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Abstract

Synchronization in random networks with given expected degree sequences is
studied. We also investigate in details the synchronization in networks whose topol-
ogy is described by classical random graphs, power-law random graphs and hybrid
graphs when N →∞. In particular, we show that random graphs almost surely syn-
chronize. We also show that adding small number of global edges to a local graph
makes the corresponding hybrid graph to synchronize.
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1 Introduction

The study of complex systems pervades all of science, from cell biology to ecol-
ogy, from computer science to meteorology. A paradigm of a complex system
is a network [1] where complexity may come from different sources: topological
structure, network evolution, connection and node diversity, and/or dynami-
cal evolution. Examples of networks include food webs [2,3], electrical power
grids, cellular and metabolic networks, the World-Wide Web [4], the Internet
backbone [5], neural networks, and co-authorship and citation networks of sci-
entists. These networks consist of nodes which are interconnected by a mesh
of links. The macroscopic behavior of a network is determined by both the
dynamical rules governing the nodes and the flow occurring along the links.

Real networks of interacting dynamical systems – be they neurons, power sta-
tions or lasers – are complex. Many real-world networks are small-world [6]
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and/or scale-free networks [7]. The presence of a power-law connectivity distri-
bution, for example, makes the Internet a scale-free network. The research on
complex networks has been focused so far on the their topological structure [8].
However, most networks offer support for various dynamical processes. In this
paper we propose to study one aspect of dynamical processes in non-trivial
complex network topologies, namely their synchronization behaviors.

The general question of network synchronizability, for many aspects, is still
an open and outstanding research problem [9,10]. There are, in general, two
classes of results which give criteria under which a network of oscillators syn-
chronizes. The first class of results uses Lyapunovs direct method by con-
structing a Lyapunov function which decreases along trajectories and gives
analytical criteria for local or global synchronization. For example, in [11],
the authors gave sufficient conditions for an array of linearly coupled systems
to synchronize. A typical result states that the array will synchronize if the
nonzero eigenvalues of the coupling matrix have real parts that are negative
enough. The work in [11] has been extended and generalized in [12–16].

The second class of results uses linearized equations around the synchroniza-
tion manifold and computes numerically the Lyapunov exponents of the varia-
tional equations. In this context, an important contribution has been given by
Pecora and Carroll in [17], where, for a network of coupled chaotic oscillators,
they derived the so-called Master Stability Equation (MSE), and introduced
the corresponding Master Stability Function (MSF). Consequently, the stabil-
ity analysis of the synchronous manifold [17] for the network under consider-
ation can be decomposed in two sub-problems. The first sub-problem consists
of deriving the MSF for the network nodes, i.e. to study in which region, of the
complex plane the MSE admits a negative largest Lyapunov exponent (LE).
The second sub-problem is to verify whether the eigenvalues of the so-called
connectivity matrix [18] of the network, apart from the zero-eigenvalue, lie in
the synchronization region(s) (see also [17–19]). This approach is particularly
relevant because the MSE depends only on the nodes local dynamics and on
the coupling matrix [18]. It turns out that the mathematical problem has the
same dimension as the single network node. For example, when considering
a network of coupled Rössler systems [20], the master stability equation has
dimension three.

Recently, the synchronization phenomenon in scale-free dynamical networks
has been investigated in [21–25]. In [22], the authors found that networks with
a homogeneous distribution of connectivity are more synchronizable than het-
erogeneous ones, even though the average network distance is larger. They pre-
sented numerical computations and analytical estimates on synchronizability
of the network in terms of its heterogeneity parameters. Robustness and/or
fragileness of the networks’ synchrony is discussed in [21,23,24]. Networks’
synchronization and de-synchronization processes in a scale-free network are

2



illustrated by a prototype composing of Henon maps. A new general method
to determine global stability of total synchronization in networks with dif-
ferent topologies is proposed in [26,27]. This method combines the Lyapunov
function approach with graph theoretical reasoning. In particular, the method
is applied to the study of synchronization in rings of 2K-nearest neighbor cou-
pled oscillators. This method is extended to the blinking model of small-world
networks where, in addition to the fixed 2K-nearest neighbor interactions,
all the remaining links are rapidly switched on and off independently of each
other. In [25], the authors studied synchronization in weighted complex net-
works and showed that the synchronizability of random networks with a large
minimum degree is determined by two leading parameters: the mean degree
and the heterogeneity of the distribution of node’s intensity, where the inten-
sity of a node, defined as the total strength of input connections, is a natural
combination of topology and weights.

In this work, following [17], we first review the properties of the master sta-
bility function. Namely, in section 2 it is shown that for typical systems only
three main scenarios may arise as a function of coupling strength: the syn-
chronization region may have following forms: an interval (αm, +∞), union

of intervals (α(j)
m , α

(j)
M ), or an empty set. Then, we study synchronization in

complex networks topologies. Section 3 is devoted to the analysis of synchro-
nization properties of networks whose topology is described by classical and
power-law random graph models. We prove that random graph networks syn-
chronize. In this paper we consider the model M(N, β, d, m), where N is the
number of vertices, β > 2 is the power of the power law, d is the expected aver-
age degree, and m is is the expected maximum degree, such that m2 = o(Nd).
We prove the following theorem: Let M(N, β, d, m) be a random power-law
graph on N vertices, for which d grows with N . Assume further that d/m
approaches 0 when N →∞. Then the class–A network M(N, β, d, m) asymp-
totically almost surely synchronizes for arbitrary small coupling σ and class–B
network M(N, β, d, m) asymptotically almost surely does not synchronize. In
section 4 we study synchronization properties of hybrid networks. We prove
that although local graph networks do not synchronize for large N , adding only
a small number of global edges makes these hybrid networks to synchronize.
We close our paper with conclusion.

2 Preliminaries: Master Stability Function

In this section, following [17], we first review the properties of the master
stability function.
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2.1 Introduction

Let us consider a network comprising N identical nodes, each being a (chaotic)
oscillator. Let xi be the m-dimensional vector of dynamical variables for the
i-th node. Let the dynamics of each node be described by:

ẋi = f(xi) +
N∑

k=1

Dikxk i = 1, . . . , N (1)

where f : IRm → IRm describes the oscillator equations, which we assume
to admit a chaotic attractor [20], while Dik are m × m real matrixes. As-
sume that each matrix, Dik, has the form: Dij = gijH , where gij is a real
number and H is a m × m diagonal matrix, same for all nodes, called cou-
pling matrix. The coupling matrix H = (hij) contains the information about
which variables are utilized in the coupling and is defined as hii = 1, if the
i-th component is coupled, and hii = 0, otherwise. Let x = (x1, . . . , xN)T ,
f(x) = (f(x1), . . . , f(xN))T , and: G = (gij) is an N × N matrix called the
connectivity matrix, because it specifies which nodes are connected to which
and the coupling strength. Recall that the direct product of two matrixes
A = (aij) and B is given, in block form, by:

A⊗B =




a11B a12B . . . a1NB

a21B a22B . . . a2NB
...

...
...

...

aN1B aN2B . . . aNNB




.

Then, we can rewrite Eq. (1) in a more compact form using the direct product
of matrixes:

ẋ = F(x) + (G⊗H) x (2)

where F(x) : IRmN → IRmN is defined as F(x) = (f(x1), . . . , f(xN))T . The
(N − 1) constraints: x1 = x2 = . . . = xN , define the so-called synchronization
manifold [17]. The invariance of this manifold requires that:

∑
j gij = 0, ∀i. To

determine the stability of the synchronization manifold, one should evaluate
the Lyapunov exponents along the directions transverse to the manifold itself.
In this respect, the variational equation of the system (2) is:

ξ̇ = [JF + JG⊗H ] ξ, (3)

where ξ = (ξ1, ξ2, . . . , ξN)T , IN is the N ×N identity matrix, and JF , JG⊗H ,
are the Jacobian matrixes of F and G⊗H , respectively. By noting that the
matrixes G and H do not depend on x and on the synchronization manifold
JF = IN ⊗ Jf , it follows that Eq. (3) can be rewritten as:

ξ̇ = [IN ⊗ Jf + G⊗H ] ξ. (4)
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Since G is a constant N × N matrix, the matrix that diagonalizes G is also
constant and can be applied directly to (4). Thus, we have:

ζ̇k = [Jf + γk H ] ζk, (5)

with k = 1, . . . , N , and γk are the eigenvalues of the connectivity matrix G.
Note that, for k = 1, Eq. (5) is the variational equation of the synchronization
manifold, i.e. the eigenvalue γ1 = 0. On the other hand, the other values of
k > 1 correspond to all transverse eigenvectors. The two matrixes in (5), Jf

and H , are constants with respect to k, and only the eigenvalues γk vary.
Thus, one can reformulate the above equation as follows,

ζ̇ = [Jf + (α + ıβ) H ] ζ, (6)

that is the master stability equation. This equation depends on the two para-
meters α and β, and the corresponding largest Lyapunov exponent, which is
also a function of α and β, represents the master stability function.

2.2 Properties of the Master Stability Function

We now study the properties of MSF. Let us write the master stability equa-
tion (6) as:

ζ̇ = J ζ, (7)

where J = [Jf + (α + ıβ) H ]. In the following, we denote with ΦJ (t, t0) the
transition matrix of the system (7) (see [28]). The MSE (7) is defined by the
matrix J which, in turn, comprises two terms. The first term is given by the
Jacobian matrix Jf of f , that is a real m ×m matrix, for ordinary systems.
The second term is the real matrix, H , multiplied by (α + ıβ), which is a
complex number. Therefore, the matrix J and the transition matrix ΦJ (t, t0)
of MSE (7) are complex. The m transition matrix eigenvalues are complex
(but not conjugate, in general, since the matrix is not real).

We recall the definition of Lyapunov exponents

λi = lim
t→∞

1

t
ln |mi (t)| , (8)

where mi (t) denote the eigenvalues of the transition matrix (solution of the
dynamical system). We observe that, according to the definition (8) of Lya-
punov exponents, only the absolute value of the eigenvalues, mi, comes into
play. Thus, the Lyapunov exponents are the same for (α + ıβ) and its conju-
gate. So, it follows that the master stability function is symmetric with respect
to the real α-axis.
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2.2.1 Coupling Matrix H Equal to the Identity Matrix

The study of the properties of the MSF can be subdivided into two cases,
depending on whether the connectivity matrix H coincides with the identity
matrix or not. In the former case, the Jacobian matrix J , used for evaluating
the Lyapunov exponents, is given by:

J = Jf + (α + ıβ) I. (9)

Proposition 1 If the coupling matrix H is equal to the identity matrix I,
then the Lyapunov exponents λi (α, β) of the master stability equation (7) are

λi (α, β) = λi (0, 0) + α. (10)

PROOF. In order to prove equation (10), we consider the following linear
time-variant differential equation (of order m)





d

dt
ΦA(t, t0) = A(t)ΦA(t, t0)

ΦA(t0, t0) = I

(11)

where ΦA(t, t0) is the transition matrix. Its solution is given by the Peano-
Baker series [28]:

ΦA(t, t0) = I +
∫ t

t0
dt1A(t1)+

+
∫ t

t0
dt1

∫ t1

t0
dt2A(t1)A(t2) + . . .

(12)

Then, we can rewrite the solution as:

ΦA(t, t0) = I +
∫ t

t0
dt1T {A(t1)}+

+
1

2!

∫ t

t0
dt1

∫ t

t0
dt2T {A(t1)A(t2)}+ . . .

4
= T

{
e
∫ t

t0
dt1A(t1)

}
,

(13)

where T {·} is the time order-product:




T {A(t1)A(t2) . . . A(tm)} = A(ti1)A(ti2) . . . A(tim)

ti1 ≥ ti2 ≥ . . . ≥ tim

{ti1 , ti2 , . . . tim} = {t1, t2, . . . tm} .

(14)
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From equation (13), it is straightforward to verify that the following equality
holds true:

T
{
e
∫ t

t0
dt1(A(t1)+cI)

}
=

= T
{
e
∫ t

t0
dt1A(t1)

}
· T

{
e

c
∫ t

t0
dt1I

}
=

= T
{
e
∫ t

t0
dt1A(t1)

}
· ec(t−t0).

(15)

2

Note that the largest Lyapunov exponent depends only on the (largest of the)
LEs of the original dynamical system f , and on α. The MSFis then a plane
with slope equal to α, and it does not depend on the value of β. In particular,
the MSF is equal to zero for α = −λmax (0, 0) and negative in the left half-
plane, with respect to the latter straight line.

2.2.2 Coupling Matrix H Not Equal to the Identity Matrix

In this case, we use an asymptotic method with respect the parameters α and
β to estimate the largest Lyapunov exponent of the master stability equation.
It is easy to see that, if the parameter α is positive and the absolute value
|α + ıβ| tends to infinity, the largest Lyapunov exponent is approximatively
equal to α. If α is negative, with the same condition for the above absolute
value, the largest Lyapunov exponent is constant:

λmax (α, β) →




α, if α > 0

r, if α < 0
|α + ıβ| → ∞ (16)

where r is the conditional LE [18], constant with respect α and β.

We remark that (16) is true for |α + ıβ| tending to infinity. In practice, this
condition is met provided that |α + ıβ| is sufficiently larger than all entries in
the transition matrix of the variational equation, for a single node (i.e. the
master stability equation with parameters α and β to be null). This fact has
been confirmed by computing the master stability function for several different
dynamical systems. This also means that, if |α + ıβ| is sufficiently large (with
respect to all entries of ΦJ (t, t0) in the case α and β equal to zero), the
MSF is constant if α is negative and approaches a plane with slope equal
to α, otherwise. Moreover, the MSF depends on β only when the condition
|α + ıβ| → ∞ is not fulfilled.
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2.3 Synchronization Regions

We now consider the following form of Eq.(2)

ẋ = F(x) + σ (L⊗H) x, (17)

where σ is the overall strength of coupling, and the N × N matrix L is the
Laplacian matrix representing the connection topology of the network: lij =
lji = −1 if nodes i and j are connected, lii = ki if node i is connected to ki

other nodes, and lij = lji = 0 otherwise.

The matrix L, which will be our main concern, is positive semi-definite and
symmetric. Its smallest eigenvalue is γ1 = 0. Denote by γk the k-th smallest
eigenvalue of L, respecting the multiplicities, k = 1, 2, . . . , N . In particular,
γN , is the maximal eigenvalue of L.

Since L is symmetric, the master stability function, in this case, has the form

ζ̇ = [Jf + α H ] ζ, (18)

where α ∈ IR. Therefore, in this case the corresponding largest Lyapunov
exponent or MSF, Λ(α), depends only on one parameter, α. Master stability
function determines the linear stability of the synchronized state; in particular,
the synchronized state is stable if all eigenvalues of the matrix L are in the
region Λ(α) < 0. We denote by S ⊆ IR the region where the MSF is negative
and call it synchronization region. Discussions in the previous sections show
in fact that for the system (17), the synchronization region S may have one
of the following forms:

• S1 = ∅
• S2 = (αm, +∞)

• S3 =
⋃

j(α
(j)
m , α

(j)
M )

Examples of the these scenarios are given in [29,30]. In the majority of cases

αm, α(j)
m , and α

(j)
M turn out be positive and, furthermore, in the case S3 there

is only one parameter interval (α(j)
m , α

(j)
M ) on which Λ(α) < 0. For this reason,

we will limit ourself to consider only such cases, focusing, in the remaining of
this paper, on the scenarios S2 = (αm, +∞) and S3 = (αm, αM). It is easy to
see that for S2 the condition of stable synchronous state is σγ2 > αm. For S3,
one can easily show that there is a value of the coupling strength σ for which
the synchronization state is linearly stable, if and only if γN/γ2 < αM/αm.
Therefore, for a large class of (chaotic) oscillators there exist two classes of
networks:

1. Class-A networks: networks whose synchronization region is of type S2, for

8



H Network Synchronization Region

h11 h22 h33 Class Type Case 1 Case 2

1 0 0 Class–A α > 5.14 α > 5.83

0 1 0 Class–A α > 0.00 α > 0.86

0 0 1 Class–B 1.52 < α < 2.48 1.81 < α < 2.50

1 1 0 Class–A α > 0.00 α > 0.90

1 0 1 Class–A α > 0.00 α > 0.15

0 1 1 Class–A α > 0.00 α > 1.13

1 1 1 Class–A α > 0.00 α > 0.13

Table 1
Examples of class–A and class–B networks. The Chua’s circuit is used as an oscillator
in two different cases: Case 1, for which the circuit has an attracting limit cycle, and
Case 2, for which the circuit shows a chaotic attractor. For each case, all 7 different
types of coupling matrix have been investigated (note that hij = 0 for i 6= j).

which the condition of stable synchronous state is σγ2 > a;
2. Class-B networks: networks whose synchronization region is of type S3, for

which this condition reads γN/γ2 < b;

where a = αm and b = αM/αm are constants that depend on f , the synchro-
nous state x1 = x2 = . . . = xN and the matrix H , but not on the Laplacian
matrix L. For typical oscillators b > 1.

An example, showing class–A networks and class–B networks, is given in Ta-
ble 1. In this table, the Chua’s circuit is used as an oscillator (see [31]) and all
different forms of the connectivity matrix H are considered. The values of pa-
rameters for the Case 1 are α = 8.0, β = 100/7, m0 = −8/7, and m1 = −5/7,
while the parameters for the Case 2 are same as for the Case 1, except for
α = 8.5. Note that for the Case 2, a takes values in the range [0.13, 5.83],
while b = 1.38. Another examples include network of Lorenz oscillators (class–
A network), for which a = 0.908, and network of Rossler oscillators (class–B
network), for which b = 37.85.
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3 Synchronization in random graphs

3.1 Preliminaries

A graph is an ordered pair of disjoint sets (V, E) such that E is a subset of the
set of unordered pairs of V . The set V is the set of vertices and E is the set
of edges. If G is a graph then V = V (G) is the vertex set of G and E = E(G)
is the edge set. The edge {vi, vj} is said to join the vertices vi and vj and is
denoted by vivj. Thus vivj and vjvi means exactly the same edge; the vertices
vi and vj are the endvertices of this edge. If vivj ∈ E(G) then vi and vj are
adjacent or neighboring vertices of G and the vertices vi and vj are incident
with edge vivj.

The order of G is the number of vertices; it is denoted by |G|, where |·| denotes
the number of elements (cardinality) of a set. The size is the number of edges;
it is denoted by e(G). We write GN for an arbitrary graph of order N . Similarly
G(N,m) denotes an arbitrary graph of order N and size m.

The set of vertices adjacent to a vertex vi ∈ G is denoted by Γ(vi). The degree
of vi is d(vi) = |Γ(vi)|. The minimum degree of the vertices of a graph G is
denoted by δ(G) and the maximum degree by ∆(G). If δ(G) = ∆(G) = k,
that is every vertex of G has degree k then G is said to be k-regular graph. If
V (G) = {v1, v2, . . . , vN}, then δ(G) = d(v1) ≤ d(v2) ≤ . . . ≤ d(vN) = ∆(G)
is a degree sequence of G. The average degree or simply degree of a graph is
d(G) =

∑
i d(vi)/N = 2e(G)/ |G|. The degree distribution pd(k) denotes the

fraction of vertices that have degree equal to k.

The size of a graph of order N is at least 0 and most N(N − 1)/2. Clearly for
every m, 0 ≤ m ≤ N(N − 1)/2, there is a graph G(N,m). A graph of order
N and size N(N − 1)/2 is called a complete n-graph and is denoted by KN . A
path is a graph P of the form:

(V (P ), E(P )) : V (P ) = {v0, v1, . . . , vl}, E(P ) = {v0v1, v1v2, . . . , vl−1vl}.

This path is usually denoted by v0v1 . . . vl. The vertices v0 and vl are endver-
tices of P and l = e(P ) is the length of P . We say that P is a path from v0 to
vl or an v0 − vl path.

A walk W in G is an altering sequence of vertices and edges, say v0, α1, v1, α2, . . . , αl, vl,
where αi = vi−1vi, 1 ≤ i ≤ l. For simplicity we write W = v0v1 . . . vl. Note
that a path is a walk with distinct vertices. If a walk W = v0v1 . . . vl is such
that l ≥ 3, v0 = vl, and the vertices vi, 0 < i < l, are distinct from each other
and v0 then W is said to be a cycle. The symbol Pl denotes an arbitrary path
of length l and Cl denotes a cycle of length l.
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Given vertices vi, vj, their distance d(vi, vj) is the minimum length of an vi−vj

path. If there is no vi − vj path then d(vi, vj) = ∞. A graph is connected if
for every pair {vi, vj} of distinct vertices there is a path from vi to vj. The
diameter of the graph G is diam(G) = maxvi,vj

d(vi, vj). The radius of the
graph G is rad(G) = minvi

maxvj
d(vi, vj).

There are several ways to associate a matrix to a graph. The usual adja-
cency matrix A associated with a graph has eigenvalues quite sensitive to the
maximum degree (which is a local property). The combinatorial Laplacian
L = D−A with D denoting the diagonal degree matrix is a major tool for enu-
merating spanning trees and has numerous applications [32]. Another matrix
associated with a graph is the (normalized) Laplacian L̃ = I−D−1/2AD−1/2

which controls the expansion/isoperimetrical properties (which are global) and
essentially determines the mixing rate of a random walk on the graph [33]. The
traditional random matrices and random graphs are regular or almost regular
so the spectra of all the above three matrices are basically the same (with
possibly a scaling factor or a linear shift). However, for graphs with power
law distribution, the above three matrices can have very different distribu-
tions [34].

Recall γ1 = 0 ≤ γ2 ≤ . . . ≤ γN , repeated according to their multiplicities, are
eigenvalues of the matrix L. These eigenvalues are called Laplace eigenvalues
of the graph G. Laplace eigenvalues of the complete graph KN are γ1(KN) = 0
and γk(KN) = N for 2 ≤ k ≤ N . The Laplace eigenvalues of the N -cycle CN

are the numbers

γk(CN) = 2− 2 cos

(
2(k − 1)π

N

)
, k = 1, . . . , N.

It is easy to see that 0 is always an eigenvalue of L, and than (1, 1, . . . , 1)T is the
corresponding eigenvector. More precisely, we have the following description
of the multiplicity of 0 as an eigenvalue of L.

Theorem 2 The multiplicity of 0 as an eigenvalue of L is equal to the number
of connected components of G.

This implies if γ2 > 0 then the graph is connected. The following inequalities
hold

Theorem 3

γ2(G) ≤ N

N − 1
δ(G) ≤ N

N − 1
∆(G) ≤ γN(G) ≤ 2∆(G). (19)

The proof of the above two theorems can be found, for example, in [36,37].
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3.2 Synchronization in classical random networks

We turn now to random graphs. The primary model for the classical random
graphs is the Erdös-Rényi model Gq [35], in which each edge is independently
chosen with the probability q for some given q > 0. Let G(N, q) be a random
graph on N vertices.

For the model of a random graph we take a sequence of probability spaces
(Γ(N, q))N , where q is a real number between 0 and 1, and N is an integer.
We shall assume that q is fixed. The probability space Γ(N, q) consists of all
labeled simple graphs on N vertices, and an edge between an arbitrary pair
of vertices appears with probability q, i.e. Γ(N, q) has 2M elements, where
M = N(N−1)/2, and each graph in Γ(N, q) with m edges has the probability
equal to qm(1− q)M−m. By PN(X) we will denote the probability of an event
X ⊆ Γ(N, q) in the probability space Γ(N, q).

Definition 4 Almost every graph has property ρ (or ρ happens asymptotically
almost surely (a.a.s)), if

lim
N→∞

PN{G ∈ Γ(N, q) and the graph G has the property ρ} = 1.

Theorem 5 Let G(N, q) be a random graph on N vertices. Then, the class–A
network G(N, q) asymptotically almost surely synchronizes for arbitrary small
coupling σ and the class–B network G(N, q) asymptotically almost surely syn-
chronizes for b > 1.

PROOF. The proof of the theorem follows from the following result [38]. Let
q be a fixed real number between 0 and 1. For almost every graph and every
ε > 0

qN −
√

(2 + ε)pqN log N < γ2(G) < qN −
√

(2− ε)pqN log N, (20)

and

qN +
√

(2− ε)pqN log N < γN(G) < qN +
√

(2 + ε)pqN log N. (21)

Therefore, for large N , γ2 ≈ N , while γN/γ2 approaches 1. Now, for class-A
networks the condition for synchronization reads σ > a/N and σ can be chosen
arbitrary small. For class-B networks with b > 1, since γN/γ2 approaches 1,
when N →∞, it follows that the network almost surely synchronizes. 2
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3.3 Synchronization in power-law networks

There are several approaches for studying power-law graphs. In the the first
approach, one constructs power-law graphs with prescribed degree sequence.
Bender and Canfield [39] introduced a model, so called configuration model, to
construct a random graph with a prescribed degree sequence. This model was
refined by Bollobas [37]. Recently, Molloy and Reed [40,41] used the configura-
tion model to show that if some conditions are satisfied, then the graph almost
surely has a giant component. The advantage of the configuration model is
to generate graphs exactly with the prescribed degrees. However, there are
several disadvantages of the configuration model. The analysis of the configu-
ration model is much more complicated due to the dependency of the edges.
A random graph from the configuration model is in fact a multi-graph instead
of a simple graph. The probability of having multiple edges increases rapidly
when the degrees increase.

Another line of approach is evolution models, in which one generates a ver-
tex/edge at a time, starting from a node or a small graph. We briefly mention
several such evolution models. Barabási and Albert [7] describe the following
graph evolution process. Starting with a small initial graph, at each time step
they add a new node and an edge between the new node and each of m ran-
dom nodes in the existing graph, where m is a parameter of the model. The
random nodes are not chosen uniformly. Instead, the probability of picking a
node is weighted according to its existing degree (the edges are assumed to
be undirected). Using heuristic analysis with the assumption that the discrete
degree distribution is differentiable, they derive a power law for the degree
distribution with a power of 3, regardless of m. A power law with power 3 for
the degree distribution of this model was independently derived and proved
by Bollobas et al. [42]. Kumar at el. [43] proposed three evolution models:
linear growth copying, exponential growth copying, and linear growth variants.
Aiello et al. described a general random graph evolution process in [44] for
generating directed power law graphs with given expected in-degrees and out-
degrees. Recently, Cooper and Frieze [45] independently analyzed the above
evolution of adding either new vertices or new edges and derived power law
degree distribution for vertices of small degrees.

In this section we consider a random model introduced recently by Chung and
Lu [46], which produces graphs with a given expected degree sequence. There-
fore, this model does not produce the graph with exact given degree sequence.
Instead, it yields a random graph with given expected degree sequence.

We consider the following class of random graphs with a given expected degree
sequence

w = (w1, w2, . . . , wN).

13



The vertex vi is assigned vertex weight wi. The edges are chosen independently
and randomly according to the vertex weights as follows. The probability pij

that there is an edge between vi and vj is proportional to the product wiwj

where i and j are not required to be distinct. There are possible loops at vi

with probability proportional to w2
i , i.e.,

pij =
wiwj∑

k wk

, (22)

and we assume maxi w
2
i <

∑
k wk. This assumption ensures that pij ≤ 1 for

all i and j. We denote a random graph with a given expected degree sequence
w by G(w). For example, a typical random graph G(N, q) (see the previous
section) on N vertices and edge density q is just a random graph with expected
degree sequence (qN, qN, . . . , qN). The random graph G(w) is different from
the random graphs with an exact degree sequence such as the configuration
model. We will use di to denote the actual degree of vi in a random graph
G in G(w), where the weight wi denotes the expected degree. The following
proposition is proven in [46].

Proposition 6 With probability 1− 2/N , all vertices vi satisfy

2
√

wi log N ≤ di − wi ≤ 2

3
log N +

√(
2

3
log N

)2

+ 4wi log N. (23)

Now we give some definitions. The expected average degree d of a random
graph G in G(w) is defined to be

d =
1

N

∑
wi. (24)

For a subset S of vertices, the volume of S, denoted by Vol(S), is the sum of
expected degrees in S:

Vol(S) =
∑

vi∈S

wi.

In particular, the volume Vol(G) of G(w) is just Vol(G) =
∑

i wi = Nd.

If a graph strictly follows the power law, then the average degree as well as its
connectivity will be completely determined by the exponent of the power law
(see [47]). However, for most realistic graphs, the power law holds only for a
certain range of degrees, namely, for the degrees which not too small and not
too large. We will consider the following model [47] with the consideration that
most examples of massive graphs satisfying power law have exponent β > 2.

In this paper we consider the model M(N, β, d, m), where N is the number of
vertices, β > 2 is the power of the power law, d is the expected average degree,
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and m is is the expected maximum degree, such that m2 = o(Nd) [47]. We
assume that the i-th vertex vi has expected degree

wi = c(i + i0 − 1)−
1

β−1 ,

for 1 ≤ i ≤ N . Here c depends on the average degree d and i0 depends on
the maximum expected degree m. It is easy to compute that the number
of vertices of expected degree between k and k + 1 is of order c′k−β, where
c′ = cβ−1(β − 1), as required by the power law. To determine c, we consider

Vol(G) =
∑

i

wi ≈ c
β − 1

β − 2
N1− 1

β−1 .

Since Nd ≈ Vol(G), we have

c =
β − 2

β − 1
dN

1
β−1 .

From

m = ci
− 1

β−1

0 ,

it follows

i0 = N

[
d

m

(β − 2)

(β − 1)

]β−1

.

For the considered model d can be in any range greater than 1: it does not
have to grow with N [52].

Theorem 7 Let M(N, β, d, m) be a random power-law graph on N vertices,
for which d grows with N . Assume further that d/m approaches 0 when N →
∞. Then the class–A network M(N, β, d, m) asymptotically almost surely syn-
chronizes for arbitrary small coupling σ and class–B network M(N, β, d, m)
asymptotically almost surely does not synchronize.

PROOF. From equations (19),

N

N − 1
∆(M) ≤ γN(M) ≤ 2∆(M), (25)

it follows that for large N we have ∆ < γN ≤ 2∆, where ∆ is the maximum
degree of the graph. From (23) we have

2
√

m log N ≤ ∆−m ≤ 2
√

m log N + A2 + 2A.

where A = log N/3. Therefore, γN(M) ≈ ∆ for large N and γN(M) grows
with N as m.
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Let k be the expected minimum degree. Then

k ≡ wN = c(N + i0 − 1)−
1

β−1 ≈ c(N + i0)
− 1

β−1 .

Thus, we have

k ≈ β − 2

β − 1
d


1 +

(
d

m

(β − 2)

(β − 1)

)β−1


− 1

β−1

. (26)

Equation (26) can be rewritten as

k ≈ d


1 +

(
d

m

)β−1


− 1

β−1

.

Since d/m → 0, when N →∞, we have k ≈ d. Therefore, when d grows with
N , the minimum expected degree k also grows with N .

It is proven in [48] that the function γ2(G) is non-decreasing for graphs with
the same set of vertices, i.e. γ2(G1) ≤ γ2(G2) if G1 ⊆ G2 and G1, G2 have
the same set of vertices. Let G2 be our M(N, β, d,m) random graph and δ
be the minimum degree of the graph M(N, β, d,m). Further, let G1 be a δ-
regular random graph which has the same set of vertices as G2. Then obviously
G1 ⊆ G2, and therefore, γ2(M) ≥ γ2(G1). According to [50] and [49] (see also
[13]), we have

δ/2−
√

δ ln 2 ≤
√

γ2(G1)(2δ − γ2(G1)).

Therefore,

γ2(M) ≥ γ2(G1) ≥ δ −
√

3

4
δ2 − δ(ln 2−

√
δ ln 2). (27)

On the other hand, from equations (19) and (23) it follows that for large N ,

γ2(M) ≤ N

N − 1
δ ≈ δ. (28)

Combining (27) and (28) we find that γ2(M) can be approximated with δ.
Using (23) we find that γ2(M) grows with N as d.

If d grows with N , since γ2 also grows with N we conclude that the class–A net-
work M(N, β, d, m) almost surely synchronize for arbitrary small coupling σ.
Since b is a finite number, from γN/γ2 ≈ m/k →∞, we see that for sufficiently
large N , almost every class-B network M(N, β, d, m) does not synchronize.

2
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Fig. 1. γ2 versus N for for the model M(N, β, d,m) with β = 3, d = 7, and m = 30.

Remark 8 Assume that d grows with N as d = const·Nµ and m = const·Nν.
Then, clearly ν ≥ µ > 0. Conditions of the theorem are satisfied for µ < ν <
(µ + 1)/2. Indeed, from m2 = o(Nd), it follows that limN→∞ m2/(Nd) = 0.
Therefore, µ + 1 > 2ν. On the other hand, we have also assumed in the
previous theorem that limN→∞ d/m = 0. Thus, we have ν > µ. Therefore,
µ < ν < (µ + 1)/2. Clearly, in this case µ < 1.

Remark 9 Let M(N, β, d, m) be a random power-law graph on N vertices, for
which d grows with N . Let G(N, q) be a classical (Erdös-Rényi) random graph
on N vertices. For both graphs γ2 grows with N , however, as follows from the
proof of this theorem, γER

2 for the classical model grows faster than γ
(pow)
2 for

the power-law graph. Let σc be a critical value of σ for which class–A network
synchronizes. Thus, the critical value σER

c = a/γER
2 for a classical graph is

always smaller than the the critical value σ(pow)
c = a/γ

(pow)
2 for a power-low

graph, that is σER
c < σ(pow)

c .

Theorem 7 says that when N →∞ and d grows with N then class–A networks
always synchronize with arbitrary small coupling, while class–B networks do
not synchronize. Now we consider the case d < ∞. Since, in this case, we could
not obtain analytical bounds for γ2 and γN we provide numerical examples.

Consider the model M(N, β, d, m) with β = 3, d = 7, and m = 30. Figures 1 to
3 show the γ2, γN , and γN/γ2 versus N . The figures are obtained by simulating
graphs composed of 200 to 1200 nodes, with a step of 10 nodes. For each case,
10 different simulations are computed and the mean value is presented as a dot
(solid line is a curve fitting the dots). Note that the actual maximum degree
∆ may differ from the expected maximum degree m. Consider now a class–A
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Fig. 2. γN versus N for for the model M(N, β, d, m) with β = 3, d = 7, and m = 30.
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Fig. 3. γN/γ2 versus N for the model M(N, β, d, m) with β = 3, d = 7, and m = 30.

network with a = 1 and a class–B network with b = 40. From Figure 1 one can
compute the value of γ2 for N = 1200, γ2 = 0.31, and therefore, the network
synchronizes for σ > 3.23. Moreover, from Figure 3 one can compute the value
of γN/γ2 for N = 1200, which is approximately γN/γ2 = 107. Consequently,
since b < 107, the class–B network does not synchronizes.

Let us write σc = a/γ2 and bc = γN/γ2. σc and bc are critical values for which
the network may synchronize, in other words, if σ > σc (b > bc), then the class–
A (class–B) network synchronizes. The proof of theorem 7 suggests that the
critical values may be approximated as σc ≈ a/k and bc = m/k provided that
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k and δ are close to each other. For example, consider a network composed by
N = 1200 nodes with d = 20, m = 200, and β = 3, for which k ' 9.99. Then
we have (with a = 1 and b = 40) σc ' 0.10 and bc ' 20.02. Simulating such

a network, the following actual eigenvalues have been obtained: γ
(act)
2 ' 7.61,

γ
(act)
N ' 196.43, and (γN/γ2)

(act) ' 25.83. It follows that the actual critical
values are σ(act)

c ' 0.13 and b(act)
c ' 25.83. In this case, since b = 40, both

class–A and class-B networks synchronize.

4 Synchronization in hybrid networks

It has been observed that many realistic networks possess the so-called small
world phenomenon, with two distinguishing properties: small distance between
any pair of nodes, and the clustering effect that two nodes are more likely to
be adjacent if they share a neighbor. In this section, we consider a hybrid
graph model proposed by Chung and Lu [51], which has both aspects of the
small world phenomenon. Roughly speaking, a hybrid graph is a union of a
global graph (consisting of “long edges” providing small distances) and a local
graph (consisting of “short edges” respecting local connections).

Examples of local graphs include paths and cycles. More generally, we define
a local graph as follows: consider a lattice graph where the vertices are in
a d-dimensional lattice where each vertex is a d-dimensional vector in the
hypercube [0, r]d with integer entries. Suppose each vertex is connected to its
nearest neighbors. This graph, also known as the grid graph, has diameter D,
which as a function of the number of vertices N , and has maximum vertex
degree ∆ = 2d.

Theorem 10 When N →∞ local graphs for both class-A and class-B oscil-
lators do not synchronize.

PROOF. It is know that, see for example [13],

γ2 <
2d ln(N − 1)

2(D − 2)− ln(N − 1)
,

if 2(D− 2)− ln(N − 1) > 0. Therefore, γ2 → 0 as N →∞ for the grid graphs.
This is also true when the vertices are connected to neighbors in an arbitrary
local neighborhood. On the other hand, 2d = ∆(G) ≤ γN ≤ 2∆(G) = 4d.
Therefore, γN/γ2 →∞ as N →∞. 2

A hybrid graph consists of two parts: a global graph and a local graph. The
edge set of the hybrid graph is a disjoint union of the edge set of the global
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graph G and that of the local graph L. We consider two cases: classical random
graph model G(N, q), described in Section III.B, and power-law random graph
model M(N, β, d, m), described in Section III.C. For local graph L we consider
the grid graph, although other choices are also possible. For example, Chung
and Lu use two parameters to describe the local connectivity. For any fixed
two integers k ≥ 2 and l ≥ 2, a graph L is called locally (k, l)-connected if for
any edge vivj, there are at least l edge-disjoint paths with length at most k
joining from vi to vj (including the edge vivj). For any two points vi and vj,
the probability of choosing an edge between vi and vj is denoted by p(vi, vj),
defined as follows:

• p(vi, vj) = 1 if vivj is an edge of L;
• p(vi, vj) = q for a classical random graph;
• p(vi, vj) = ρwiwj for a power-law graph.

Let now consider a hybrid network for which equation of the motion can be
written as:

ẋ = F(x) + σ [(LL + LG)⊗H ] x, (29)

where LL is the matrix describing the local graph L, and LG is the coupling
matrix of the global graph G. Let Ntotal = N(N −1)/2 be the total number of
edges (links) in a network with N nodes and NL be the total number of local
edges. Then NG = Ntotal −NL is the number of all possible global edges. Let
pNG, where 0 ≤ p ≤ 1, be a number of global edges.

Theorem 11 Assume N is large enough and let G be a global graph (classical
random graph model or power-law model). Then for class-A networks, given
a, there exist a number p, such that σc(p) ¿ σc(0), where σc(p) = a/γ2(p),
γ2(p) is the second eigenvalue of the matrix LL + LG, and γ2(0) is the second
eigenvalue of the matrix LL. For class-B networks, given b > 1, there exist a
number p, such that γN(p)/γ2(p) < b, where γ2(p) and γN(p) are the second
and the N-th eigenvalue, respectively, of the matrix LL + LG.

PROOF. Proof. Since for p = 1, the matrix LL + LG is fully connected, it
follows that γi(1) = N , i ≥ 2; hence γ2(1) = N and γN(1)/γ2(1) = 1. On
the other hand, on average, the γ2(p) is monotonically increasing function of
p and γN(p)/γ2(p) is monotonically decreasing function of p. Thus, for both
classes of networks (class-A and class-B), there exists a critical value of p, pc,
such that for p > pc, almost all networks (29) are synchronizable. 2

We now present an example. Let the local graph L be a circle and N = 1200. It
is easy to compute that γ2(0) = 8.3513×10−9 and γN(0)/γ2(0) = 1436156.321.

Assume that the global graph is a classical random graph model. Consider
first class–A oscillators for which a = 1 and σ ≤ 10. Since σγ2 ¿ 1, the local
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Fig. 4. γ2 versus p for the hybrid model with N = 1200, in which the local graph is
a circle and the global graph is a classical random graph model.

network L of 1200 oscillators does not synchronize. The dependence of γ2(p)
on p is shown in Figure 4. Since σγ2 > a, it follows that the hybrid graph
L + G synchronizes if γ2(p) > a/σ = 0.1. From Fig. 4 one easily finds that
γ2(p) > 0.1 already for p = 33.30 ·10−4. We consider now a network of class–B
oscillators for which b = 40. Since γN/γ2 À 40, the local network L does
not synchronize. The dependence of γN(p)/γ2(p) on p is shown in Figure 5.
Since the condition for synchronization is γN/γ2 < b, it follows that the hybrid
graph L + G synchronizes for p = 15.78 · 10−4. Therefore, adding only a small
number of global edges makes the oscillators synchronize.

Assume now that the global graph is a power-law graph model. Numerically we
consider the model generated in the following way. First, we choose m nodes
at random from all N nodes with equal probabilities and assign them to be
centers. Second, we add links (global edges) by connecting one node chosen
at random from all N nodes to another node randomly chosen from the m
centers. Third, when all centers are fully connected with other nodes, we start
uniformly to add links between the rest of the nodes. The dependence of of
γ2(p) and γN(p)/γ2(p) on p for such model is shown in Figure 6 and Figure 7,
respectively for m = 5. From these figures and our numerical experiments, we
may conclude: (i) γN(p) increases reaching the maximum values N for smaller
value of m; thus, γN reaches the value N in the fastest way for m = 1, and
(ii) γ2 is not effected by m. Therefore, the random model with m centers only
influences synchronization property of class–B networks: if one adds global
edges using the model with centers, the network becomes more difficult to
synchronize. Thus, for example, class–B network with b = 40 will synchronize
for p = 26.70 · 10−3 < 15.78 · 10−4. Saying in another way, if the global edges
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Fig. 5. γ2/γN versus p for the hybrid model with N = 1200, in which the local graph
is a circle and the global graph is a classical random graph model.
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Fig. 6. γ2 versus p for the hybrid model with N = 1200 and m = 5, in which the
local graph is a circle and the global graph is a power-law graph model.

are added independently, then the synchronization is optimal.

5 Conclusion

In this paper we studied synchronization in networks with different topologies.
We can summarize the main conclusions of this paper as follows:
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Fig. 7. γ2/γN versus p for the hybrid model with N = 1200 and m = 5, in which
the local graph is a circle and the global graph is a power-law graph model.

• Let G(N, q) be a classic random graph (Erdös-Rényi model) on N vertices.
We proved that for sufficiently large N , the class–A network G(N, q) almost
surely synchronize for arbitrary small coupling σ. For sufficiently large N ,
almost every class–B network G(N, q) with b > 1 synchronizes.

• Let M(N, β, d, m) be a random power-law graph on N vertices. We proved
that for sufficiently large N , the class–A network M(N, β, d, m) almost
surely synchronize for arbitrary small coupling σ. For sufficiently large N ,
almost every class–B network M(N, β, d, m) does not synchronize.

• Let M(N, β, d, m) be a random power-law graph on N vertices, for which
d grows with N . Let G(N, q) be a classical (Erdös-Rényi) random graph
on N vertices. Let σER

c and σ(pow)
c be critical values of σ for which class–

A classical random network synchronizes and class–A power-law random
network synchronizes, respectively. Then σER

c < σ(pow)
c .

• Adding small number of global edges to a local graph makes the correspond-
ing hybrid graph to synchronize.
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