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Abstract— Despite its efficiency, the general approach of 
hardcoding protocol format descriptions in packet processing 
applications suffers from many limitations. Among the others, 
the lack of flexibility when needing to extend the software for 
supporting new protocols, and the proliferation of modules with 
similar functionality between different applications, resulting in 
decreased maintainability. The NetPDL language was defined for 
overcoming such limitations, allowing decoupling applications 
from the knowledge of the format of protocol headers. The main 
criticism to NetPDL relates to its supposed performance 
penalties; this paper demonstrates that this language can be 
effectively used for the dynamic generation of optimized, i.e. 
efficient and fast, packet-processing code, and presents the 
architecture of a compiler implemented for such purpose. 

I. INTRODUCTION 
Packet processing applications such as routers, firewalls 

and IDSs heavily rely on some routines that locate or get the 
content of some specific fields in network packets, 
Traditionally, these modules follow the traditional approach of 
hardcoding the format of protocol headers in the software, 
which is no longer a viable solution because of non-negligible 
limitations in terms of flexibility and maintainability. 
Developers must have a deep knowledge of protocol header 
formats and adding support for new protocols implies 
modifying the application, debugging and testing it again. 
Besides, different applications that rely on similar protocol 
decoding functionalities are usually based on custom code, 
which results in a multiplication of the amount of software to 
be written and maintained, with a corresponding increase in the 
incidence of bugs and security flaws. 

The Network Protocol Description Language (NetPDL) has 
been defined for overcoming such limitations and aims at 
describing the format of network protocol headers and 
encapsulation rules between different protocols. Using 
NetPDL, a packet processing application does not need any 
direct knowledge on how to locate header fields inside a packet 
buffer, since such information is provided by an external 
protocol description database. In [2] the authors show how 
NetPDL can be profitably used for implementing a packet-
decoder, i.e. an engine for parsing the content of network 
packets and for extracting the actual values of each field, 
through a step-by-step interpretation of an external protocol 
description database. Such module is now part of the NetBee 
library [3] and it is used for visualizing packet-data in the 
Analyzer [4] network sniffer. 

Although these first experiments prove the feasibility and 
the potential of NetPDL-based applications, the measured 
performances are not compatible with the requirements of high 
speed data-plane applications, so the main criticisms to 
NetPDL are still focused on its supposed performance penalties 
with respect to solutions based on hardcoded protocol 
descriptions. We object that performances are not related to the 
language itself, but to the tools using it. In fact, in order to take 
full advantage of a solution based on NetPDL, protocol 
descriptions should be translated to a native language through a 
compiler, thus eliminating the overheads caused by 
interpretation and enabling the deployment of any suitable 
optimization on the generated code.  

This paper presents the architecture of a compiler for the 
translation of NetPDL-based packet filtering rules into binary 
code for the Network Virtual Machine (NetVM) [5] [6] 
demonstrating that NetPDL protocol descriptions can be 
effectively used for driving the dynamic generation of 
specialized packet processing programs. In our solution, the 
code generation process is decoupled from the knowledge of 
the format of protocol headers, which resides in an external 
NetPDL database. In particular, NetPDL protocol descriptions 
are translated into programs that implement high level filtering 
rules expressed in the Network Packet Filtering Language 
(NetPFL). 

 This work focuses on the implementation of a compiler for 
packet filters; hence it does not intend to propose a new packet 
filtering model in competition with other well known solutions 
such as the BPF [7], or the more recent FFPF [8]. Indeed, we 
argue that packet filtering functionalities provide the basic 
blocks for building complete protocol-agnostic applications 
because they can be easily extended in order to support more 
complex operations, like field extraction and more. 

This paper is structured as follows. Section II provides an 
overview on the basic building blocks that represents the 
foundation of this work. An algorithm for the dynamic 
generation of packet filtering programs from NetPDL protocol 
descriptions is presented in Section III, while Section IV 
discusses its implementation in a compiler. The performances 
of the generated code are assessed in Section V, and 
conclusions are drawn in Section VI. 



II. RELATED TECHNOLOGIES: NETPDL, NETPFL AND 
NETVM 

The compiler presented in this paper fits into a more 
complex architecture (shown in Figure 1), in which the most 
important pieces are the NetPFL filtering language, the 
NetPDL language, and the NetVM virtual machine. The 
NetPFL represents the language used to define packet filters, 
while the NetPDL database contains the descriptions of the 
supported protocols. Our compiler takes the packet filter and, 
according to the protocol format and encapsulation rules 
generates a piece of assembly code that is executed by the 
NetVM virtual machine, which resides on the “data path”. For 
the sake of precision, in performance-sensitive environments 
the NetVM assembly is further translated into a native 
assembly in order to create a program targeted to the real 
hardware platform (e.g., a network processor). However, this is 
outside the scope of this paper. In the rest of this section we 
give an overview on these building blocks, while the following 
sections will focus on the compiler architecture, and on the 
deployed code generation techniques. 
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Figure 1. Complete view of the proposed packet processing architecture.  

A. NetPDL 
The NetPDL language (the complete specification is 

available in [1]) enables the description of how protocol 
headers are laid out and chained together inside network 
packets. Since it is based on XML, the elements of the 
language are identified by specific tags, each one characterized 
by several attributes and organized in hierarchical structures. 

Describing a protocol in NetPDL means enclosing in a 
section identified by the <protocol> tag the list and the 
binary format of the fields that build up a header, as well as the 
encapsulation relationships that can be present between 
different protocols. Figure 2 shows a sample NetPDL 
specification for the Ethernet protocol header. In the 
<format> section we find the description of the binary layout 
of the header as a list of <field> elements. The 
<encapsulation> section, on its side, identifies the 
conditions that need to be met for other protocols to be 
encapsulated into the one being described. For instance, the 
<nextproto> element, acts as a pointer to the next protocol 
header. 

NetPDL allows the description of complex headers through 
the definition of several kinds of header fields (e.g., fixed and 
variable size fields, bitfields, padding and more) and through 

the use of structured control flow constructs, such as if-then-
else, switch-case, and loop. Conditional elements can appear 
also in the <encapsulation> section for describing 
complex encapsulation rules. 

<protocol name="ethernet" longname="Ethernet 802.3">
<format>

<fields>
<field type="fixed" name="dst" size="6"/>
<field type="fixed" name="src" size="6"/>
<field type="fixed" name="type" size="2"/>

</fields>
</format>
<encapsulation>

<switch expr="buf2int(type)">
<case value="0x800"> <nextproto proto="#ip"/>  </case>
<case value="0x86DD"><nextproto proto="#ipv6"/></case>
</switch>

</encapsulation>
</protocol>  

Figure 2. NetPDL description of the Ethernet protocol header. 

The language specification also includes the definition of 
two fictitious protocols that are named startproto and 
defaultproto with the purpose to provide respectively the 
entry and the exit points to the protocol encapsulation. 

B. Packet Filtering and Fields Extraction: NetPFL 
Even though the NetPDL provides features that go beyond 

those of a completely declarative language, its only purpose is 
the description of the format of network protocol headers and it 
provides no means for defining actions to be executed when 
specific conditions are satisfied. A simple classification 
language called Network Packet Filtering Language (NetPFL) 
has been defined to provide such features.  

NetPFL is based on a filter-action model to express packet 
filtering conditions and packet handling statements, such as 
accepting a packet or extracting the actual values of a set of 
fields. Filters can be based on (i) protocols (i.e. a filter is 
satisfied if the packet contains the specified protocol header), 
and (ii) field values (i.e. a filter can be specified as an 
expression involving the value of one or more header fields). 
Basic predicates can be composed with the Boolean operators 
AND, OR, and NOT in order to express complex filters. Figure 
3 shows two sample NetPFL rules: the first represents a 
filtering condition on the ip.src field, while the second is a 
field extraction statement for returning the values of the 
ip.src and ip.dst fields contained in each ip packet.  

ip.src == 10.0.0.1 returnpacket
ip extractfields(ip.src, ip.dst)

 
Figure 3. NetPFL expression examples. 

NetPFL is built on top of NetPDL as its main tokens (i.e. 
protocol names and header fields) are not specified explicitly, 
but are defined in a NetPDL database. In other words, the filter 
expressed in Figure 3 makes sense only if the NetPDL 
description contains the definition of a protocol named “ip” 
whose header contains a field named “src”. This 
characteristic makes our compiler definitively more complex 
because it must be able to work with changing tokens without 
being recompiled. 



C. NetVM 
Our target for dynamic code generation is represented by 

the Network Virtual machine (NetVM) [6], an abstract packet-
handling engine that allows the portability of network 
processing applications across heterogeneous architectures. 

In NetVM a packet-processing program is expressed as a 
set of modules called Network Processing Elements (NetPEs), 
which represent virtual processors that execute a mid-level 
assembly language called Networking Intermediate Language 
(NetIL). The interconnections between different modules 
determine the behavior of the entire application. The 
elementary execution engine, the NetPE, is a stack-based 
processor (hence the NetIL is a stack-based language) that is 
made up of a set of private registers (e.g. stack pointer, etc.) 
and a hierarchy of memories, such as a local memory for 
storing state information that is local to a processing engine, 
and an exchange memory for storing the packet buffer and 
additional metadata. 

As for Java applications, the execution of a NetVM 
program on real hardware relies on the existence of an 
implementation of the virtual machine, which can be an 
interpreter or a compiler for the translation of NetIL code to 
native machine code. Figure 4 shows an example on how a 
simple packet-forwarding element can be implemented as a 
NetVM application. 
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NetVM
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Processed 
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Figure 4. NetVM Based Forwarding Element. 

III. GENERATING PACKET PROCESSING CODE FROM 
NETPDL 

In our compiler, we consider a packet filter as a program 
composed by two main sections: (i) a packet demultiplexing 
section, where the sequence of the headers carried by each 
packet is analyzed looking for a specific protocol, and (ii) a 
section where some conditions on one or more fields are 
evaluated and the corresponding action is triggered. In other 
words, the packet filter looks for the first occurrence of the 
specified header inside the packet and then checks some 
conditions on one or more of its fields, as shown in Figure 5.  
In our discussion we will focus mainly on packet filtering, 
because field extraction programs follow a scheme that is very 
similar to the one described, except that field values are loaded 
from the packet buffer and used by other modules instead of 
being evaluated by filtering conditions. 
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Figure 5. Filtering program are the composition of (a) a packet demultiplexing 

section and (b) a section for checking conditions on protocol fields. 

A. The Protocol Encapsulation Graph 
Considering a NetPDL database, encapsulation 

relationships that exist between protocols can be used to 
identify a directed graph G(V,A), where each node V represents 
a protocol in the database, and an edge e(x, y) is directed from 
the node x to the node y, if the protocol y can be encapsulated 
into the protocol x. We call such a graph a Protocol 
Encapsulation Graph, or encapsulation graph.  

 
Figure 6. Protocol Encapsulation Graph. 

The encapsulation graph exposes the layered nature of 
network protocols and has some similarities with the concept 
of Protocol Graph, i.e. a directed acyclic graph employed for 
describing the use relations existing between the different 
components of a multi-protocol communications system [7]. 
However the encapsulation graph allows paths between nodes 
to be cyclic, making evident the cases of protocols that can be 
tunneled, like IPv4 encapsulated in IPv4, IPv6 in IPv4 and 
vice-versa, or cases like an ICMP message encapsulated in 
IPv4, which carries a further IPv4 header (belonging to the 
packet that generated the message), and more. 

Figure 6 shows how complex an encapsulation graph can 
be. In particular, it shows the encapsulation graph 



corresponding to a subset of the current NetPDL database, 
containing only some protocols up to the transport layer. 

B. Packet Demultiplexing 
In our model, the first section of a generic packet filter 

needs to parse the sequence of headers, while looking for a 
specific protocol. Since the encapsulation graph represents the 
union of all the demultiplexing paths that lead to every protocol 
defined in a NetPDL database, we can leverage such 
information by considering only the set of paths that lead to the 
protocol we are looking for, i.e. a sub-graph of the 
encapsulation graph. Since the characteristics of the 
encapsulation graph ensure that a single source node always 
exists (i.e. the node corresponding to the startproto 
protocol), a reverse postorder1  visit starting from a generic 
node N will identify a subgraph that is the union of all the paths 
leaving from the startproto node, leading to N itself. 

 
Procedure GenFilterCode(Node n, Expr e)

Begin
TargetProtocolNode = n
For each p in EncapsulationGraph
p.visited = false

RPO_Visit(n)
If (e)
GenCodeForSection(TargetProtocolNode.Format)
GenCodeForExpr(e)
If (!TargetProtocolNode.successors.empty())

GenCodeForSection(TargetProtocolNode.Encapsulation)
End

Procedure RPO_Visit(Node n)
Begin
If (n.visited)
Return

n.visited = true
For each p in n.predecessors
RPO_Visit(p) 

GenCode(n)
End

Procedure GenCode(Node n)
Begin
If (n ≠ TargetProtocolNode)
GenCodeForSection(n.Format)
GenCodeForSection(n.Encapsulation)

End  
Figure 7. Code Generation Algorithm. 

Given such considerations, our strategy for generating a 
packet filtering program through NetPDL is presented in the 
algorithm of Figure 7. The code generation process is driven by 
the GenFilterCode() procedure that accepts as arguments 
the node corresponding to the protocol on which the source 
filter is set (e.g. “ip”), and an optional expression evaluating 
some of its fields (e.g. “dst == 10.0.0.1”). Briefly, the 
algorithm performs a reverse postorder visit on the 
encapsulation graph starting from the target node (i.e. the node 
relative to the protocol to be searched). Then, it generates the 
code related to the format (which is required in order to be able 
to locate every field of the selected protocol) and the 
encapsulation (which is required to be able to link the current 

                                                        
1 A reverse postorder traversal of a directed graph is a dept-first search 

visit, in which every node is visited after all its predecessors. For instance, if 
the selected protocol is “llc” the reverse postorder visit of the graph in Figure 
6 will be: startproto, ethernet, vlan, llc. 

protocol to its successor nodes) sections, for all the protocols 
encountered during the visit. In particular, the encapsulation 
section can be modelled as a multi-target branch instruction, 
i.e. a generic switch-case construct, which evaluates the content 
of some header fields, and where each branch leads to the code 
generated for the protocols corresponding to the successor 
nodes of the one being visited, while a special branch is 
directed to a “filter-false” exit label for indicating the absence 
of a match. Some exceptions arise for the target protocol (i.e., 
the protocol we want to locate), in which the code has to be 
generated in a slightly different manner. For example, if the 
source filtering expression evaluates some fields of the target 
protocol header, the GenCodeForSection() procedure is 
invoked in order to generate a portion of code for locating 
them, while the GenCodeForExpr() generates the final 
check. Furthermore, if the target protocol node has any 
successors (the encapsulation graph can contain loop) the 
GenCodeForSection() procedure translates its 
encapsulation section, giving the opportunity to find a match  
in subsequent tunneled instances of the same protocol header, 
even if the current header does not match the filter. For 
instance, in case of an IPv4 in IPv4 tunneling the external IP 
header may not match the filter, while the internal one can. 

(b )(a )  
 

Figure 8. (a) Demultiplexing Paths and (b) Control Flow Graph for the filter 
“ip.dst == 10.0.0.1 returnpacket” 

Figure 8 shows the results of the two phases of the code 
generation process for the NetPFL rule defined in the example: 
(a) shows the portion of the encapsulation graph representing 
all the demultiplexing paths that lead to IP, while (b) shows the 
representation of the generated code as a control flow graph.  

The sample filter is matched when the first IP header 
containing a destination address field equal to the 10.0.0.1 is 
found. If the first IP header does not match the filtering 
condition, the program continues to parse the packet by 
following the demultiplexing paths of the subgraph until it 



finds a match, or it reaches a terminal node (e.g., the end of the 
packet). 

C. Locating header fields 
In NetPDL, every field declaration not only identifies a 

specific sequence of bytes into the packet buffer, but implicitly 
tells where the next field will start. In particular, the offset of a 
header field defined in a NetPDL database is not specified 
explicitly, but it can be implicitly derived by adding the offset 
and the size of its preceding field, as in (1). 

 
Offs(Fieldi) = Offs(Fieldi-1) + Size(Fieldi-1) (1) 

 
This rule can be used to map the protocol format into a 

sequence of instructions for identifying the actual offset and 
size of every field. Unfortunately, most protocols include fields 
whose size is known only at run-time, which prevents this 
computation to be performed at compile-time. Besides, since 
different packets can take different demultiplexing paths, even 
the starting offset of a specific header cannot be known in 
advance. Given such considerations, the cleanest way for 
generating a portion of code for locating header fields inside 
packets is to translate the entire <format> section of a 
NetPDL description to a sequence of instructions that 
implement the scheme described in (1), and to delegate the task 
of removing useless and redundant code to a series of 
optimization steps. Such choice is based on the fact that the 
evaluation of the content of some fields performed in 
encapsulation and filtering conditions can be treated like uses 
of particular variables (i.e. the fields). Using simple data-flow 
analyses, the instructions defining variables that will never be 
used can be detected and safely removed. Moreover, the 
definitions of fields of fixed size can be subject to the 
application of constant propagation techniques. Section IV.B 
will provide more details on such topic. 

IV. THE COMPILATION PROCESS 
We implemented the techniques described in the previous 

section in a compiler for the translation of NetPFL rules into 
executable code for the NetVM virtual machine, through the 
exploitation of the information on the format of network 
protocols resident in an external NetPDL database. The 
compiler adopts a traditional architecture that includes a front-
end component that translates the source program in a more 
manageable intermediate representation (IR), an optimizer, and 
a back-end for the generation of the target executable code. 

A. Code Generation 
In a first phase the compiler parses the NetPDL protocol 

database by gathering the names of protocols and fields. At the 
same time the encapsulation graph is created for modelling the 
encapsulation information defined in the NetPDL description. 
Then the source NetPFL rule is parsed, while ensuring that the 
filtering expression refers to available protocols and fields. If 
the filtering expression is made up of terms related to different 
protocols, the parser also tries to group together sub-
expressions that include terms referring to the same protocol. 
This ensures that each one of such sub-expressions can be 

implemented by (i) a demultiplexing program for searching the 
specified protocol and (ii) a portion of code for checking the 
values of fields of the header. In such way, a compound filter 
(i.e., which refers to different protocols) can be generated 
through the algorithm reported in Figure 7 for each sub-
expression referring to the same protocol, and by linking 
together all such portions of the program, as shown in Figure 9. 
The optimization of composed filters is left to future work. 

ip.src == 10.0.0.1 and ip.dst == 192.168.0.1
and

tcp.dport == 80
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Figure 9. Composed filter. 

During the IR generation phase, all the encapsulation and 
filtering conditions referring to fields are translated into checks 
on integer values loaded from the packet memory (if the size of 
the field is less than or equal to 4 bytes), or into string 
comparison operations (for fields greater than 4 bytes). 
References to bit-fields are translated into masking operations 
on values loaded from the packet buffer. Finally, structured 
control flow constructs such as if-then-else, and loops are 
lowered to explicit branch operations. 

The generated intermediate representation of the resulting 
filtering program can then be optimized and finally translated 
to the target NetVM executable code. 

B. Optimizations 
The translation of NetPDL descriptions into sequences of 

instructions for locating header fields produces a large amount 
of redundant code, which is reduced through a set of 
optimization steps. In particular, the definitions of variables 
that are never used are identified and safely removed by a dead 
store elimination phase, while a constant propagation phase 
recognizes the variables that hold a constant value and 
substitutes their use with the direct use of the constant. Since 
constant propagation can transform expressions evaluating 
variables in expressions evaluating only constant values, it is 
supported by a constant folding phase for substituting such 
sub-expressions with their result computed at compile-time. 
Besides, the lowering to explicit branch instructions of 
structured control flow constructs produces several sequences 
of jump to jump instructions that can be easily individuated and 
coalesced by inspecting the control flow graph.  

The quality of the generated code could be further 
improved by applying more specialized optimizations like 
those proposed by Begel et. al. in [11] for eliminating 
redundant checks on the same fields and for reducing the 
overall depth of the control flow graph of composed filters; 



however the implementation of such algorithms was outside 
the scope of our current work.  

C. Considerations on Safety 
Filtering programs produced by our compiler are supposed 

to be executed in a safe virtual machine environment, where 
unbounded memory accesses are disallowed and backward 
pointing branch instructions are strongly limited to the cases 
where branching conditions can be evaluated to be constant or 
bounded at bytecode-load time, for ensuring that the program 
terminates in a finite time. The former point implies that packet 
memory bounds checks can be delegated to the NetVM 
runtime environment, where accesses outside the limits of the 
packet will raise an exception and will make the filter to fail. 
The latter point indeed has important implications on the 
translation of complex protocol descriptions like the one of 
IPv6, which contains an uncontrolled while-do loop for 
decoding the extension headers. In our compiler, this problem 
is addressed by defining an upper bound to the number of 
cycles, which can be specified at compile time.  In this way the 
IPv6 protocol is supported, although with a limit on the 
consecutive extension headers allowed in IPv6 packets. 

Similar considerations arise when considering the loops 
generated by tunnelled encapsulations (e.g. IP – GRE – IP), 
although in this case the solution is more complex because a 
preventive analysis of the encapsulation graph should be 
performed for determining the protocols involved in cyclic 
paths, and a mechanism for limiting the number of such loops 
should be put in place into the generated code. 

A detailed analysis on safety issues and loop bounding is 
reserved to a future work. 

V. EVALUATION AND RESULTS 
This section assesses the ability of our compiler to generate 

NetIL filtering programs from simple NetPFL rules and 
compares the results with equivalent filters generated for the 
BPF virtual machine by the well-known libpcap/tcpdump 
tools and with native filters written in C and compiled with a 
general-purpose C compiler. As an example, translating the 
NetPFL rule 

ip.dst == 10.0.0.1 returnpacket 

into executable code for the NetVM virtual machine results 
in the optimized filtering program shown in Figure 102. The 
corresponding BPF filter generated through the tcpdump tool 
is shown in Figure 11. Besides the intrinsic differences 
between BPF and NetVM architectures (i.e. the NetVM is 
stack-based while the BPF virtual machine is register based), 
we can see that two programs are functionally equivalent. Both 
check the Ethernet type field against value 0x800, then check 
if the IP destination field contains address 10.0.0.1; the packet 
is accepted only if both conditions are true. The primary 
difference between the two approaches is not immediately 
visible, because it relates to the simplicity in adding support for 
new protocols (e.g. a new data-link layer protocol). In the case 

                                                        
2 This example uses a limited NetPDL database including only Ethernet 

and IP for the sake of clarity. 

of the presented compiler it is sufficient to update the XML file 
containing NetPDL protocol descriptions, while in the other 
case some of the libpcap source files must be modified and 
the library must be recompiled. 

push 12 ;offset of the ethertype field
upload.16        ;load the ethertype field
push 2048        ;0x800
jcmp.neq DISCARD ;compare and jump to DISCARD if not equal
push 30          ;offset of the ipdst field
upload.32        ;load the ipdst field
push 167772161   ;10.0.0.1
jcmp.neq DISCARD ;compare and jump to DISCARD if not equal

ACCEPT:
pkt.send out1    ;filter true

DISCARD:
ret ;filter false  
Figure 10. NetIL code generated from the NetPFL rule “ip.dst ==10.0.0.1 

returnpacket”. 

(0) ldh [12]                 ;load the ethertype field
(1) jeq #0x800     jt 2 jf 5 ;if ==0x800 goto 2, else goto 3
(2) ld  [30]                 ;load the ipdst field
(3) jeq #0xa000001 jt 4 jf 5 ;if ==10.0.0.1 goto 4,else goto 5
(4) ret #1514                ;return the frame length
(5) ret #0                   ;return false  

Figure 11. BPF code for the libpcap  filter “ip dst 10.0.0.1”. 

In order to evaluate the performances of the filtering 
programs produced by our compiler we profiled the execution 
of five simple (and common) filters3 generated using both a 
reduced NetPDL database and a complete one. While the first 
number is used to compare the NetPDL-based technology with 
equivalent BPF and natively programmed filters (which 
support a limited number of encapsulations), the second set of 
test is used to show the flexibility of our approach, and to 
demonstrate that the completeness of the NetPDL database 
does not affect performance on common network traffic. The 
NetPDL database used was the one available online at the time 
of writing (February 2008), which includes 122 protocols and 
whose size is 993KB; since the generated code depends on the 
database, results obtained with a different version may vary. 

All the tests were performed on a 3 GHz Intel Pentium 4 
machine with Hyper-threading and 4GB of memory. NetVM 
and BPF programs were compiled Just in Time into x86 
assembly and executed in user space4 . Native filters were 
programmed in C language and compiled through the 
Microsoft Visual C++ 2005 compiler. Each test was executed 
by applying the filtering on a packet created on purpose, in a 
way that all the conditions of the filter had to be checked 
before returning the result. Measurements were done through 
the RDTSC instruction available on Intel CPUs, and special 
care has been done in order to prevent problems due to variable 
clock speed, hyperthreading and instruction reordering. Results 

                                                        
3  Filter, according to the NetPFL syntax are “ip” (filter1), “ip.src == 

10.1.1.1” (filter2), “tcp” (filter3), “ip.src == 10.1.1.1 and ip.dst == 10.2.2.2 
and tcp.sport==20 and tcp.dport == 30” (filter4) and “ip.src == 10.4.4.4 or 
ip.src ==10.3.3.3 or ip.src==10.2.2.2 or ip.src == 10.1.1.1” (filter5). WinPcap 
syntax is equivalent, although is not reported here for the sake of brevity. 

4 BPF programs have been compiled to native code using the Just in Time 
compiler provided by the WinPcap library, which is an implementation of the 
libpcap library for Microsoft Windows. 



are related to average execution time of each filtering program, 
excluding all other overheads (e.g. function call, RDTSC cost).  

Figure 12 shows the time required to execute the 
abovementioned filters by interpreting BPF and NetVM 
assembly programs, generated by using both a reduced and a 
full NetPDL database. Although this first set of results does not 
appear so encouraging (BPF filters outperform NetPDL-based 
ones several times) the reason is mainly due to the differences 
between the architectures of the BPF and the NetVM. Indeed, 
the necessity of emulating the NetVM operand stack implies a 
major overhead over the BPF, which is register based. 
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Figure 12. Average processing times for five different filters, interpreted. 

A more appropriate set of results is shown in Figure 13, 
which compares the same filters translated into native assembly. 
A first result is that our compiler infrastructure performs better 
than the JIT compiler available in WinPcap. The reason is that 
our compiler includes several optimization steps, while the JIT 
implemented in WinPcap is basically a translator of BPF 
instructions into x86 assembly, without optimizations. This 
result demonstrates our claim that the NetPDL does not insert 
performance penalties and that the results depend only on the 
quality of the tools using it NetPDL-based tools. 

The second result shown in Figure 13 is that filtering 
programs generated from a reduced NetPDL database and 
compiled into native x86 code by our framework have 
performances that are better than the ones of native filters 
programmed in C language compiled using a full-featured 
commercial compiler, which provides no flexibility at all. 
Notably, this result has been obtained with our NetVM JIT 
compiler that implements only a basic set of optimizations, 
compared to the more aggressive optimization techniques 
implemented in a commercial C compiler. One of the reasons 
is that on little-endian architectures, such as the Intel IA32 
processors, data larger than one byte that is read from the 
packet buffer must be converted from big-endian (the network 
byte order) to little-endian (the host byte order of x86 
processors). In native filters such operation is performed 
through the library functions of the ntoh() family, while the 
code generated by the NetVM JIT compiler directly uses the 
BSWAP (byte order swap) x86 instruction that is far more 
efficient. Our results are usually still better even in case ntoh() 

functions are replaced with an ad-hoc macro in native filters 
(second column in Figure 13), because the NetVM model 
facilitates the implementation of more network-oriented 
optimizations in the code, even if the quality of our compiler is 
far from reaching the one of other tools such as Microsoft 
Visual Studio or GNU GCC. 
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Figure 13. Average processing times for five different filters in case of native 

assembly. 

An unexpected (but very important) result is that, according 
to our tests, the pure C language may not be the perfect choice 
for writing efficient packet processing code. Although our 
example does not have general validity, the C language does 
not have the notion of packets, hence any data is a plain buffer. 
This requires for example the use of functions that take into 
account byte ordering issues (e.g., ntoh()) when accessing to 
protocol data; however a general-purpose compiler finds a hard 
way to optimize these functions. A special purpose language, 
coupled with a dedicated set of tools for code generation, can 
solve the same issue much more efficiently, ranging from using 
dedicated assembly instructions (e.g. the bswap opcode), to 
the use of pre-processed data. Particularly, this technique offers 
valuable speed-ups because it is based on the semantic of data; 
for example, it is able to translate immediately a user input 
(e.g. an IP address) into the “native format” (i.e., network byte 
order), and use the new value when checking the content of a 
field in the packet without any performance penalties. 
However, a more in-depth investigation of these issues is left 
for future work. 

Since NetPDL supports a wide variety of protocols and 
cyclic encapsulations, as Figure 6 shows, the programs 
produced by our compiler are way larger than the 
corresponding BPF filters. For instance a non-optimized IP 
filter generated using the standard NetPDL database counts 292 
statements, versus 4 statements of the corresponding BPF 
program, as show in Table 1. However, while BPF and native 
programs only identify IP packets directly encapsulated within 
a lower layer packet, the abovementioned NetPDL-derived 
program identifies IP packets encapsulated in several possible 
ways (e.g., an IPv4 packet tunnelled within another IPv6 
packet). It should be noted that the higher number of 
instructions generated by the compiler does not correspond to 



the number of instructions effectively executed in the “fast 
path” of the code (i.e. the typical number of instructions 
executed at runtime on common packet traces), however as 
Figure 13 shows, the capability of recognizing complex 
encapsulations comes at a cost in terms of performances, 
because all the possible cases must be taken into account. 

TABLE 1. NUMBER OF STATEMENTS GENERATED BY DIFFERENT COMPILERS. 

 Filter1 Filter2 Filter3 Filter4 Filter5 
BPF interpreted 4 6 6 17 9 

NetIL interpreted 
(reduced database) 10 14 23 76 26 
NetIL interpreted 

(complete db) 292 491 487 1544 497 
C-hardcoded 
filters, x86 14 29 23 78 41 
BPF x86 43 61 59 170 70 

NetIL x86 
(reduced db) 14 20 25 77 33 
NetIL x86 

(complete db) 494 834 1348 3557 844 
 

Currently, the NetPFL compiler is not optimized for speed 
in code generation. For instance, the libpcap compiler needs 
about 120µs to compile the “tcp.dport == 80” filter, 
against 87ms of the NetPFL. Although this value is still 
reasonable, this result is mostly due to the very different 
number of statements generated by the two compilers before 
optimizations, which differs of about two orders of magnitude, 
as shown in Table 1 (first and third lines). It is worth recalling 
that the compilation time usually grows non-linearly with 
program size. For completeness, the number of instructions 
generated by the several compilers involved in our tests (BPF 
interpreted and JIT compiled, native filters with the ntoh()-
equivalent macro, ad NetIL interpreted and JIT compiled with 
both the reduced and complete NetPDL database) are reported 
in Table 1. 

VI. CONCLUSIONS 
This paper demonstrates that the NetPDL language does 

not insert performance penalties when developing packet-
processing applications. This result enables a novel approach to 
the development of such these applications, based on 
decoupling the application logic from the knowledge about the 
format of network protocols, which resides in an external 
NetPDL protocol description database. A compiler for packet 
filters has been developed following such approach, which 
demonstrates that the dynamic generation of efficient filtering 

programs from NetPDL is feasible and can lead to performance 
comparable to the one of equivalent C language programs, with 
the advantage of adding support for new protocols or new 
encapsulation paths without changing the application code.  

 The presented solution, although powerful, has the 
limitation of supporting protocols only up to the transport 
layer. However, NetPDL has recently been extended with 
features for application layer protocol classification and 
recognition. Hence, future efforts will be directed towards the 
integration of such features in the presented compiler and 
NetPFL. Besides, the structure of the Protocol Encapsulation 
Graph should be investigated in more detail, since we believe 
that it can be exploited to optimize the generation of code for 
composed filters by merging the sub-graphs relative to each 
Boolean predicate of the filtering expression.  
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