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Identification of a low-order model for thermal stress monitoring 
Zucca S.* 

Department of Mechanical Engineering - Politecnico di Torino - Italy 

Abstract 
In mechanical and aeronautical applications, assessment of fatigue damage accumulation due to thermal transients is 
currently performed by means of on-line fatigue monitoring systems. 
The algorithms for on-line calculation of thermal stresses are one of the main components of these systems and are 
often based on the Green’s Function Technique (GFT). The GFT allows thermal stresses to be determined from inputs 
(e.g. fluid temperatures, pressures, flow rates or metal boundary temperatures) by numerically solving a set of 
convolution integrals. Since each convolution integral involves a large number of operations per time unit, the GFT may 
become very time consuming for applications characterised by several inputs and outputs. 
In this paper a Low-Order Model (LOM) is developed to perform on-line calculation of thermal stresses. The model is 
able to replace the GFT. Convolution integrals which characterise the GFT are converted in a system of uncoupled first-
order differential equations. Unknown coefficients are evaluated by means of the Prony identification method, taken 
from the structural dynamics and applied to thermo-elasticity. 
Two study cases are presented; results show that the LOM leads to a significant reduction in the number of operations 
per time unit with respect to the GFT, without losing accuracy. 

Keywords: reduced model, thermal stress, on-line calculation, Prony method. 

1. Introduction 
In mechanical and aeronautical applications characterised by high safety requirements and expensive maintenance costs 
(e.g. aircraft engines [1], nuclear power plants [2-4]) assessment of fatigue damage accumulation due to thermal 
transients is performed by on-line fatigue monitoring systems. This allows the evaluation in real time of damage 
accumulation in component critical locations, that is where a fatigue crack is expected to appear. 
Fatigue monitoring systems are made of several modules assembled together. Each module is used to evaluate one of 
the parameters which affect the fatigue damage of the component (i.e. temperature and thermal stresses) and it is based 
on ad-hoc algorithms, since FE commercial codes are too time consuming for on-line applications. 
In the literature (Refs. [2]-[5]) the Green’s Function Technique (GFT) is one of the most widespread technique used to 
perform on-line calculation of thermal stresses. The GFT allows calculating the time histories of thermal stress from the 
inputs time histories by means of convolution integrals. The only preliminary step necessary to employ the GFT is the 
calculation of the Green's functions of the system, i.e. the responses of the system to unit step inputs. 
The GFT requires a number of operations per time unit (Nop) proportional to the decay time tD of the Green's functions 
involved in the calculation and to the number of both the inputs (Nin) and the outputs (Nout) of the system. 
As a consequence, in applications characterised by a large number of outputs (i.e stress to monitor) and inputs (i.e. fluid 
temperatures or heat flows) and by Green's functions with large decay times (which affect the length of vectors involved 
in the convolution products) the GFT may become very time consuming for on-line monitoring. 
In [6] a novel methodology has been proposed to perform on-line calculation of thermal stresses. Convolution integrals 
which characterise the GFT are replaced by time integration of a Low-Order Model (LOM) made of uncoupled first-
order differential equations. 
The key idea in developing the LOM was the approximation of any Green's function necessary for thermal stress 
calculation with a series of exponential terms. 
In [6] coefficients of the series (amplitudes and exponents) were calculated by means of a procedure based on  the non-
linear least square method. Initial guess values and iterative calculations were needed. 
In this paper it is proposed to build the LOM for thermal stress monitoring by means of the Prony's identification 
method [7], taken from the structural dynamics and extended to thermo-mechanics. It allows calculating the coefficients 
of the LOM through the solution of two linear systems and the calculation of the roots of a real polynomial. Neither 
initial guess values nor iterative calculations are needed. 
In detail, as shown in Fig. 1, the necessary steps are: 
1. Application of unit step inputs to a detailed FE thermal model; evaluation of the thermal transients within the whole 
model; application of the thermal transients to a detailed FE thermo-elastic model, evaluation of the thermal stress 
transients of the whole model; selection of the Green's functions corresponding to thermal stresses to monitor; 
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2. Approximation of the Green's functions with a series of exponential terms; identification of the amplitudes and the 
exponents of the series by means of the Prony method; 
3. Use of amplitudes and exponents identified in step 2 to build a set of elementary models of uncoupled first-order 
differential equations; assembly of the elementary models to form the LOM. 
Once the LOM is built, thermal stresses can be obtained by time integration, given the time histories of the inputs. 
The resulting reduced model is similar to that described in [8], developed as a tool for feedback control in thermal 
applications. Both are based on the idea of developing a reduced order model, starting from the approximation of the 
Green's functions of the system with a series of exponential terms. 
In [8] the elementary models assembled to form the complete reduced model are SIMO (Single Input Multi Output) 
models. As a consequence, linear identification technique cannot be applied and their coefficients are necessarily 
estimated by means of an iterative identification procedure based on the non-linear least-square method. 
On the contrary, in this paper the elementary models, assembled to form the LOM, are SISO (Single Input Single 
Output) models, because each of them replaces a Green's function. In this case the Prony linear identification method 
can be successfully used. 

2. Development of the low-order model 
If the GFT is used for on-line calculation of thermal stress σ(t) at any point P(x,y,z) of a thermo-elastic model with I 
inputs, equation 
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has to be numerically solved (Ref. [2]), where 

σ  : initial steady-state value of thermal stress, 
Fi(t) : ith input at time t, 

iF  : ith input at time t=0, 
Gi(t) : Green’s function of ith input at time t, 

iG  : Green’s function of ith input at steady-state. 
An analogous equation could be written for time derivative dσ(t)/dt. In this case the time derivative of Gi(t) is the 
Green's function. The following equation can be obtained 
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If the ith Green's function Gi(t) is written as a sum of exponential terms 
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according to equations (1) and (2) thermal stress and its time derivative are respectively series made of terms ( )tˆ ijσ and 

d ( )tˆ ijσ /dt having the form 
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respectively. Each term of equations (4) and (5) represents the contribution of the jth exponential term to the response 
due to the time history of the ith input. 
Before continuing it is worth stating that the hypothesis made at equation (3) is reasonable. In fact, Green’s functions of 
thermal stress at any point P of a FE thermo-elastic model are characterised by a transient which leads to a steady-state 
asymptotic value. The analytical expression of any Green's function is the sum of a constant term (steady-state value) 
and a series of exponential terms. The exponents of the series are the thermal eigenvalues of the thermal model. The 
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amplitude of any exponential term is the contribution of the corresponding thermal eigenvector to thermal stress at that 
point. 
As a consequence, the choice of exponential terms employed in equation (3) to approximate the Green's functions, is 
fully justified from a physical point of view. 
Now equation (4) has to be managed in order to obtain an expression comparable to equation (5). In detail, the integral 
in equation (4) can be managed in the following way: 
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so that equation (4) becomes 
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If equation (5) is compared to equation (7) the following relationship can be written 
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Equation (8) represents the core of the LOM and is valid for any term of the series of equation (3). As a consequence, if 
the ith Green's function Gi(t) is written as a series of Ji exponential terms, the elementary model 

 iFˆ ⋅+⋅= iiii βα σσσσσσσσ& , (9) 

made of Ji uncoupled first-order differential equations follows, where 

iσσσσ̂ : column vector having ( )tσ
~

ij  at the jth position; 

iσσσσ&̂ : column vector having ( ) dttσ
~d ij  at the jth position; 

ααααi: (Ji x Ji) diagonal matrix having λij at the jth position; 
ββββi: (Ji x 1) column vector having the jth term equal to -λij⋅ηij. 
If the above procedure (equations (3)-(9)) is extended to a model with a number I of inputs, I elementary models similar 
to that of equation (9) can be written. When they are assembled together they form the LOM 

 





⋅=σ
⋅+⋅=

σσσσ
σσσσσσσσ
ˆ

ˆˆ

1

FBA&
, (10) 

with 

 

T

I

2

1

1

1

1

;

F

F

F

;;;

ˆ

ˆ

ˆ

ˆ

























=

























=



















=



















=

























=
MMOOM

1F

000

000

000

000

B

000

000

000

000

A

I

2

1

I

2

1

I

2

1

ββββ

ββββ
ββββ

αααα

αααα
αααα

σσσσ

σσσσ
σσσσ

σσσσ
. (11) 

The second equation of the system (10) means that total thermal stress is the sum of all the terms σij(t). 
If relationship 

 FBA ⋅⋅+= −1ˆ' σσσσσσσσ , (12) 

is applied to equation (10), the LOM assumes its final shape  

 




⋅+⋅=σ
⋅+⋅=

'1FG

FCA

σσσσ
σσσσσσσσ && ''  (13) 

with 

BAC ⋅= −1  

BA1G ⋅⋅−= −1 : vector whose ith term is equal to the steady-state value of the ith Green function Gi(t). 
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3. Identification of the low-order model parameters 
According to section 2, in order to build LOM's matrices [A] and [C] of equation (13) it is necessary to approximate any 
Green's function with a series made of exponential terms. The LOM accuracy in performing the on-line calculation of 
thermal stress σ(t), depends on the accuracy of the exponential series in fitting the Green's functions. 
In this paper, the identification of the most suitable series for any Green's function is performed by means of the Prony 
method (see Appendix), applied to the thermo-mechanical field. It is a method developed at the end of the XVIII 
century and subsequently modified, currently used (Ref. [7]) for the identification of linear vibrating systems. 
The method is simple and straightforward. It requires two linear systems to be solved according to the linear least 
square method and the roots of a real polynomial to be found. Its application to the current case requires 5 steps. 
Step 1: Sampling of the continuous Green's function Gi(t) with a constant sampling time ∆t. 
Step 2: Definition of function G'

i(t) defined as 
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which represents the variable part of the ith Green's function, as shown in Fig. 2. 
Step 3: Evaluation of coefficients χj ( 0 ≤ j ≤ Ji-1 ) solving the linear system 
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being hq=G'i(q⋅∆t) and Q (> Ji) the total number of samples. 
Step 4: Evaluation of the roots Vj of the polynomial 
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and then the exponents λij of equation (3) through the relationship 
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Step 5: Calculation of the amplitudes ηij of equation (3) by solving with the least squares method the linear system: 

 















η⋅++η⋅+η⋅=

η⋅++η⋅+η⋅=

η⋅++η⋅+η⋅=

η++η+η=

ii

ii

ii

i

J,i
Q

J2,i
Q

21,i
Q

1Q

J,i
2

J2,i
2

21,i
2

12

J,iJ2,i21,i11

J,i2,i1,i0

V...VVh

V...VVh

V...VVh

...h

M

, (18) 

where t∆qλq
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j,ieV
⋅⋅= , adding the following relationship among the ηij: 
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which forces the approximated Green's functions to match exactly the steady-state values evaluated by FEM. 
Introduction of equation (19) in equation (18) implies that the first line is identically null and unknowns are reduced by 
one. The new system to solve is 
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At step 4 of the identification procedure exponents λij are evaluated from the roots of a real polynomial; as a 
consequence, roots can be real (positive or negative) or complex conjugate. Not all roots are acceptable. The physical 
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behaviour of the system implies that admissible exponential terms have real and negative exponents, because they 
represent transients without any periodic oscillation (no complex numbers) which expires after a certain amount of time 
(no positive real components). The following criterion is proposed for each exponent: 
− real and negative exponent: accepted; 
− real and positive exponent: discarded; 
− two complex conjugate exponent: 

− Positive real part: discarded; 
− Negative real part: accepted; the exponent is set equal to the real part; the imaginary term is discarded. 

4. Application to a thick pipe 
In order to test the identification procedure and to show the features and the capabilities of the LOM the case of a thick 
pipe is discussed. Although it is not one of the applications where the GFT needs to be replaced because of the amount 
of calculation, it allows a clear comprehension of the methodology proposed in this paper. 
The pipe has constant material properties. Two different cases are presented, characterised by different boundary 
conditions: 
1. constant convective coefficients, 
2. variable convective coefficients. 
Geometry and material properties of the pipe are shown in Fig. 3, where also time histories of fluid temperatures Tfl1 
and Tfl2 are plotted. The output of on-line calculations is the hoop stress at the inner radius of the pipe with the 
assumption of perfectly radial temperature gradient. 
Time step for on-line calculation of thermal stress is ∆τ = 0.5 s for both the GFT and the LOM. 

4.1 Constant convective coefficients 
The thermo-mechanical FE model is linear. Inner and outer convective coefficients are hi=1200 W/m2/K and ho=500 
W/m2/K respectively. Time histories of fluid temperatures can be directly used to evaluate thermal stresses by means of 
the GFT. 
First of all, a detailed FE thermo-mechanical model is used to evaluate the Green's functions Gfl1(t) and Gfl2(t) (Fig. 4) 
due to unit step inputs of Tfl1(t) and Tfl2(t) respectively. 
Once the Green's functions are evaluated, the identification of the LOM coefficients described in section 3 is performed. 
The sampling time ∆t is chosen equal to 0.5 s. In this way the stress peak, which characterises the function Gfl1(t) at t = 
40 s, can be described with a reasonable number of samples. 
The identification procedure starts with a series made of 1 exponential term (Ji=1). Then the number of exponential 
terms Ji is increased till: 
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i.e. till the maximum error εG is lower than 1% of the steady-state value of the Green's function.  
The result of the identification procedure is shown in Tab. 1, where amplitudes and exponents for both the Green's 
function are plotted. By means of these coefficients the LOM can be built. and then used to evaluate thermal stress on-
line. 
The LOM is finally used to evaluate on-line thermal stress due to time histories of fluid temperatures plotted in Fig. 3b. 
Time integration is performed by means of the Euler implicit method. 
In Fig. 5 time history of thermal stress evaluated by FEM and both error due to the GFT and the LOM are plotted. The 
accuracy of the LOM is proved to be very good and even better than the GFT's. 
The comparison between the GFT and the LOM involves also the number of operations per time unit. 
The LOM requires only 70 operations per time unit, whilst the GFT needs more than 10000 operations to be performed. 
The LOM allows a 99% reduction with respect to the GFT. 

4.2 Variable convective coefficients 
In the second case the thick pipe is characterised by variable convective coefficients along the inner and the outer radius 
of the pipe. Time histories of convective coefficients are listed in Table 2. 
For this class of applications it has been already shown in [5] that the GFT is still applicable even if the model is non 
linear. Time histories of fluid temperatures are to be used to evaluate time histories of model boundary temperatures by 
time integration of a reduced thermal model. Then boundary temperatures can be used as inputs for thermal stress 
calculation by means of the GFT. 
In fact, since the non-linearity of the model is confined over the boundary of the thermal model, it does not affect 
thermal stress calculation once time history of boundary temperatures is known. 



 

6

In this study case, the boundary metal temperatures are the temperatures at the inner and at the outer radius of the pipe, 
called Ti(t) and To(t) respectively. The detailed description of the monitoring methodology necessary to evaluate Ti(t) 
and To(t) is beyond the scopes of this paper. For more details, ref. [5] is recommended. Here time histories of Ti(t) and 
To(t), plotted in Fig. 6 are given as data. 
Since the GFT is admissible, a LOM can be derived. In detail the following procedure has been followed: 
− Evaluation by means of detailed thermo-mechanical FE model of Green's functions Gi(t) and Go(t) which represent 

hoop stress at the inner radius due to unit step input of Ti(t) and To(t) respectively (Fig. 7). 
− Approximation of Gi(t) and Go(t) until εG <1% (see equation (21) for details about εG) using sampling time 

∆t = 0.1s, getting exponential series listed in Tab. 3. 
− LOM assembly and evaluation of thermal stress using Ti(t) and To(t) as inputs (Fig. 8). 
Also in this study case, the accuracy of the LOM is very good, even if slightly worse than the GFT's. The comparison of 
the number of operations require by the two methodologies shows that the LOM requires only 52 operations per time 
unit, whilst the GFT needs 1600 operations to be performed. The LOM allows a 97% reduction with respect to the GFT. 

5. Conclusions 
A low-order model (LOM) has been proposed to perform on-line calculation of thermal stress in critical locations of 
fatigue critical components. 
The procedure used to identify the unknown parameters of the LOM is based on the Prony method, taken from 
structural dynamics. The method is linear. Neither iterations nor initial guess values are needed. 
On the basis of the proposed study cases the following conclusions are drawn: 
1. The Prony method allows one to identify properly the LOM. 
2. The LOM can be used in place of the Green's Function Theory (GFT) both in linear models and in models 

characterised by variable convective coefficients. In the former case fluid temperatures can be used as the LOM 
inputs, in the latter metal boundary temperatures are to be used. 

3. Employment of the LOM for on-line calculations allows: 
− a reduction in the number of operations per time unit up to the 99% with respect to the GFT; 
− evaluation of thermal stress with an accuracy comparable to the GFT. 
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Appendix - Prony method 
Given a function 
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described with a sampling period ∆t, if the following substitutions are performed 
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If the previous relationship is extended to q samples the set of equations 
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follows. 
If any equation is multiplied by a coefficients χi of the equation  

 0V...VV qq22110 =⋅χ++⋅χ+⋅χ+χ , (A-5) 

adding all the equations gives 
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If equation (A-5) is valid, then any term on the right hand side of equation (A-6) is zero and therefore it is 
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q
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=
 (A-7) 

If q is set equal to N and χN is set equal to unity, the set of equations 
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, (A-8) 

can be written, where Q is the total number of available samples. 
The unknown coefficients χi can be obtained solving the linear system with the least squares method. 
Roots of equation (A-5) can be then evaluated and exponents λr can be obtained by means of relationship 

 t
r

reV ∆⋅λ= . 

The solution can be completed by deriving amplitudes ηr solving with the least square method the system (A-4) with q 
∈ [N,Q]. 
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Fig. 1 - Flow-chart of the LOM development and employment. 
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9

0 500 1000 1500 2000 2500
300

350

400

450

fl2

Tfl1

T

[s]

[K
]

fl2
T

Tfl1

iR

oR

ih
oh

E  = 186000 MPa

α  = 1.7E-5 K

ν  =  0.3

ρ  =  7800 kg/m

k  =  50 W/m/K

c  =  530 J/kg/K

R  =  250 mm

R  =  300 mmo

i

3

-1

p

a) Geometry and material properties

b) Time histories of fluid temperatures  
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Fig. 4 - Study case 1: Green's functions due to the inner and the outer fluid temperature. 
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Fig. 5 - Study case 1: FEM results and accuracy of both the GFT and the LOM. 
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Fig. 6 - Study case 2: Time histories of metal temperatures at the inner and at the outer radius. 
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Fig. 7 - Study case 2: Green's functions due to metal temperatures at the inner and at the outer radius. 
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Fig. 8 - Study case 2: FEM results and accuracy of both the GFT and the LOM. 
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Tab. 1 - Study case 1: amplitudes and exponents of the exponential series fitting the Green's functions. 
Gfl1 Gfl2 

Number 
of terms 

Values of 
λ [Hz] 

Values of η 
[MPa] 

Number 
of terms 

Values of 
λ [Hz] 

Values of η 
[MPa] 

6 

-0.4581 
-0.0065 
-0.0683 
-0.2851 
-0.8798 
-2.7393 

-0.0002 
0.5124 
-0.5830 
-0.2513 
-0.1277 
-0.0818 

5 

-0.1489 
-0.7328 
-0.0063 
-0.0489 
-0.1165 

-0.1059 
-0.0005 
0.3193 
0.2203 
0.0985 

 
 
 
 

Tab. 2 - Study case 2: convective coefficient variation. 

time [s] 0 1600 1610 2500 

hi [W/m2/K] 150 1200 150 150 

ho [W/m2/K] 500 600 500 500 

 
 
 
 

Tab. 3 - Study case 2: amplitudes and exponents of the exponential series fitting the Green's functions. 
Green's function due to Ti Green's function due to To 

Number 
of terms 

Values of 
λ [Hz] 

Values of η 
[MPa] 

Number 
of terms 

Values of 
λ [Hz] 

Values of η 
[MPa] 

4 

-0.044 
-1.36 
-4.62 
-76.3 

1.360 
-0.645 
-0.605 
-2.099 

4 

-0.049 
-0.65 
-3.38 
-69.0 

1.653 
0.193 
0.046 
0.098 

 


