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Abstract

In mechanical and aeronautical applications, assesisof fatigue damage accumulation due to thetraalsients is
currently performed by means of on-line fatigue itming systems.

The algorithms for on-line calculation of therm#idesses are one of the main components of thesensysand are
often based on the Green’s Function Technique (GFig@ GFT allows thermal stresses to be deterniireed inputs

(e.g. fluid temperatures, pressures, flow ratesmetal boundary temperatures) by numerically solvanget of
convolution integrals. Since each convolution inégvolves a large number of operations per timi, the GFT may
become very time consuming for applications charézd by several inputs and outputs.

In this paper a Low-Order Model (LOM) is developgedperform on-line calculation of thermal stresSdse model is
able to replace the GFT. Convolution integrals \Whibaracterise the GFT are converted in a systaimmadupled first-
order differential equations. Unknown coefficiemi® evaluated by means of the Prony identificati@thod, taken
from the structural dynamics and applied to thesfasticity.

Two study cases are presented; results show tedt@M leads to a significant reduction in the numbkoperations
per time unit with respect to the GFT, without tasaccuracy.

Keywords: reduced model, thermal stress, on-line calculafyony method.

1. Introduction

In mechanical and aeronautical applications charesetd by high safety requirements and expensivatemance costs
(e.g. aircraft engines [1], nuclear power plantsA]R assessment of fatigue damage accumulationtdutermal
transients is performed by on-line fatigue monitgrisystems. This allows the evaluation in real tiofiedamage
accumulation in component critical locations, tisavhere a fatigue crack is expected to appear.

Fatigue monitoring systems are made of several leedassembled together. Each module is used toaeabne of
the parameters which affect the fatigue damageetomponent (i.e. temperature and thermal streasésit is based
on ad-hoc algorithms, since FE commercial codescaréime consuming for on-line applications.

In the literature (Refs. [2]-[5]) the Green’s Funat Technique (GFT) is one of the most widespreatinique used to
perform on-line calculation of thermal stressese G@FT allows calculating the time histories of that stress from the
inputs time histories by means of convolution inéég} The only preliminary step necessary to emph@yGFT is the
calculation of the Green's functions of the systieenthe responses of the system to unit steptsnpu

The GFT requires a number of operations per tinie(bg,) proportional to the decay timg of the Green's functions
involved in the calculation and to the number aththie inputs (IN) and the outputs () of the system.

As a consequence, in applications characterisealagge number of outputs (i.e stress to monitond) iaputs (i.e. fluid
temperatures or heat flows) and by Green's funstwith large decay times (which affect the lendthextors involved
in the convolution products) the GFT may become tiene consuming for on-line monitoring.

In [6] a novel methodology has been proposed téoparon-line calculation of thermal stresses. Cduation integrals
which characterise the GFT are replaced by timegiattion of a Low-Order Model (LOM) made of uncaegffirst-
order differential equations.

The key idea in developing the LOM was the appration of any Green's function necessary for therstass
calculation with a series of exponential terms.

In [6] coefficients of the series (amplitudes amg@nents) were calculated by means of a procedasedbon the non-
linear least square method. Initial guess valuesitenative calculations were needed.

In this paper it is proposed to build the LOM fhietmal stress monitoring by means of the Pronstification
method [7], taken from the structural dynamics aexénded to thermo-mechanics. It allows calculatirggcoefficients
of the LOM through the solution of two linear systeand the calculation of the roots of a real poigial. Neither
initial guess values nor iterative calculations reeded.

In detail, as shown in Fig. 1, the necessary sieps

1. Application of unit step inputs to a detailed fAérmal model; evaluation of the thermal transesithin the whole
model; application of the thermal transients toedaded FE thermo-elastic model, evaluation of thermal stress
transients of the whole model; selection of theg@re functions corresponding to thermal stressesotutor;



2. Approximation of the Green's functions with sies of exponential terms; identification of the @itudes and the
exponents of the series by means of the Prony mgtho

3. Use of amplitudes and exponents identified @p = to build a set of elementary models of unaedigirst-order
differential equations; assembly of the elementaoglels to form the LOM.

Once the LOM is built, thermal stresses can beindtaby time integration, given the time historié$he inputs.

The resulting reduced model is similar to that désd in [8], developed as a tool for feedback oanin thermal

applications. Both are based on the idea of dewrgdop reduced order model, starting from the apipmation of the
Green's functions of the system with a series pbagntial terms.

In [8] the elementary models assembled to formabmplete reduced model are SIMO (Single Input MGititput)

models. As a consequence, linear identificatiorhrieue cannot be applied and their coefficients reeessarily
estimated by means of an iterative identificatiomcedure based on the non-linear least-square thetho

On the contrary, in this paper the elementary ngda$sembled to form the LOM, are SISO (Single trfpingle

Output) models, because each of them replaces enGrunction. In this case the Prony linear ideatiion method
can be successfully used.

2. Development of the low-order model

If the GFT is used for on-line calculation of thainstresso(t) at any point P(x,y,z) of a thermo-elastic modith |
inputs, equation

ol)=5+% }Gﬂt—t)lﬁ%dt -y (ei F +}Gi(t-r)adf%drj )

i=10 i=1

rlas to be numerically solved (Ref. [2]), where

o : initial steady-state value of thermal stress,
R :i"inputattimet,

Fi - i" input at time t=0,

Gi(t) : Green’s function of'linput at time t,

Gi : Green’s function of'linput at steady-state.

An analogous equation could be written for timeiggive do(t)/dt. In this case the time derivative of(fpis the
Green's function. The following equation can beaotsd

d"(t)—d"(o)+'z}Hi(t-r)a‘%dp @

a - a i=1

with

dG; do
H: (t)= 2 (t) and =2 (0) =0
()=51() and (o)
If the i Green's function @) is written as a sum of exponential terms

g Ji i
Gi(t)= Zlgij (t)= Zlﬂij m-€t). ®)
I I

according to equations (1) and (2) thermal streskits time derivative are respectively series mafderms 6". (t)and

daij (t)/dt having the form

Gij (t) = n; CFi "'}nij |:(1—(?Ai"@t_T))Elo”:j'lir(T)ClT' )
0
and
%(t) = ‘}ﬂij 0\ @0 ELZ(T)dT (®)
0 T

respectively. Each term of equations (4) and (Pyesents the contribution of th& ¢xponential term to the response
due to the time history of th& input.

Before continuing it is worth stating that the hifpesis made at equation (3) is reasonable. In @&een’s functions of
thermal stress at any point P of a FE thermo-elastidel are characterised by a transient whichsléac steady-state
asymptotic value. The analytical expression of @ngen's function is the sum of a constant terma(stestate value)
and a series of exponential terms. The exponentleo§eries are the thermal eigenvalues of therdemodel. The
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amplitude of any exponential term is the contribnitof the corresponding thermal eigenvector torttaistress at that
point.

As a consequence, the choice of exponential tempogyed in equation (3) to approximate the Gre@migtions, is
fully justified from a physical point of view.

Now equation (4) has to be managed in order toilata expression comparable to equation (5). Iailiéhe integral
in equation (4) can be managed in the following way

inij -eht™) DLZT(T)dT =
) 6
:.tmij Ddlzjﬂdr_nij E'}e)‘ijmt_'[) @E(T)drz (6)
0 T 0 dt
t -1
=n; (R (t)- R (0))-n; E({)eA”[(Jt ) Bd—'zt(r)dt

so that equation (4) becomes

N t A [t— F(t
&;(t)=n; Eﬁ(t)—gﬂij et Bdc'l#d? @)
If equation (5) is compared to equation (7) théofwing relationship can be written
dé;;
(Tlu(t):)\ij (o (t) - Ay Oy TR (1) ®)

Equation (8) represents the core of the LOM andalil for any term of the series of equation (33.8consequence, if
the " Green's function @) is written as a series ofeixponential terms, the elementary model

6i:ai I:bi"'BiEFI’ (9)
made of Juncoupled first-order differential equations fel where
o, column vector havin@ij (t) at the | position:;
o;: column vector havingjgij (t)/dt at the " position;
Qi (J x J) diagonal matrix having; at the " position;
B:: (3 x 1) column vector having th& term equal tok;@mj;.

If the above procedure (equations (3)-(9)) is edéshto a model with a number | of inputs, | eleragnimodels similar
to that of equation (9) can be written. When theyyassembled together they form the LOM

6=AE6+BD:' (10)
0=106
with
6, a; 0 0 0 Bp 0 0 O = s
G 0O a, 0 O 0 0 O F 1 .
=170 A= . ; B= P2 . C F=17L 1=1. (1
: 0O O . 0 O o0 .0 : :
G, 0 0 0 q 0 0 0 B R 1

The second equation of the system (10) meansdtadtthermal stress is the sum of all the teay(s).
If relationship

o'=6+A1BIF, (12)
is applied to equation (10), the LOM assumes italfshape

6=Alo'+C DF (13)
0=G[F+1&

with

c=A1mB

G =-1[A "1 B: vector whose'l term is equal to the steady-state value of th@reen function ).



3. Identification of the low-order model parameters

According to section 2, in order to build LOM's mieg¢s [A] and [C] of equation (13) it is necesstryapproximate any
Green's function with a series made of exponetgi@hs. The LOM accuracy in performing the on-lirsécalation of
thermal strese(t), depends on the accuracy of the exponenti@sen fitting the Green's functions.

In this paper, the identification of the most shitaseries for any Green's function is performedn@ans of the Prony
method (see Appendix), applied to the thermo-meichhrield. It is a method developed at the endtha XVIII
century and subsequently modified, currently ugtaf.([7]) for the identification of linear vibratinsystems.

The method is simple and straightforward. It regsiitwo linear systems to be solved according tolittear least
square method and the roots of a real polynomibktfound. Its application to the current case ireglb steps.

Sep 1: Sampling of the continuous Green's functigt)Gvith a constant sampling tind.

Sep 2: Definition of function G(t) defined as

G (=G ~Gi(t)=xm;= - (14)
=1

which represents the variable part of tA&reen's function, as shown in Fig. 2.
Step 3: Evaluation of coefficientg; (0< j < J-1) solving the linear system

ho hy hz =+ hg1| [ Xo h;,
hy h h3 -~ hy X1 hj+ (15)
hos PMoey how2 Mot (Xaa ho

being R=G’(qlAt) and Q (> i) the total number of samples.
Step 4: Evaluation of the roots \of the polynomial

XO+X1[V1+X2[V2++X.Ji—1[v\}—l+VJ, =0 (16)
and then the exponerg of equation (3) through the relationship

VJ = e)\ivjmt . (17)

Step 5: Calculation of the amplitudeg; of equation (3) by solving with the least squareghod the linear system:

ho =Njp+tNiz2 +...+Njy

hy =ViMjp +Vo Mz +...+Vy My 18)

ha = Vy? Mg +Va® Wiz +---+VJi2 My,

hQ :V]_Q Ij]l,l +V2Q Ij]i,z +...+VJiQ Ij]i,-]i

Wherevjq = "9 adding the following relationship among e

S 19
2Nij =G (19)
1

which forces the approximated Green's functionsmatch exactly the steady-state values evaluated-BM.
Introduction of equation (19) in equation (18) imeglthat the first line is identically null and urdwwns are reduced by
one. The new system to solve is

hy =G OV, = (V1 =V ) Mg +(V2 — V) Mo+ 4 (V31— V3 ) iz
h, -G vy % = (V12 _VJiz)Dni,l + (V22 ‘VJiZ)DTIi,z tot (Vq—lz ‘VJiZ)DTI i3-1 (20)

ho -G AR (VlQ _VJiQ)mi,l + (VzQ ‘VJiQ)mi,z ot (VJ,—lQ ‘VJiQ)DTIi,Ji

At step 4 of the identification procedure exponehjsare evaluated from the roots of a real polynomés; a
consequence, roots can be real (positive or negativcomplex conjugate. Not all roots are accdptakthe physical
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behaviour of the system implies that admissibleoagntial terms have real and negative exponentsause they
represent transients without any periodic oscillatino complex numbers) which expires after a aedenount of time
(no positive real components). The following ciiteris proposed for each exponent:
- real and negative exponent: accepted;
— real and positive exponent: discarded;
— two complex conjugate exponent:

— Positive real part: discarded;

- Negative real part: accepted; the exponent iscaeleo the real part; the imaginary term is didear

4. Application to a thick pipe

In order to test the identification procedure amdhow the features and the capabilities of the Lib&lcase of a thick
pipe is discussed. Although it is not one of thpligptions where the GFT needs to be replaced Isecaiithe amount
of calculation, it allows a clear comprehensiothef methodology proposed in this paper.

The pipe has constant material properties. Twoerfft cases are presented, characterised by diffeaindary
conditions:

1. constant convective coefficients,

2. variable convective coefficients.

Geometry and material properties of the pipe amvshin Fig. 3, where also time histories of flughtperatures ¢f
and Ty, are plotted. The output of on-line calculationsthe hoop stress at the inner radius of the piph e
assumption of perfectly radial temperature gradient

Time step for on-line calculation of thermal stress&t = 0.5 s for both the GFT and the LOM.

4.1 Constant convective coefficients

The thermo-mechanical FE model is linear. Inner antér convective coefficients arg=h200 W/ni/K and h=500
W/m?/K respectively. Time histories of fluid temperatsican be directly used to evaluate thermal ssdsseneans of
the GFT.

First of all, a detailed FE thermo-mechanical mddeised to evaluate the Green's functiopgtisand Gy(t) (Fig. 4)
due to unit step inputs of;f{(t) and T»(t) respectively.

Once the Green's functions are evaluated, theifabation of the LOM coefficients described in sect 3 is performed.
The sampling timét is chosen equal to 0.5 s. In this way the stpesk, which characterises the function(@ at t =
40 s, can be described with a reasonable numiszamofles.

The identification procedure starts with a seriemdenof 1 exponential term;¥1). Then the number of exponential

terms Jis increased till:
€g = ma{ Zn” [@1 i j

i.e. till the maximum errogg is lower than 1% of the steady-state value ofGheen's function.

The result of the identification procedure is showrTab. 1, where amplitudes and exponents for bio¢thGreen's
function are plotted. By means of these coeffidehe LOM can be built. and then used to evaldsental stress on-
line.

The LOM is finally used to evaluate on-line therratikss due to time histories of fluid temperatynested in Fig. 3b.
Time integration is performed by means of the Eirglicit method.

In Fig. 5 time history of thermal stress evaluatgd=EM and both error due to the GFT and the LOB @otted. The
accuracy of the LOM is proved to be very good avehebetter than the GFT's.

The comparison between the GFT and the LOM invoalss the number of operations per time unit.

The LOM requires only 70 operations per time uwthijlst the GFT needs more than 10000 operatiotetperformed.
The LOM allows a 99% reduction with respect to Gf€T.

j — G (21)
00

4.2 Variable convective coefficients

In the second case the thick pipe is charactebgediriable convective coefficients along the inaed the outer radius
of the pipe. Time histories of convective coeffideare listed in Table 2.

For this class of applications it has been alrestiywn in [5] that the GFT is still applicable eviethe model is non

linear. Time histories of fluid temperatures ard#oused to evaluate time histories of model boynttamperatures by
time integration of a reduced thermal model. Thenrfdlary temperatures can be used as inputs fom#hestress

calculation by means of the GFT.

In fact, since the non-linearity of the model imfined over the boundary of the thermal model,desl not affect

thermal stress calculation once time history ofratary temperatures is known.



In this study case, the boundary metal temperaan@she temperatures at the inner and at the cadéars of the pipe,

called T(t) and T,(t) respectively. The detailed description of thenitoring methodology necessary to evalua{®) T

and Ty(t) is beyond the scopes of this paper. For motailderef. [5] is recommended. Here time histonéd;(t) and

To(t), plotted in Fig. 6 are given as data.

Since the GFT is admissible, a LOM can be deritedetail the following procedure has been followed

— Evaluation by means of detailed thermo-mechani€ahtfedel of Green's functions(6 and G(t) which represent
hoop stress at the inner radius due to unit steptiaf T;(t) and T,(t) respectively (Fig. 7).

— Approximation of t) and G(t) until g <1% (see equation (21) for details abad} using sampling time
At = 0.1s, getting exponential series listed in Tab.

— LOM assembly and evaluation of thermal stress ugjftyand To(t) as inputs (Fig. 8).

Also in this study case, the accuracy of the LOMdsy good, even if slightly worse than the GFTse comparison of

the number of operations require by the two methlagies shows that the LOM requires only 52 opertiper time

unit, whilst the GFT needs 1600 operations to béopmed. The LOM allows a 97% reduction with reggeahe GFT.

5. Conclusions

A low-order model (LOM) has been proposed to penf@n-line calculation of thermal stress in crititatations of

fatigue critical components.

The procedure used to identify the unknown pararseté the LOM is based on the Prony method, takemf

structural dynamics. The method is linear. Neiftemations nor initial guess values are needed.

On the basis of the proposed study cases the foigpeonclusions are drawn:

1. The Prony method allows one to identify properky LOM.

2. The LOM can be used in place of the Green's Fumclibeory (GFT) both in linear models and in models
characterised by variable convective coefficiefisthe former case fluid temperatures can be usethe LOM
inputs, in the latter metal boundary temperatures@be used.

3. Employment of the LOM for on-line calculations ails:

— areduction in the number of operations per timéwmto the 99% with respect to the GFT,;
- evaluation of thermal stress with an accuracy coaiga to the GFT.
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Appendix - Prony method
Given a function
N
h(t)= n, @M (A1)
r=1
described with a sampling peridd, if the following substitutions are performed
hg = hlalAt)

: (A-2)
r

the " sample can be written as



N
h, = Zln, v,"- (A-3)
r:

If the previous relationship is extended to q s&sphe set of equations

ho=ny+na+..+nNy
hy =V + Vo Oy +...+ Vy Dy

2 2 2 (A-4)
hy =V~ [y + V" My +...+ VN Dy
hq :qu |]]1 +V2q |]]2 +...+VNq |]]N
follows.
If any equation is multiplied by a coefficiengsof the equation
Xo +X1[Vi+X2 Vo +..4Xq[Vq =0, (A-5)
adding all the equations gives
q N q i
2 Xi thi = Z(ﬂj > Xi EVJ'IJ' (A-6)
i=0 =\ Ti=0
If equation (A-5) is valid, then any term on thght hand side of equation (A-6) is zero and theeefois
q
2Xi thi =0 (A7)
i=0
If q is set equal to N angl, is set equal to unity, the set of equations
ho hy h, = hnaa| [ Xo hy
R .l N L )
ho-n ho-(n-y) ho-(n-2) + hoa]| (Xn—1 hq

can be written, where Q is the total number of labéé samples.
The unknown coefficientg can be obtained solving the linear system withid¢hst squares method.
Roots of equation (A-5) can be then evaluated apdmrents\, can be obtained by means of relationship

Vr - e)\r[At .

The solution can be completed by deriving amplitugiesolving with the least square method the system)(#ith g
O [N,QI.
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E = 186000 MPa
a =1.7B-5K!

v =103

p = 7800 kg/m?
k = 50 W/m/K
cp= 530 J/kg/K
Ri= 250 mm
Ro= 300 mm

a) Geometry and material properties
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b) Time histories of fluid temperatures
Fig. 3 - Thick pipe data (a) and time history aiidl temperatures (b).
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20 FEM thermal stress 3 GFT error 1 LOM error
60 | 1 0.8 1
2L | 0.6 +
40 p
04+

[MPa]

20 + 1 0.2
5 7 | | o
0 1 £
= s

20 | 0 -02 -
04 |

-0.6 +
60 | b -1+ 1 -0.8
-80 0300 1000 1500 2000 2500
500 1000 1500 2000 2500

0 500 1000 1500 2000 2500 O
(4 [s] [s]

Fig. 5 - Study case 1: FEM results and accuradottf the GFT and the LOM.



Temperature at the inner radius Temperature at the outer radius
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Fig. 6 - Study case 2: Time histories of metal terapures at the inner and at the outer radius.
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Fig. 8 - Study case 2: FEM results and accuradyotti the GFT and the LOM.
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Tab. 1 - Study case 1: amplitudes and exponertteeafxponential series fitting the Green's function

G Gz
Number | Values of| Values ofn | Number| Values of| Values off
of terms| A [Hz] [MPa] of terms| A [HZ] [MPa]

-0.4581 -0.0002
-0.0065 0.5124
-0.0683 -0.5830
-0.2851 -0.2513
-0.8798 -0.1277
-2.7393 -0.0818

-0.1489 -0.1059
-0.7328 -0.0005
5 -0.0063 0.3193
-0.0489 0.2203
-0.1165 0.0985

Tab. 2 - Study case 2: convective coefficient vama
time [s] 0 1600| 1610 250(

h [W/mZK] | 150 | 1200| 150| 150

ho [W/mZK] | 500 | 600 | 500 | 500

Tab. 3 - Study case 2: amplitudes and exponertteeafxponential series fitting the Green's function

Green's function due to T Green's function due to, T
Number | Values of| Values ofn | Number| Values of| Values off
of terms| A [Hz] [MPa] of terms| A [HZ] [MPa]

-0.044 1.360 -0.049 1.653
4 -1.36 -0.645 4 -0.65 0.193
-4.62 -0.605 -3.38 0.046
-76.3 -2.099 -69.0 0.098
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