different high-
level testing strategies and functional procedures are 
proposed to verify the proper functionalities of TLM 
channels with the goal of building a library of “Testable 
TLM Primitives” characterized by having a specific 
degree of testability and Built-in Functional Self Test 
(BIFST). In particular, in this paper we will focus on the 
tlm_fifo as a basic communication channel in the SystemC 
TLM primitive channels library. The added testing 
capabilities provide designers with the freedom of trading-
off complexity, testability, and cost in the early stages of 
the design. To evaluate the quality of the proposed test 
strategies, high-level coverage metrics are introduced 
based on a behavioral model of the communication 
channel. 

The paper is organized as follows: Section 2 briefly 
presents an overview of TLM whereas Section 3 
overviews related works. Section 4 describes the proposed 
testing approach at the TLM level. Section 5 introduces 
the tlm_fifo channel and presents a model for its behavior. 
The testable tlm_fifo and the procedure for testing its 
different functions are proposed in Section 6. In Section 7 
we evaluate the quality of the proposed testing capabilities 
in terms of complexity, testability, and cost. Finally 
Section 8 concludes the paper. 

2. Transaction Level Modeling 
This section gives a brief overview of the evolution of 
abstraction levels in digital system design over the past 
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fifty years. The concepts introduced in this section 
represent the motivation for the use of Electronic System 
Level (ESL) tools in design of next generation hardware.  

Every fifteen to eighteen years, digital design techniques 
move to a higher abstraction level (Figure 1). With this 
change, new tools and methodologies evolve, and 
intermediate steps taken when moving to a higher 
abstraction level become sample points that help us decide 
on future trends.  
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Figure 1 Design Evolution - Every 15 to 18 Years 

Transistor level design of logic circuits that represented the 
main design techniques fifty years ago involves wiring 
individual transistors to form gates and Boolean functions. 
At this level, interconnections are simple wires that serve 
as carriers between various transistors. Data flowing in 
these carriers are described at a very low abstraction level 
with very little functionalities associated with this 
description. By moving to the next abstraction level 
represented by the gate level we start to have components 
(gates) for which a clear functionality can be easily 
defined. Interconnections at this level are Boolean signals 
that carry binary data between gate level components.  

Moving to higher abstraction levels, the RT level models 
interconnections as word length busses, and components as 
RT level functional blocks such as ALUs and register files. 
Interconnections at this level carry far more information 
and have structures that are far more complex than those at 
the gate level. 

The evolution of design abstractions has now got to its 
next upper level that is the System Level. At this level 
interconnections become complex busses or switches and 
the components become complex processing elements that 
are often themselves complex RT level systems. Designing 
at the System Level involves defining the functionality of 
individual processing elements and defining their 
communications with abstract channels. 

Transaction Level Modeling (TLM) is regarded as the next 
step in the direction of system level design. TLM is a 
transaction-based modeling approach originally based on 
high-level programming languages such as C++ and 
SystemC. It emphasizes on separating communications 

from computations within a system. In the TLM notion, 
computation units are modeled as modules with a set of 
concurrent processes that calculate and represent their 
behavior. These modules communicate in the form of 
transactions through abstract channels [2]. Based on the 
model accuracy and the incorporation of timing details 
into the design, we can identify three classes of TLM: Un-
timed, Approximately-timed and Cycle Accurate. Un-
timed TLM level ignores many details and timing 
annotations in design specification, and considerably 
decreases the number of events to be processed by a 
simulator. This provides a faster simulation than lower 
modeling levels such as RT and gate levels. 

3. State-of-the-art 
Design for Testability is a set of design techniques 
employed to ensure device testability. DFT is generally 
used to reduce testing costs (including generation and 
application), and to enhance the test quality (fault 
coverage) [3]. Different from the design techniques 
evolution that moved to the TLM abstraction level, most 
of the testability techniques used in the recent years are 
still inserted at the gate or register transfer level.  

One of the most popular gate level DFT techniques at the 
gate level is the scan design. Among different scan-based 
designs, partial-scan gained the major attention in both 
industry and research area. In the partial scan approach a 
subset of the flip-flops of a design are used to form scan 
chains used to reduce the test complexity. [4] categorizes 
Partial scan designs into three main groups: testability 
analysis based [5,6], structural analysis based [7,8], and 
test generation based [9, 10, 11]. Another popular gate 
level Testability solution is test points insertion, which 
improves testability by adding control and observation 
points to the circuit [12, 13, and 14]. 

Although gate-level techniques are usually applicable at 
the RT level, there are testability studies that are 
specifically focus on RT level circuit test. For example, in 
order to improve fault coverage, [15] and [16] used some 
testability measures. In a number of researches, hierarchal 
test generation [17] based DFT method for testing 
Datapath and Controller at RT level [18, 19, and 20] has 
been used. There are also a number of works in RT level 
test point insertion including BIST based [21, 22, 23], and 
non-BIST based [24] methods. Furthermore there are 
researchers which apply test synthesis at RTL, including 
[25, 26].   

To cope with the change in design complexity from wiring 
gates to interconnecting complex processing elements at 
TLM abstraction level, new DFT approaches are required. 
TLM designers like to avoid concerning themselves with 
details and implementations of lower levels. The challenge 
is thus developing tools for automatic insertion of testing 
capabilities at the TLM level.  

To our best knowledge, this work is the first attempt to 
tackle Design for Testability and BIST issues at the TLM 
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level by incorporating testing facilities and automatically 
adding testability features into the TLM primitive 
channels. It is worth mentioning that the added testing 
capabilities will then be synthesized either in hardware or 
software modules, according to the designer’s choices and 
needs. 

4. TLM Testing Methodology 
Testing strategies at TLM have to be defined at a very 
high abstraction level, even before deciding whether the 
communication channels will be implemented in 
hardware, in software, or in a proper mixing of both. The 
challenge here is to allow the designer to automatically 
include testing capabilities in the design at the very early 
stages of the design process. Obviously, since we are 
working at a very high abstraction level, typical design for 
testability approaches targeting structural fault models 
(e.g., scan chains) cannot be applied. Actually, the concept 
of hardware components still has to be defined at this 
level. Thus the only possible and reasonable solution to 
guarantee a certain level of testability at TLM level is 
resorting to pure functional testing.  

Test and testability requirements include those for 
computational modules as well as the communication 
mechanisms. In this work we will focus on the testability 
of TLM primitive channels and on the development of 
approaches for testing their functionality. We consider a 
typical portion of a system modeled at TLM composed of 
two functional modules called Writer and Reader and a 
single communication channel connecting the two 
modules (Figure 2). The Writer is in charge of sending 
information to the Reader over the defined channel.  

ChannelWriter Reader

 
Figure 2 System Architecture: Writer-Channel-Reader 

This architecture can fit any type of TLM communication 
channel; nevertheless, for the sake of simplicity in this 
paper we will focus on the basic TLM primitive, tlm_fifo 
which implements the unidirectional TLM 
communications.  

The overall idea is to define for each TLM primitive 
channel, based on its behavioral model, a suitable 
functional test strategy. This strategy should allow the 
Communication Channel (CC) to test its behavior 
regardless of the actual final implementation. To achieve 
this goal, we introduce the concept of “Plug and Test” at 
system level design. We provide a design methodology 
capable of adding test functionalities to the blocks 
composing a TLM design to be translated later on into 
Built-in Functional Self Test (BIFST) facilities in the final 
product. In particular, our design methodology comprises 
the idea of enriching each computation unit of a design 
with predefined Test Facilities and replacing each original 

communication channel with its corresponding new 
BIFST-able version.  

A basic test architecture at the TLM level is proposed in 
Figure 3. In this architecture, each computation unit as 
well as the communication channel is modified to include 
the required BIFST facilities. From a practical point of 
view, this requires adding some new classes and methods 
to the modules and communication channel.  

Channel
Test Facilities

Writer Reader

BIFST-able
Channel

Channel

WR Test 
Facilities

RD Test 
Facilities

 
Figure 3 Test Architecture: Test Facilities Added 

The added BIFST facilities can be implemented by 
instantiation of different BIFST units including Test Data 
Generators (TDG), Test Response Evaluators (TRE), and 
Test Controllers as depicted in Figure 4. In addition, some 
Interfaces are needed to support the communication of 
modules and controllers with the rest of system for the 
management of test execution.  

TREFIFO

Writer Reader
BIFST-able 
Channel

Channel

TDGFIFOTDG(WR)

Controller

Interface

TRE(RD)

Controller

InterfaceControl

Interface

 
Figure 4 Test Facilities Implementation 

The proposed test architecture can support three different 
testing strategies: 

1. Transaction Testing: Testing the transactions 
between the channel and Writer/Reader separately. 
This includes: 

a. Write Transactions: Testing the 
functionality of the interconnection 
between the Writer and the Channel 
without using the Reader; 

b. Read Transactions: Testing the 
functionality of the interconnection 
between the Channel and the Reader 
without using the Writer; 

2. Channel Self-Testing: Testing the Channel as an 
isolated component, without considering its 
connections with the Writer and the Reader; 

3. Integration Testing: Testing the integration 
between Writer, FIFO and Reader. 
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Each of these testing strategies requires the 
implementation of a set of different functional blocks in 
the test architecture of Figure 4. For example the 
implementation of Write Transaction Test strategy consists 
of the definition of the TDG and Controller blocks of the 
Writer as well as the TRE and Controller units inside the 
channel.  

To implement the above testing strategies, different 
working modes are also required for the computation units 
and the communication channel: 

• Communication Channel Working Modes: 
o Normal Mode 
o Write Transaction Test Mode 
o Read Transaction Test Mode 
o Self-Test Mode 

• Computation Units Working Modes: 
o Normal Mode 
o Blocked Mode (Waiting for Channel to 

perform Write/Read or Test) 
o Write/Read Transaction Mode 
o Integration Test Mode 

In the sequel of this paper, we will focus on the 
Transaction Test Strategy while leaving the Self Test and 
Integration Test Strategies for future works. 

Transaction Testing Strategy has several advantages. First 
of all the “write” and “read” functionalities of the channel 
can be easily tested autonomously (e.g., testing the writing 
functionalities does not require the reader to be involved). 
This minimizes the actors involved during the test and 
consequently the impact of the test on the normal behavior 
of the system. Also since the reader and the writer are not 
concurrently involved in the test, their related activities do 
not need any ad-hoc timing and synchronization. Each of 
them has the responsibility of testing the functionalities of 
the channel actually used. The main drawback of this 
approach is that the communication channel and the 
computation units have to be modified to include the 
BIFST facilities leading to some overhead.  

5. tlm_fifo Primitive 
This section introduces the tlm_fifo and provides a 
description of its functionalities that will be used in the 
rest of the paper as a starting point for the definition of a 
testable version of this primitive.   

SystemC TLM standard [27] released by OSCI is currently 
the most widely-used approach to transaction level 
modeling. The reason of choosing SystemC for modeling 
at transaction level is the close correspondence of 
SystemC with lower RT level descriptions, and its high 
level interface with C++. SystemC is a class library based 
on C++, an object-oriented language extensively used by 
software developers. It implements main hardware-
oriented parameters like Time, Concurrency, and 
Hardware data types [28].  

The basis of SystemC TLM is on classes and methods for 
modeling bidirectional, unidirectional, blocking and non-
blocking communications. Interface classes form the heart 
of the SystemC TLM standard and TLM primitive 
channels are the implementations of these interfaces. Core 
TLM interfaces presented in this standard include: 

• The Unidirectional Blocking Interfaces: 
o tlm_blocking_get_if 
o tlm_blocking_peek_if 
o tlm_blocking_put_if 

• The Unidirectional Non Blocking Interfaces 
o tlm_nonblocking_get_if 
o tlm_nonblocking_peek_if 
o tlm_nonblocking_put_if 

• Bidirectional Blocking Interface 
o tlm_transport_if 

The basic TLM primitive channel is tlm_fifo, a class which 
implements all the unidirectional interfaces mentioned 
above. Other primitive TML channels including 
tlm_req_rsp_channel and tlm_transport_channel 
implementing bidirectional interfaces are based on 
tlm_fifo. 

The implementation of tlm_fifo is based on the 
implementation of SystemC sc_fifo with the additional 
capability of having a zero or infinite size [29]. The class 
description provides access methods for Write to, Read 
from, Peek, Resize and Debug the tlm_fifo. 

The tlm_fifo primitive in addition to being a channel for 
implementing TLM unidirectional communications is also 
used as a primitive in more advanced TLM channels. 
Therefore making this channel testable is useful for direct 
use of tlm_fifo, and at the same time for providing 
testability for more complex channels.  

The TLM specification itself is not formal enough to 
systematically enable the development of a complete test 
and to enable the evaluation of its coverage. Therefore the 
first step toward the realization of a testable TLM channel 
is its representation using a more formal model. It is 
necessary to identify a suitable formal representation 
capable of capturing a wide variety of TLM specifications. 
For this purpose we decided to adopt the UML state 
charts. UML state charts allow an effective representation 
of the communication channel behavior. Moreover, they 
can be easily inserted in a more complex UML model 
allowing the description of additional information and 
eventually automating test generation activities. 

Figure 5 shows a UML state chart modeling the 
functionality of the tlm_fifo channel. Labels on the arcs 
(transitions in the UML formalism) correspond to the 
execution of the FIFO methods. Transitions can be 
conditioned through the use of guards reported in square 
brackets. For the sake of readability, transitions with 
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multiple labels are equivalent to multiple transitions, each 
one fired by one of the labels displaced on the arc.  

0: Empty

nb_get()
nb_peek()

[used()>1] get()
[used()>1] nb_get()
[used()+1<size()] put() 
[used()+1<size()] nb_put() 
peek()
nb_peek() 

nb_put()
peek()
nb_peek()

get()

put()
nb_put()

peek()

put()
nb_put()

[used()-1==0] get()
[used()-1==0] nb_get()

[used()+1==size()] put()
[used()+1==size()] nb_put()

put()
nb_put()

get()
nb_get()

put()

nb_get()
get()

1: Empty
(Blocked Reader)

2: Empty
(Blocked Reader)

3: Semi-Full

4: Full 5: Full
(Blocked Writer)

 
Figure 5 tlm_fifo UML State Chart 

The tlm_fifo has three main working states: 

• Empty: the buffer associated with the FIFO does 
not contain any information; 

• Full: the buffer associated with the FIFO is 
completely full; 

• Semi-Full: the FIFO is partially full, it contains 
information but its buffer is not completely full. 

The FIFO evolves among these three states depending on 
the call of its put(), get(), and peek() (blocking and non-
blocking ( nb_ )) methods from the modules connected to 
its communication ports. 

In particular, the put() method allows writing a new 
element into the FIFO, the get() method reads an element 
from the FIFO (removing the element after the read) and 
finally the peek() method reads an element from the FIFO 
but do not remove the element from the buffer. These 
three methods are blocking methods, meaning that in case 
they cannot complete their execution the caller is blocked 
until the failing condition is resolved. For example trying 
to call a get() or peek() method on an empty FIFO will 
block the caller until an element will be written in the 
channel. This situation is modeled by the two states 
labeled with Empty (blocked reader). We have to 
distinguish between the call of a get() and the call of a 
peek() since the status where the FIFO is resumed when an 
element is written is different in these two cases. The same 

situation happens when trying to write a new element in a 
full FIFO. In this case the writer will be blocked and the 
FIFO will be pushed in state Full (blocked writer) waiting 
for an element to be read from the channel. The non-
blocking versions of the put(), get(), and peek() methods 
are nb_put(), nb_get(), and nb_peek(), respectively. They 
behave as the blocking versions but do not block the caller 
in case of failure. 

The condition of FIFO full or empty is checked through 
the guards placed on some of the transitions. These guards 
resort to the methods used() and size() provided by the 
tlm_fifo, that return the number of elements already in use 
and the maximum allowed elements respectively. 

To conclude, The model also includes the execution of 
other non-blocking methods like nb_can_put(), 
nb_can_get(), and nb_can_peek() which are not shown on 
the diagram because they do not change the state of FIFO. 

6. Test Strategy Implementation 
The architecture proposed in Section 4 is general enough 
to implement different test strategies. In this section we 
show the implementation of the Transaction Test Strategy 
providing a sample of a test program, and the related 
implementations of the testable tlm_fifo. The test approach 
we adopt here is based on the FSM model of tlm_fifo 
communication channel presented in Figure 5. We 
implement the test strategy by going through the following 
steps: 

• Defining a test procedure able of testing the 
functionalities of each Transaction (method call 
implemented by the tlm_fifo); 

• Identifying the additional test functionalities the 
tlm_fifo, the Writer, and the Reader should 
provide to realize the testing procedure defined 
before; 

• For each additional functionality, defining the 
corresponding SystemC implementation. 

For the sake of readability, in this paper we will show a 
single example of testing procedure for the put() method 
involving the Writer and the FIFO, together with the 
corresponding SystemC TLM descriptions.  

Before detailing the actual test procedure we need a 
preliminary consideration. The put() method allows 
writing a data X into the FIFO. Working at the TLM 
abstraction level the semantic of X is undefined (e.g., a 
single bit, a jpeg image, an NoC packet, an mp3 file, etc.). 
In order to be as general as possible, our test procedures do 
not take into account the semantic of the data associated 
with X, considering it as an abstract element. In a real 
implementation the proposed testing solution should be 
completed with additional operations designed to test the 
consistency of the particular data type transmitted over the 
channel and to the specific type of faults affecting this 
data. 
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Figure 6 shows the test procedure for a testable_tlm_fifo 
with a four-element buffer. The test procedure is depicted 
using an UML sequence diagram showing the Writer and 
the FIFO as actors performing the sequence of actions. The 
overall idea in developing this procedure is trying to stress 
the put() method in different operational conditions and 
verifying its correct behavior.  

The Writer starts the test procedure by issuing put() 
transactions. Each of the written values has to be verified 
once written in the FIFO. Here we encounter the first 
testing requirement for the testable_tlm_fifo: we need to be 
able to read the content of the most recently written 
element, (without modifying the actual content of the 
internal buffer) and we need to compare this value with the 
expected one. This requirement leads to the definition of 
the following two test facilities: 

• t_peek(): performs a peek operation, i.e., reads 
the last written element internally to the FIFO. 
After the execution of the operation the content of 
the FIFO is unchanged; 

• t_compare(A,B): compares the two values A and 
B and returns a Boolean result. 

FIFOWRITER

1:put(A) 1:t_compare 
(t_peek(),A)

2:put(B) 2:t_compare 
(t_peek(),B)

3:put(C) 3:t_compare 
(t_peek(),C)

4:put(D) 4:t_compare 
(t_peek(),D)

5:put(E) 5:t_compare (t_peek(),E)
6:t_compare (t_get(),A)
7:t_compare (t_peek(),E)
8:t_compare (t_get(),B)
9:t_compare (t_get(),C)
10:t_compare (t_get(),D)
11:t_compare (t_get(),E)
12:x=t_get()

6:put(F) 13:t_compare (x,F)
14:x=t_peek()

7:put(G) 15:t_compare (x,G)
16:x=t_peek(t_get(),G)

 
Figure 6 Test Procedure for the put() Method 

These testing methods are used during steps 1 to 4 in the 
FIFO side in the testing procedure and more generally after 
the completion of each put() method to control whether the 
corresponding write operation succeeded. Any unexpected 
failure in the compare methods must be interpreted as a 
detected fault in the write functionality. 

Figure 7 and Figure 8 show the SystemC TLM description 
for t_peek() and t_compare() respectively.  t_peek() is a 
modification of peek() from the TLM library which reads 
the most recently written element of FIFO. 

 

 

After performing the first four operations, the FIFO is full, 
and we have to test its correct behavior in this condition. 
At this point, Step 5 of the Writer side tries to write an 
additional element in the FIFO. This operation should 
block the WRITER and the value (E) should not be 
written. The Compare method at Step 5 of the FIFO side 
should return false to check the correct blocking operation. 
Since this is an expected failure in the compare operation, 
it will not be considered as a fault. 

At this point, in order to test that the writer is correctly 
unblocked when a value is read from the FIFO, we have to 
simulate a get operation. For this purpose, we introduce an 
additional test method: 

• t_get(): it works exactly as the get() method but 
internally to the FIFO.  

Figure 9 shows the SystemC TLM description for t_get(). 
Steps 6 and 7 of the FIFO side read the top value from the 
buffer (it should be value A) by issuing a t_get() and then 
checking that the writer is correctly unblocked and enabled 
to write value E using a compare operation. 

//t_peek() 
template < typename T> 
inline 
T 
testable_tlm_fifo<T>::t_peek(tlm_tag<T> *) 
const 
{ 

//While (FIFO == Empty) Wait 
while (!tlm_fifo<T>::nb_can_get()) 
{ 

 const_cast< testable_tlm_fifo<T> *> 
(this)->wait(m_data_written_event); 

} 
    return  

buffer->peek_data(m_num_readable-1); 
} 

Figure 7 t_peek() SystemC TLM Description 

//t_compare() 
template < typename T> 
inline  
bool 
testable_tlm_fifo<T>::t_compare  

     (const T& val1_,const T& val2_){ 
if (val1_ == val2_) 

 return true; 
else { 

 cout << "Fault Detected" << endl;   
 return false; 

} 
} 

Figure 8 t_compare() SystemC TLM Description 
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At this point, steps 8 to 11 of the FIFO side are used to 
empty the FIFO and to obtain again an empty channel by 
successively calling t_get() methods. When the FIFO gets 
empty again, step 12 of FIFO side performs an additional 
t_get() to check the correctness of the blocking read 
operation. Since the t_get() method is blocking, the FIFO 
starts waiting for a new value. Step 6 of the WRITER side 
writes this value and operations 13 and 14 of the FIFO side 
check that this value is correctly stored in the channel. 
Finally the same procedure is repeated but using a testing 
version of the peek method (t_peek()) in steps 7 of the 
WRITER and 15 of the FIFO. 

 

 
The complete procedure for the WRITER and FIFO sides 
can finally be translated into additional SystemC methods 
in both sides for implementing TDG and TRE units. In the 
WRITER side, TDG is a method running in test mode 
which generates Test Data by issuing the put() transactions 
introduced in Figure 6. Figure 10 shows a possible 
SystemC TLM description for a writer with two Normal 
and Test modes. The WRITER side procedure can be re-
used for any other writers by automatically adding the 
proposed test method to their descriptions. 

 
Figure 11 shows the SystemC TLM description of the 
testable_tlm_fifo class which inherits from the tlm_fifo 
primitive channel and implements the proposed testing 
facilities for testing the put() method as the TRE of FIFO. 
testable_tlm_fifo has an extra internal buffer (m_test_buff) 
to store test data used during t_compare() operations to 
check the writing functionalities. The previously 
introduced testing methods (t_peek(), t_compare() and 
t_get()) are defined in this class and are called by the 
overridden put() method which implements the FIFO side 
test responses. 

//t_get() 
template < typename T> 
inline 
T 
testable_tlm_fifo<T>::t_get( tlm_tag<T> * ) 
{ 
 return tlm_fifo<T>::get();  
} 

Figure 9 t_get () SystemC TLM Description 

void Writer::run() 
{    
    //Normal Mode 

if (N_T_mode == 0){ 
 //Normal Operation 

} 
//Test Mode 
else 
{ 

 //Steps 1-4: While FIFO is not Full 
 while (write_port->nb_can_put()) 
 { 

in >> testData; 
     write_port->put(testData); 
 } 
 //Step 5: Full -> Full(Blocked Writer) 
 in >> testData;  

write_port->put(testData); 
  

//Step 6: Empty(Blocked Reader)->Empty 
 in >> testData; 
 write_port->put(testData); 
  

//Step 7: Empty(Blocked Reader)->SemFull 
 in >> testData; 
 write_port->put(testData); 

} 
} 
 

Figure 10 SystemC TLM Description of Writer 
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We also defined similar test procedures and methods for 
other tlm_fifo operations.  

Table 1 shows the test procedures for the get() and the 
peek() functions of tlm_fifo as examples of Read 
Transaction Test Strategy. In these procedures only the 
Reader and the FIFO are involved in test. As for the test 
procedure of Figure 6 an additional test method is defined 
to simulate the put() method internal to the FIFO: 

• t_put(): works exactly as the put() method but it 
is internal to the FIFO. 

 
 

Table 1  Test Procedures for get() and peek() Methods 

 
get() peek() 

READER FIFO READER FIFO 
x = get(A) - x = peek(A) - 

- t_put(A) - t_put(A) 
t_compare ( x, A ) - t_compare ( x, A ) - 

- t_put(B) 
 - t_put(B) 

t_compare (get(),B) - t_compare (peek(),A) - 

- t_put( C) - t_put(C) 
- t_put(D) t_compare (peek(),A) - 

t_compare (get(),C) - - t_put(D) 
- t_put(E) t_compare (peek(),A) - 
- t_put(F) - t_put(E) 

t_compare (get(),D) - t_compare (peek(),A) - 
- t_put(G) - t_get() 
- t_put(H) t_compare (peek(),B) - 
- t_put(I) - t_get() 

t_compare (get(),E) - t_compare (peek(),C) - 
t_compare (get(),F) 

 - - t_get() 

t_compare (get(),G) 
 - t_compare (peek(),D) - 

t_compare (get(),H) 
 - - t_get() 

t_compare (get(), I) - t_compare (peek(),E) - 
  - t_get() 

 

7. Test Quality Evaluation 
To evaluate the proposed testing strategies, early quality 
evaluation metrics are needed during the design phase. 
These metrics should be easily measurable, available and 
acceptable at this very high level of abstraction and should 
be re-useable on the final product with the same semantic 
and accuracy. 

Performing test coverage/quality evaluation at very high 
abstraction levels is always a complex task. At this level, 
information about the actual implementation of the 
elements composing the system are completely missing 
(the same component may lead to a software routine or to 
a hardware element). For this reason any tentative of using 
coverage metrics defined for different abstraction levels 
will probably lead to erroneous results. In order to evaluate 
the quality of the proposed test strategy we have to 
introduce coverage metrics at the same abstraction level 
used to model our tlm_fifo.  

Concerning high-level techniques, at a first look, 
similarities can be found with functional verification 
approaches and their related coverage metrics. Actually, 
the basic difference with respect to functional verification 
is that, since we are dealing with testing, our goal is to 
“embed” the testing procedures directly into the system 
itself. On the other hand, functional verification is usually 
performed using an external verification environment 
providing a much higher set of verification capabilities. 
Evaluating the effectiveness of our approach in terms of 
coverage metrics used to evaluate verification sequences 
generated by functional verification tools such as 
SpecMan™ from Cadence is thus not a viable solution. 
The results would be probably affected by the different 
evaluation conditions.  

The only feasible solution to perform our test quality 
analysis is thus to identify new metrics. In order to avoid 
the definition of new custom metrics, being TLM 

template <class T> 
class testable_tlm_fifo:public tlm_fifo<T>, 
                        public sc_module 
{ 
public: 
 SC_HAS_PROCESS(testable_tlm_fifo); 

testable_tlm_fifo(sc_module_name name, 
                      bool mode = false, 
                      int size = 1): 

 sc_module(name), 
 tlm_fifo<T>(size)  

 { 
m_N_Tmode = mode; 
m_test_size = size + 3; 

                       m_test_buf = new T[m_test_size]; 
  m_test_num = 0; 
  SC_THREAD(test_unblock_writer);  
  SC_THREAD(test_unblock_reader); 
 } 
     //Overridden put 
          void put( const T& ); 

 
protected: 
    void test_unblock_writer(); 
    void test_unblock_reader(); 
 
    T t_peek( tlm_tag<T> *t = 0 ) const; 

bool t_compare (const T&, const T&); 
T t_get( tlm_tag<T> *t = 0 ); 
 
bool m_N_Tmode; 
int m_test_size; 
T*  m_test_buf; 
int m_test_num; 
sc_event fifo_full_event; 
sc_event fifo_empty_event; 

}; 

Figure 11 testable_tlm_fifo Class Description 
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descriptions basically C++ programs, we decided to adopt 
metrics widely used in the software community. 

The coverage metric we exploit in this paper is related to 
the state chart model of the tlm_fifo introduced in Section 
5. The proposed test procedure was developed by trying to 
stress each method of the FIFO in different operational 
conditions. Since calling a method is equivalent to firing a 
transition on the state chart model of the FIFO, a possible 
measure concerns checking whether the test is able to fire 
all the possible transitions and to reach all possible states. 
This measure can be used as a coverage metric. 

Table 3 reports the coverage evaluation for the test 
procedure of the put() method proposed in Figure 6. For 
each step of the testing procedure we report the actual 
content of the FIFO, the initial state, the fired transition 
and finally the final state. The initial state and the final 
state are identified with the corresponding state numbers 
shown in Figure 5, whereas the transition is identified by 
the corresponding method call placed on the arc. A 
consideration is required regarding transitions. The 
introduction of the testing methods introduces additional 
transitions. These transitions are perfectly equivalent to the 
one already reported in Figure 5 for the equivalent normal 
methods (i.e., an additional transition for the t_get() 
method is introduced for every transition labeled with the 
get() method).  

Looking at the results of Table 3 we can conclude that the 
proposed procedure allows reaching 100% of coverage of 
the FIFO states (it reaches each state of the state diagram 
of Figure 5). Concerning the coverage of the transitions we 
have 28 normal mode transitions in the diagram of Figure 
5. The test of the put() method covers 6 of these transitions 
(the remaining used transitions are testing mode 
transitions) allowing to reach 21.4% coverage of all 
transitions. Obviously the remaining transitions have to be 
covered by the test procedures of the remaining methods. 

We performed the same evaluation for the test procedures 
defined for the remaining tlm_fifo methods. Table 2 
summarizes the results of this evaluation. For each method 
we provide state coverage, transition coverage, and finally 
the number of state transitions required to perform the test. 
The latter can be considered as a cost factor for the given 
test procedure. By looking at the full set of test procedures 
we have been able to reach 100% of both states and 
transition coverage. 

 
Table 2 Coverage Evaluation 

 

tlm_fifo 
Methods 

State  
Coverage 

Transition 
Coverage 

Number of 
State 

Transitions 
put() 100% 21.4% 23 

  nb_put() 83.3% 21.4% 24 
nb_can_put() 83.3% 17% 24 

get() 83.3% 17% 19 
nb_get() 66.6% 17% 25 

nb_can_get() 66.6% 14.2% 21 
peek() 83.3% 14.2% 20 

nb_peek() 66.6% 14.2% 29 
nb_can_peek() 66.6% 14.2% 21 

7. Conclusions 
This paper presented the first steps towards the definition 
of a design methodology capable of guaranteeing the 
implementation of “Plug & Test” (test-enriched) 
communication channels at the TLM level. The proposed 
methodology relies on introducing additional test 
functionalities to the blocks composing a TLM design to 
be translated later on into Built-in Functional Self Test 
(BIFST) facilities in the final product.  

The paper focused on the definition of a testable tlm_fifo, 
representing one of the main TLM primitives. We gave an 
overview of the approach we followed to add test 
functionalities to tlm_fifo, trying to highlight how the same 
methodology can be applied to other TLM primitives with 
the goal of defining a complete system level library of 
“Plug & Test” primitives. 

To evaluate the quality of the proposed test strategies, we 
presented the results obtained by applying coverage 
metrics widely used in the software community to the 
proposed problem.  These high-level evaluation metrics 
also have the capability of being re-used in the final 
product with the same semantics and accuracy. 
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Table 3 Coverage Evaluation for the put() Method 

 
WRITER FIFO FIFO Content Initial 

State Transition Final 
State 

put(A) - A    0 put 3 
- t_compare ( t_peek(), A) A    3 t_peek 3 
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put(B) - B A   3 put 3 
- t_compare ( t_peek(), B) B A   3 t_peek 3 

put(C) - C B A  3 put 3 
- t_compare ( t_peek(), C) C B A  3 t_peek 3 

put(D) - D C B A 3 put 4 
- t_compare ( t_peek(), D) D C B A 4 t_peek 4 

put(E) - D C B A 4 put 5 
- t_compare ( t_peek(), E) D C B A 5 t_peek 5 
- t_compare ( t_get(), A) E D C B 5 t_get 4 
- t_compare ( t_peek(), E) E D C B 4 t_peek 4 
- t_compare ( t_get(), B)  E D C 4 t_get 3 
- t_compare ( t_get(), C)   E D 3 t_get 3 
- t_compare ( t_get(), D)    E 3 t_get 3 
- t_compare ( t_get(), E)     3 t_get 0 
- x = t_get(F)     0 t_get 2 

put(F) -     2 put 0 
- t_compare ( x, F)     0 - 0 
- x = t_peek(G)     0 t_peek 1 

put(G) - G    1 put 3 
- t_compare ( x, G) G    3 - 3 
- t_compare ( t_get(), G)     3 t_get 0 

 


