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Gauge-invariant formulation of high-field transport in semiconductors

Emanuele Ciancié, Rita C. lotti, and Fausto RosSi
Istituto Nazionale per la Fisica della Materia (INFM) and Dipartimento di Fisica, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino, Italy
(Received 19 November 2003; revised manuscript received 9 December 2003; published 27 April 2004

In this paper we revisit the conventional description of carrier-phonon scattering in the presence of high
electric fields by means of a gauge-invariant density-matrix approach. The proposed formulation of the trans-
port problem allows us, on the one hand, to provide a gauge-independent formulation of Fermi’s golden rule;
on the other hand, our analysis clearly shows that in the standard treatments of high-field carrier-phonon
scattering—also referred to as intracollisional field effect—the possible variation of the basis states has been
usually neglected. This is recognized to be the origin of the apparent discrepancy between scalar- and vector-
potential treatments of the problem; indeed, a proper account of such contributions leads, in general, to an
ill-defined Markov limit in the carrier-phonon interaction process, assigning to the scalar-potential or Wannier-
Stark picture a privileged role. The neglect of such Zener-like contributions in the transport equation leads to
a wrong estimation of the high-field voltage-current characteristics, and may partially account for the surpris-
ingly good agreement between semiclassical and rigorous quantum-transport calculations previously reported.
This is confirmed by fully three-dimensional simulations of charge transport in state-of-the-art semiconductor
superlattices, which show a significant current overestimation.

DOI: 10.1103/PhysRevB.69.165319 PACS nunider73.63—b, 05.60.Gg, 72.20.Ht, 72.16d

[. INTRODUCTION realistic—Monte Carlo simulatior’$.In this case, the basic
idea is that, due to the field-induced carrier drift, energy con-

Since the early days of quantum mechahitiee field-  servation in the scattering process is relaxed; as a conse-
induced coherent dynamics of an electron wave packeguence, thes function of Fermi's golden rule is replaced by
within a crystal, known asloch oscillations(BO), has at- broad spectral function's.We stress that this scenario, inti-
tracted significant and increasing interéstdeed, the prob- mately related to the vector potential or accelerated picture,
lem of proper|y describing the Scattering-free motion of anhas no COUnterpart in the Scalar-potential one. |ndeed, within
electron in a solid has led to a three-decade controversy ofte Wannier-Stark basis there is no carrier drift, and energy
the existence of BO.This originated from the different ap- conservation is preserved. It is thus clear that such an effec-
proaches employed for the description of the applied fieldtive semiclassical description of the ICFE is not gauge
namely the vector potential or accelerated-Bloch-state invariant!® The aim of the present investigation is to explain
pictureé’ and the scalar potential or Wannier-Stark and remove this apparent contradiction by providing a
description® As discussed in Ref. 6, these two pictures aregauge-invariant formulation of Fermi's golden rule.
now recognized to be fully equivalent, since they correspond The paper is organized as follows: In Sec. Il we shall
to different quantum-mechanical representations connectdfitroduce and discuss our gauge-invariant treatment of
by a gauge transformation. guantum-transport phenomena based on the single-particle

The presence of scattering as well as tunneling procességnsity-matrix formalism; Sec. IIl will present a few simu-
strongly modifies such ideal BO scenafim particular, non-  1ated experiments aimed at comparing the proposed gauge-
elastic interaction mechanisms—such as carrier-LO phonoiﬂlvariant formalism with conventional ICFE treatments; fi-
scattering—tend to spoil such coherent dynamics, leading tgally, in Sec. IV we shall summarize and draw some
a nearly semiclassical or Boltzmann-like transport picture. Ironclusions.
the presence of strong electric fields, however, the use of the
conventional scattering picture—involving transitions be-
tween field-free Bloch states within Fermi’'s golden rule—
becomes questionable. A. Physical system

As originally pointed out by Levinsérand by Barker and

II. THEORETICAL APPROACH

Fernv?® the effect of the field during th teri In order to describe quantum-transport phenomena in sol-
erry, the elect of the Tield during the scattering process,ys anq jn particular in semiconductor nanostructures, let us

usually referred to amtracollisional field effectiCFE), may .o <ider a generic electron-phonon system, whose Hamil-
lead to significant deviations from the semiclassical s,cenario[Onian can be schematically written as '

On the one hand, the role played by the ICFE has been
extensively investigated by means of rigorous quantum-
transport approaché&-'2 Their application, however, was H=Ho+H"=(Hc+Hp) +Hcp. ()
often limited to highly simplified physical models and con-

ditions, thus preventing any quantitative comparison with ex\Within an ideal Schrdinger-equation treatment of the global
periments. On the other hand, strong effort has been devotedectron-phonon problem, the above Hamiltonian dictates the
to incorporate the ICFE within conventional—and more motion of electrons and ions in the crystal. It can be regarded
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as the sum of a free-particle tery, and of an interaction AS we can see, the scalar-potential gauge is obtained by set-
termH’. More specifically, the system Hamiltonian includes ting »=0, while the vector-potential one correspondssto
the following contributions. =1. The Hamiltonian expressed in terms of a single poten-
(i) The noninteracting carrier Hamiltonian tial is quite useful since it can be easily diagonalized.
By inserting the explicit form of the electromagnetic po-
tentials in Eq.(8) into the single-particle Hamiltoniahl,.,

2
_ e
—ihV,— EA(F,I) we finally get

H= > +ep(r,)+Vi(r). (2
° ’ (—ihV, + neFt)? L Ly ©

= —(1-mp)eF-r r),

(ii) The free-phonon term ¢ 2m, (1=7) ()
+ where, as anticipated, the gauge freedom is expressed in

HpZEq hwgbgbg. (3 terms of the parametey.1718
The termH, in Eq. (3) describes the free-phonon system

(iii) The carrier-phonon coupling via the second quantization creation and destruction opera-

tors bg andbg, oy denoting the corresponding frequency-
B S momentum dispersion relation.
Hep= 2 vo[boe'd " +bie "], 4 Let us finally consider the interaction Hamiltonitdy,, in
a Eq. (4). It describes the coupling between electrons and bulk

The HamiltonianH, describes noninteracting electrons Phonons. Here, the explicit form of the coupling functipp
within the effective lattice potentiaV/' interacting with a depends on the particular interaction mechanism considered,
classical electromagnetic field expressed in terms of corref-9- deformation potential, Hich coupling, etc.
sponding scalar and vector potentigl@andA. The latter can
be chosen in infinitely different ways; this is the so-called B. Density-matrix formalism
gauggebfreegom: |tt|mp![|ﬁs tha};[r;[he eIe(;tromlagneg(_:t_potengl_als Following the general prescription of the time-dependent
Must be chosen together with an external condition WhiCly g .y, hation theory, we start by looking for a suitable, com-
fixes the gauge. When possm.le, two pnyﬂeged gauge choic ete orthonormal set which diagonalizes the free-carrier
are co_nsujered, those resulting in a single eleammagnmI(—\1amilt0nian. The corresponding eigenvalue equation reads
potential, i.e., a vector or a scalar ofeee below. For the

case of a homogeneous static electric fieldand no mag-

netic field this can be achieved by the following gauge Hedolr) = €,Pa(r). (10
transform: Our basis states are then the eigenstatesl ofn Eqg. (9),
19 which of course depend on the gauge choice. Therefore, in
@, (1) =@o(r)— = —f,(1.0), general, we deal with different sets of eigenstates, according
cat to the value of the parametej. As anticipated, the two
particular casesy=0 and »=1 involve, respectively, the
Ay()=Ao() +VT,(r,1), (5 scalar and the vector potential only. In general, the quantum

numbersa—and therefore the corresponding eigenfunctions

with r)=—F-r, Ap(t)=0, and with the gauge function : .
¢olr) oV gaug ¢.(r)=(r|a) and energies,—are functions of the trans-

f (r,t)=—yCcF-rt. (6) formation parametern, and for »#0 are also time
7 dependent’
Here 7 is the free parameter of our gauge transformation. For =0 (scalar-potential gaugeve recover the well-
Indeed, more generally we have known Wannier-Stark statés:
_ Lo b1V = n (1)) €u=€x nv=¢k oo +NAe, (11)
qoﬂ(r)_(’D;(r)_EEfﬂ_;(r’t)’ a klr‘l,v ' a klr‘l,v kLO,V ’

with Ae=eFd, d denoting the crystal periodicity along the
A (D) =A%)+ VI, (), () field direction. As we can see, for any value of the carrier
wave vector perpendicular to the field directikn and for
any band-index value, we deal with a discrete and equally
. spaced energy spectrum, known as Wannier-Stark ladder. In

The e>_<p_|icit form of the scalar and vector potentials in EQ.iha |imit E— 0 the Wannier-Stark states in Ed) reduce to
(5) describing our constant and homogeneous field then the usual Bloch StatesbkLn,v(r)—>¢‘,§,,(r), fkln,y—ﬂfﬁy-

iven b
g y In contrast, forp=1 we deal with the Houston or accel-
0, (1)=—(1=nF-r=(1-7)eq(r), erated Bloch stateb:

which for ;ZO reduces to the gauge transformation in Eq.

A, (t)=— 7CFt=7A(t). 8) Ba(r,t)= gy, (r)eleMF Tt (12)
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with €a=68(t)y, where k(t)=koy+kt is the instantaneous

carrier wave vectork=eF/# being its field-induced time
variation. Again, in the limit=— 0 the usual Bloch states are

=f drp* (r)w(r). (18

More specifically, we get

recovered.
In the first case §=0) we deal with the discrete quantum d
numbern along the field direction, while in the second case 3@ J dr dtd) (r) 2 bor(r)agy

(7=1) we deal with the continuous indeg. We finally
stress that the scalar-potential hamiltonian is time indepen-
dent(but space dependentvhile the vector-potential one is f dr ok (
time dependentbut space independerit

In general, the two basis states, corresponding to the two d
arbitrary gauge choices and » in Eq. (7), will be connected => f dr[—q’;z(r)} o, (r)a,
by the following unitary transformation: o’ dt

[Z%(r }

- _ 1
(7)) =U""|a(n)). (13 +@f dr g (N2 o (Nay H
Given such basis stat¢ky)}, most of the physical quan-

tities we are interested in—e.g., carrier drift velocity and 7 2 Zyor @, ,+ [aa,H] (19

mean kinetic energy—are properly described by the well- i

known single-particle density matfik with

Paya,=(8L 2a,), (14)

aa Iﬁf dr _¢ (r) ¢a( ) (20)

Whereal (a,) denotes creatiodestruction operator for a
carrier in stater.?* It is easy to show that the density matrix By comparing the above result with the general structure of

(14) will gauge transform according to the Heisenberg equation in E{.6), we finally get
7= UamploUg 15 90, ==
pa1a2 - alaspa 2, a4a2 ( ) &aa _m[aaiH] (21)
CY3LY4

whereU o =(a|a’)=(alt""|a’) are the matrix elements a"d
of U™ in the 5 representation. Here, the compact notation d

a= a(7]) has been introduced.
In the Heisenberg picture the time evolution of the single- </>

particle density matrix14) is dictated by the time evolution As shown in Ref. 6, the matrix elemeris,, —absent for

of the creation and destruction operateisanda,. For a  ihe case of a time-independent basis—describe the well-

e E ZqarBar (22

time-dependent basis sfir)}, we havé® known Zener tunneling, i.e., a purely coherent interband dy-
namics induced by the field.
ia :ga " Ea (16) By combining Eqs(14) and(16) and considering the ex-
dt™* dt 7, dt’¢ s plicit form of the total Hamiltoniar(1), we get the following

equation of motion fop:
Compared to the standard equations of motion, the possible

time variation of our basis states, gives rise to an addi- d _d d d
tional term; the latter is absent only if the single-particle dtPaee™ grP e, +&Pa1a2 +apa1az
Hamiltonian is time independent, i.e., in the scalar-potential 0 cp ¢

gauge. When present, this extra term gives rise to nondiago- (23

nal matrix elements in the self-energy operator. These arghe first, Liouville-like, term is due to the single-particle
known as Zener contributions. The explicit form of the two Hamiltonian H,, the second term is due to the carrier-

contributions on the right-hand side of E¢l6) can be phonon coupllng, while the last one is again due to the pos-
readily obtained by combining the standard Heisenbergiple time variation of the basis statas

equation of motion for the field operator, More specifically, the time variation due to the free-carrier
+ free-phonon Hamiltoniair,=H:+H, is given by
V(=2 agda(r), (17 d

with the explicit form of the creation/destruction operators,
ie., with walazz(eal—eaz)/ﬁ.

165319-3



EMANUELE CIANCIO, RITA C. IOTTI, AND FAUSTO ROSSI PHYSICAL REVIEW B9, 165319 (2004

In a similar way, starting from Eq19), the term due to The explicit form of the many-body termﬁ‘iaz’q involves
the explicit time variation of our basis set comes out to be ofyerage values of carrier plus phonon operators, typically
the form four fermionic and two bosonic ones. As anticipated, to get a
d 1 closed set of_ e_quatigns of m(_)tion this hie_rarchy has to be
— P = 2 [Z0 0/ Buet =25 80 0t 1Putar truncated. Th|.s is typically reallzed_by applymg to t_he many-
dt™a%2 ik a2 ey TR body y term in Eq.(29) a mean-field approximation: the

(25) average value of carrier plus phonon operators is factorized
into products of average values of carrier and phonon
Compared to the free term in E4), here we deal with  gperatorg? In this way Eqs(23) and(29) reduce to a closed
nondiagonal coupling terms. _ _ set of equations for the kinetic variablpsands. This ap-
Let us now come to the carrier-phonon coupling term; 'tSTproximation scheme constitutes the starting point of the well-
explicit form is obtained using the commutation properties ofknown carrier quantum kineti.
our creation and destruction operators and may be expressed Tg further simplify the description of the problem, a sec-
as ond approximation is usually introduced: the so-called Mar-
kov limit. The latter, discussed below, is obtained via an
i “adiabatic elimination’® of the phonon-assisted density ma-
dt e H tricessin Eqg. (28).
At this point, a few comments are in order. The mean-
field approximation previously introduced can be shown to
~Ya'ay,q8a;a’ ) TH-C, (260 pe basis independent; this means that potential deviations
from the exact behavior of the electron-phonon system due
where to the mean-field approximation do not depend on the choice
of the basis statdsy). This is true also for basis states which
describe physically different quantum states, e.g., noninter-
acting electron-hole pairs versus excitonic states. In contrast,
, ) . .the Markov limit is intrinsically basis dependent. However,
denote the matrix elements of the carrier-phonon coupling if5s states which are mutuaily connected via a gauge trans-
Eq. (4) while formation[see Eq(8)] should lead to the very same carrier-
R phonon dynamics, independent of the choice of the gauge
Saa’,q= (8,/PR0) (28 parametery. As stressed in the introductory part of the pa-

) neai - per, this is definitely not the case for the usual treatment of
are the so-called phonon-assisted density matfit@ese fhe ICFE, where the Markov limit within the scalar- and

uantities describe many-particle correlations between carri- . .
grs and phonons y-p vector-potential gauges leads to different res(dee the fol-

Equation(23) is thus the starting point of an infinite hier- lowing section. We shall show(see Sec. Il Pthat such an

archy involving higher-order density matrices. To obtain az_inqmaly IS d_ue to the_negleéﬂn performlng the Markov
solution—i.e., a closed set of equations—this hierarchy hafam't) of the time variation of our generic basis stafese
to be truncated at some level. As discussed in Ref. 20, i st term in Eq(29)].
order to properly describe carrier-phonon scattering, the time
evolution of the phonon-assisted density matsy,: q
should be explicitly considered; its equation of motion has As anticipated, the Markov limit consists in an adiabatic
again the structure of E¢23), i.e., elimination of the phonon-assisted density matrisefsom

the coupled equations of motion in Eq23) and (29).

1
= 2 [ E(gala’ |qsa’a2,q

!
cp @4

9aa’,q™ “qu dr % (r)€' % ¢, (1) (27)

C. Conventional Markov procedure

is __iat s yer 9 More specifically, by neglecting theé term in Eq.(30),

dt "*1x2.d ayay.aSarap,q7 Yajay,q dt "*92.9 i.e., the contribution due to the time variation of the basis
(29  statesa, the final result is

With Q7 4= ©4 q,* ©q and Sayay (D) =D(Qayay 0)Yera, oD, (31)
d 1 with
= — ’ = * ’ ! !
asalaz,q _Ifl ’Z, [Za1a15a2a2 Zazaéaalal]salaz,q' 1 0 . t
¢ ¥ D(Q, , q)=—J dtex —|J Qy o, o(t)Hdt |

(30 1%2, 7)o 0 192

I . . 32
As we can see, the contribution due to the possible time (32

variation of our basis states has exactly the same structure of By inserting the above formal solution fa into the
the corresponding term fgs in Eq. (25); this is due to the carrier-phonon contribution of Eq26), we finally get a
fact that, apart from the phononic operanér(which istime closed equation of motion for the single-particle density ma-
independent the definitions op andsin terms of fermionic  trix p. In the low-density limit, i.e.|p,./|<1, the carrier-
operators coincidésee Eqs(14) and(28)]. phonon contribution to the dynamics is of the form

165319-4
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g z out )
dtPeie: ~ ( aja,, aiaépaiaé alazl“iaép“i“é
Hep @193
+H.c., (33)
where
' T
in _ T . % .
alaz,aiaé_ ﬁzi,q q galal qgaza/ qD (Qaza q)
out T + %
ayag.ajay” 124 Ny g 9eray,qdaral.a DO = i'q)
X Baya (34)

are generalized in- and out-scattering r&feslere, the +
sign refers to phonon emission and absorption, respectivel

anng =Ng+ £+ 1 denote the corresponding phonon occu-

pation factors.

Equation(33) is the quantum-mechanical generalization

of the well-known Boltzmann transport equatihindeed,

by neglecting all nondiagonal terms of the single-particle

density matrix balaf falﬁalaz), the latter is easily recov-
ered:

:E (Paa’fa’_Pa’a a)- (35)

Here, as usual, the scattering rates for in- and out-scatteri
processes coincide; they correspond to twice the diagon
parts (@, =a,as) of the scattering operatoid” andT"°!t

in Eq. (34):%2

——Zz

|gaa’,q|2N§RqD(Q§a/’q)]' (36)

H

PHYSICAL REVIEW B 69, 165319 (2004

(n=0). Indeed, as anticipated, the crucial point is the ne-
glect of the possible time variation of our basis states

More specifically, a proper inclusion of theterms in Eq.
(30) suggests to rewrite Eq29) as

d ~ +
asala?q I ,2 aja,, a a qsa’a’ ,q alaz q (37)
192
with
- 23
ﬁQalaz ala .q Ealaiéazaé_8a2a25ala _ﬁwq alaz'aiaé
(38)
and
gozoz’ = Ea/éaa’ +Zaa’ . (39)

Yi is possible to show thaf,,, correspond to the matrix

elements of the single-particle Hamiltonid®) for »=0,
i.e., written in the scalar-potential gauge. This can be easily
verified for the two particular choices of our basis aetthe
scalar- and the vector-potential ones. It follows that a
generic time-dependent basis, Eq. (37) has a nondiagonal
structure and thereforet does not allow a simple exponen-
tial solution This implies that forp# 0 the Markov limit is
not straightforward.

The correct procedure—i.e., gauge invariant—iis to
perform a unitary transformation which diagonalizes the su-

.I_Egroperatorﬁ in Eq. (38), and(ii) to perform the exponen-

| formal integration described abov&inceé&,, are the
matrix elements oH. for =0 (scalar-potential gaugethe
unitary transformation that diagonaliz€s s justz/°”, i.e.,
the transformation connecting the generic gaugé¢o the
scalar-potential basisy(=0). We stress that the new diago-
nal elements coincide with the eigenvalues(bfwhich, in
turn, correspond to theéme-independent detuning functions

The generalized carrier-phonon scattering rates in E¢fla,a,,q in the Wannier-Stark gauge

(349—as well as their semiclassical counterparts in Eq.

(36)—involve theD function in Eq.(32). For the case of a
time-independent basis set, i.@5 0 (Wannier-Stark stateés
the detuning frequency) is also time independent and the
real part of the functiorD in Eq. (32) gives the well-known
energy-conserving Diraé function and Eq(36) is exactly

This clearly shows that the Markov limit used to derive
the generalized Boltzmann equation in E83) is only well
defined in the Wannier-Stark picture, for which the varigus
terms vanish and the detuning functididsare time indepen-
dent.

This does not violate the gauge-invariant nature of our

the usual Fermi's golden rule; in contrast, for the case of gormulation. Indeed, given the generalized Boltzmann equa-

time dependent basis, i.ep=1 (accelerated Bloch states

tion (33) written in the scalar-potential picture, the latter can

the detuning is time dependent, leading to a broader functiobe written in any generic gauge by applying the unitary

D.2%This is exactly the ICFE previously introducédtue to
the field-induced variation of the carrier wave veckorthe
energy difference between initial and final states(
—€kt)~q) Changes in time giving rise to multiple and/or

broad resonances in the carrier-phonon scattering process.

Such energy-nonconserving scenario has no counterpart
the Wannier-Stark pictur€. This clearly shows that the gen-
eralized scattering rates in E(4) are not gauge invariant.

D. Gauge-invariant formulation

The aim of this paper is to show that the derivation re-

called so far is only valid within the Wannier-Stark picture

transformatiori/ introduced in Eq(13). To this end, let us
introduce the single-particle density-matrix operator

pP= E |a1>pa1a2<a2|’ (40)

. @ ap

in

which is by definition gauge invariantfindependent. This
suggests to write the generalized Boltzmann equd®8in

an operatorial form as

d .
ai? =(I'"p—T""%)+H.c.,

Hep

(41)

165319-5
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where verified recalling that the density-matrix operator in E40)

is itself » independent. It follows that, in order to evaluate

the trace in Eq(44), one may chose the value of the gauge

parametery in the most convenient way. According to the

analysis presented in Sec. Il D, the only basis in which the

are in- and out-scattering superoperators. Markov limit is properly defined is the Wannier-Stark one.
As already stressed, our aim is to propose a gaugelhis suggests to evaluate the density marjx,, directly in

invariant formulation of the problem. This requires the su-this time-independent representation=0).

peroperators in Eq42) to be 5 independent as well. The  Since our primary goal is to investigate high-field trans-

analysi_s/prtesented so far has shown that the scattering mgort in steady-state conditions, we focus on the stationary
In/ou

‘ i ;
pinou_ |a1>|a1>1“flf$,aia;<“2|<“2| 42

alaz,aiaé

tricesT’ , , are only well defined in the Wannier-Stark solution of the quantum-transport equation in E2f), i.e.,
alaz,alaz

picture (p=0). They are no longer probabilities and exhibit d d d d

a sqperoperato_r structure; for. this reason their gauge- JtParas™ grPees + gtP e + gtPeae =

invariant extension to any generigvalue is realized by the Ho Hep ¢

following four-index unitary transformation: (45

~ By combining the free-carrier term in E24) with the gen-

leazﬂiaé:UE@UZ@Fi}“;é;éUZJZUEAEé (43)  eralized scattering dynamics in E(®3), and recalling that

for »=0 all the ¢ terms vanish, we get the following steady-

(implicit summation over repeated indices is assumed state equation fop,, ., in the Wannier-Stark picture:
whereU, ,, are the matrix elements of the unitary transfor-
mationZ/®7 in the Wannier-Stark picturez(=0). i 2 r

Equation(43) is the gauge-invariant formulation of Fer- dtP e ajap,@
mi’'s golden rule we were looking for. Contrary to the con-
ventional approach, in the case of a time-dependent basishere
e.g., accelerated Bloch stafeisistead of using Eq34) with o out
anad hocenergy-nonconserving function, the correct pro-  La,a,,aja,= ~1®a;0,0a105,0005 o 0 ot "V alan alal
cedure is to compute the generalized scattering (@ésin etz e %427)

the Wannier-Stark picture, and then to apply the gauge trans- . .
formation 4, o according to Eq.(43). Thus the desired can be regarded as an effective Liouville superoperator act-

gauge-invariant equation of motiofie., valid for any ) ing on our single-particle density matrix. By introducing the
turns out to be again E¢33), where the scattering operators COmMpact notation= a; a,, the above steady-state equation
T need to be replaced by their gauge-invariant ver§ign ~ can be rewritten as

=0, (46)

Enrpir::o. (48)

As usual, the nontrivial solutions—i.e., different from
In order to quantitatively assess the magnitude and physizero—of this homogeneous linear problem correspond to the
cal implications of the wrong estimation of carrier-phononsingular solutions of the Liouville superoperatd?), i.e., to
scattering within the usual treatment of the ICFE previouslythe A =0 solution of the eigenvalue problem
discussed, we have performed fully three-dimensidBal)
calculations of high-field charge transport in state-of-the-art Lijrpir=\p; . (49

semiconductor nanostructures. In particular, aim of our 3D ) . . )
description was to properly treat—in addition to the carrier OUr numerical approach is then based on a direct diago-

quantum confinement along the growth direction—the in-Nalization of the Liouville superoperatd! in Eq. (47). The
plane energy relaxation and thermalization dynamics. steady-state density matrix we are looking for will thus
As recalled in the introductory part of the paper, anycorrespond to tha=0 eigenvectop;=p,,q,-
single-particle quantitA—e.g., charge current, carrier drift ~ In the absence of carrier-phonon scattering it is easy to
velocity, mean kinetic energy, etc.—may be evaluated startverify that any diagonal density matrix, ,,=f,, 04,4, i @
ing from the single-particle density matrix in E¢L4) ac-  possible solution of the steady-state transport equation in Eq.
cording to (46). This amounts to saying that in this case the eigenvalue
spectrum contains the=0 value only. Indeed, physically
_ _ speaking, in the phonon-free case any initial “semiclassical
(A)=triAp} alzz AayarPagay; “49 state”—corresponding to a given populatiof), of the
) ) ) . ~Wannier-Stark  states without any interlevel phase
whereA is the single-particle operator describing the physi-coherence—will not be altered by the free-carrier system
cal quantityA andA,, ,,=(a;|Alay) are its matrix elements  Hamiltonian[see Eq(24)].
within the gauge-dependent representatianThe quantity In contrast, in the presence of carrier-phonon interaction
in Eq. (44) describes a physical property of the system andthe eigenvalue spectrum of the Liouville superoperafor
as such, should be gauge invariant; indeed, this can be easi#xhibits a singl€i.e., nondegenerate. =0 eigenvalue, and

Ill. A FEW SIMULATED EXPERIMENTS
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therefore a unique stationary solutimlaz. Moreover, in 7 ' 77 ' 777

the presence of carrier-phonon coupling the Liouville super-
operator £ contains nondiagonal elements{‘.alaﬁaiaé.

This, in turn, may give rise to a nondiagonal steady-state
density matrix, which may be regarded as a residual single-
particle phase coherence.

Given the stationary single-particle density ma1psi3<1a2,

we finally compute any physical quantity of interest accord-
ing to Eq.(44). To this end, the only ingredients needed are
the matrix element#\, ,, of the physical quantity under ol , . , , , ,
investigation[see Eq.(44)]. 5 <10 5 0 5 LU
In order to better evaluate the results of the gauge-
invariant calculation described so far, we have also imple- g 1. Schematics of the prototypical 45 A/45 A GaAs/
mented a corresponding calculation based on the semiclasgit Ga, ,As superlattice structure considered in our simulated ex-
cal treatment of the ICFE within the vector-potential pictureperiments: Real-space periodic nanostructure prdfiteaded re-
described in Sec. Il C. In this case, by combining the explicitgions correspond to barrigrand charge distribution corresponding
form of the ¢ terms in Eg. (25 with the “ad hoc¢ to the ground-statek(=0) envelope function in the field-free case
Boltzmann-like collision operator in E¢35) and neglecting (n(ru)“|¢EH:0,V:1(V\|)|2) (see texx
interband ¢—v') Zener tunneling, the steady-state trans-
port equation(45) reduces to a semiclassical equation of thewithinthe usual envelope-function approximation in terms of
form a space-independent effective mass. They come out to be
products of two-dimensional plane waves and one-
dimensional envelope functions:

charge distribution

F
ey Vit 2 (Peoirwr firw = Pirwr ko fin) = 0.
k' v’
(50)

Here, the first contribution is the well-known drift term—
describing the intraband carrier acceleration induced by th?2 . . o
applied field F—while the explicit form of the scattering t denoting a suitable normalization area.

ratesP are given in Eq(36) written in the vector-potential _ " the free-field case, the envelope f“”“;?% in Eq.
gauge: a=k(t),». As for the gauge-invariant calculation (53 reduce to one-dimensional Bloch stat v corre-
previously described, also in this case we deal with a homosponding to the periodic heterostructure potential reported in
geneous linear transport equation fgt,. By introducing a  the inset of Fig. 2. As we can see, we deal with a relatively
suitable k-space discretization, the steady-state transporgmall band-edge discontinuityv{=250 meV). The latter,
equation in Eq(50) can be easily transformed into a corre- combined with a barrier width of 45 A, gives rise to signifi-
sponding eigenvalue problem, whase 0 solution provides cant interwell carrier tunneling. This is confirmed by the
the desired steady-state carrier distribution. Given sucifield-free ground-state charge distributi@olid curve in Fig.
steady-state solutiofy,, we may obtain any generic single- 1), which shows a clear fingerprint of carrier delocalization.
particle physical quantity via the semiclassical version of Eq.  The interwell coupling displayed in Fig. 1 should translate

1
bol1)= e T (1), (53

(44), i.e., into a dispersive energy-momentum relation along the
growth direction. This is confirmed by the superlattice mini-
<A>:k2 Akv,kvka' (51) 0.12 T T T T T T T
14 0.3
Finally, in order to compare the two ICFE treatments dis- 011} o2

cussed so far with the genuine Boltzmann theory—where the
ICFE is simply neglected—we shall replace thad‘hoc

o

energy (eV)

energy (eV)

scattering rateP in Eq. (36) with the standard rates given by otor 00 ]
Fermi’'s golden rule, i.e.,
0.09}
PO =23 Qo NESOL, . (52
wa! T p2 £ Beatal Ha a0’ 0.08 _ s
-04 -083 -02 -01 00 01 02 03 04

. . K -1
As prototypical system, we have considered a state- z(nm )
of-the-art GaAs-based nanometric superlattice. More specifi- FiG. 2. Single-miniband diagrartminiband width of about 20
cally, we have performed a detallgd investigation of _theme\/) corresponding to the superlattice structure depicted in Fig. 1.
45 Aia5 A GaAs/A} Ga, -As superlattice structure shown in The superlattice potential profiland-edge discontinuity of 0.25

Fig. 1. The single-particle carrier statfsr)} are described eV) is also shown in the insdtee text
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T T T T T 5 T r T T T T T T T T T T T
F=10kV/cm |

charge distribution
drift velocity (10° cm/s)

20 30 40 50 60 70 80
electric field (kV/cm)

FIG. 4. Steady-state carrier drift velocity as a function of the
applied field for the superlattice structure of Fig. 1 at room tempera-
ture in the low-density limit. Gauge-invariant res(dguaref con-
ventional ICFE model(triangles, and Boltzmann limitdiamond$
(see text Lines are a guide to the eye.

charge distribution

structure previously introduced in the presence of carrier-LO
phonon scattering. More specifically, we have evaluated the
carrier drift velocity as a function of the applied field. The
latter can be readily computed according to E&f), using

as single-particle quantity the velocity operator:

P in
AZ—Z—FV. (54)

charge distribution

Figure 4 shows the steady-state carrier drift velocity as a
function of the applied field for the superlattice structure of
Fig. 1 at room temperature in the low-density limit. Here, we
R R A R A M YA 1 A 5 compare the usual ICFE modelee Eq.(50)] (triangles to

-30 -20 -10 0 10 20 30 the result of the proposed gauge-invariant appr¢aeb Egs.
£ () (41), (43), and(46)] (squares At low fields the two curves

FIG. 3. Charge distribution corresponding to the Wannier-Stark€Xhibit a similar behavior, but they tend to separate as the
states in the superlattice structure of Fig. 1 for different values of1€ld increases. In particular, the drift velocity corresponding
the applied fieldF. For each field three states are displayad: tO the usual ICFE treatment within the accelerated-Bloch-
——1 (dash-dotted curye n=0 (solid curve, andn=1 (dotted  State picture at high fields is by far higher than the gauge-
curve (see text invariant one; this is exactly the potential overestimation of

the ICFE previously identified: due to the neglect of the non-
band profile reported in Fig. 2. As we can see, we deal withdiagonal Zener-like terms in E¢37)—induced by the time
a carrier miniband only; the latter has a width of about 20variation of the basis states—one underestimates the carrier-
meV, which is smaller than the LO-phonon energy. For thisphonon coupling, thus leading to significant overestimations
reason, generally speaking, carrier-LO phonon scattdiing of carrier drift velocity and current. The peak at

particular, emission processeds accompanied by a signifi- ~40 kV/cm, in both curves, corresponds to the phonon reso-

cant perpendiculafin-plane versus parallel energy transfer nance, i.e., for this value of the applied fi¢gidhe Wannier-

(see below Stark or Bloch energeFd is equal to the LO-phonon en-
In the presence of an applied fiekl along the growth ergy.

direction, the one-dimensional envelope functigfswithin Let us finally compare the two quantum-mechanical re-

the scalar-potential gaugep&0) correspond to the usual sults (squares and trianglesvith the purely semiclassical
Wannier-Stark states. The latter are displayed in Fig. 3 fofBoltzmann one[see Eqs(50) and (52)] (diamond$. The
different values of the applied field. As we can see, for in-latter shows a good agreement with the gauge-invariant one
creasing values of the field we deal with an increasing statésquares for a wide field range(20-50 kV/cm, while it
localization and a corresponding suppression of interweltliffers significantly from the standard ICFE modéti-
single-particle tunneling. angles.

The primary goal of our simulated experiments was the As anticipated, this may partially account for the surpris-
study of the current-voltage characteristics of the superlatticengly good agreement between semiclassical and rigorous
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guantum-transport calculations reported in Refs. 10 and 12ndependent formulation of Fermi’s golden rule; on the other
as well as for the anomalous carrier heating typical of stanhand, our analysis has clearly shown that the conventional
dard ICFE model$® description of high-field carrier-phonon scattering does not
We stress that the numerical analysis presented so fagiccount for the possible variation of our single-particle basis
based on a superlattice structure, may differ quantitativelstates. This is recognized to be the origin of the apparent
from the case of a bulk semiconductor. The main reason igiscrepancy between scalar- and vector-potential treatments
that the superlattice miniband width in Fig. 2 is smaller thangt the problem; indeed, a proper account of such contribu-

the phonon energy; it follows that an electron with zero oriiong |eads, in general, to an ill-defined Markov limit in the

negligible in-plane momentum is not able to reach the grrier.phonon interaction process, attributing to the scalar-

phonon-emission threshold. However, in the presence Ofg?otential or Wannier-Stark picture a privileged role. Starting
r

ng}%lig?lfﬁ gf(lj?éufgf ecr?er:lerstr;v:lsfgi('pietmf?)rlwlgsvsa tﬁgf?n om the generalized scattering rates evaluated within the
paraflel-to-perpen : 9y ’ .scalar-potential picture, we have extended their definition to
the high-field regime of Fig. 4 the average electron energy i$

typically much higher than the phonon energy, thus allowin Any generic gauge via a cprrespondmg unitary transforma-
for carrier-phonon scattering. We can thus conclude that i%'on within our single-particle state space. .
bulk systems the current overestimation previously identified The “eg'eCF of such Zener-like contrlbutlon§ n t_he trans-
could be of smaller magnitude, but qualitatively speaking wePCrt €quation is shown to lead to a wrong estimation of the
expect a similar behavior. high-field voltage-current characteristics, and may partially
As final remark, we stress that the choice of Wannier-2ccount for the surprisingly good agreement between semi-
Stark basis states used to evaluate the current-voltage ch&tassical and rigorous quantum-transport calculations previ-
acteristics becomes problematic in the low-field regirffe ( Ously reported. This has been confirmed by fully three-
—0) as well as in the bulk limitd—a). Indeed in both dlmensu_)nal simulations of (_:harge trgnsport in stat_e-qf_—the-
cases the Wannier-Stark energy=eFd is much smaller art semu:ondugtor _superlattlces, which show a significant
than the phonon energy; this requires to include in our simuCUrrent overestimation. , o
lation a relatively high number of Wanier-Stark states. How- From our analysis we can conclude that, in addition to the
ever, apart from this purely technical limitation, there is noMarkov approximation, the neglect of nondiagonal density-
principle problem to apply the approach presented so far t§atrix elements—typical of the standard Boltzmann trans-

bulk systems. port theory—may lead to nonphysical results; indeed, the
latter, being intrinsically basis dependent, is not compatible
IV. SUMMARY AND CONCLUSIONS with the gauge-invariant formulation of the problem.

We finally stress that the above conclusions are not pecu-
In summary, we have revisited the standard treatment dfar of the carrier-phonon coupling considered in the paper;
carrier-phonon scattering in the presence of high electritn contrast, they apply to any single-particle interaction
fields by means of a gauge-invariant density-matrix formal-mechanism, such carrier-plasmon and carrier-impurity scat-
ism. The proposed formulation of the quantum-transportering, and in principle can be extended to two-body interac-
problem has allowed us, on the one hand, to derive a gaugé&ens, such as carrier-carrier scattering.
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Contrary to the conventional time-dependent perturbation theory, quantum-mechanical—or nondiagonal—generalization is then
we thus propose a kinetic description based on a time-dependent given by the scattering matric€8°", which describe the effect

guantum-mechanical representation. on the time evolution of the density-matrix element,,, due to

20F, Rossi and T. Kuhn, Rev. Mod. Phy&4, 895 (2002. the generic element,; ;.

21This is defined as the average value of two creation and destru®The presence of other interaction mechanisms, such as carrier-
tion operators: its diagonal elemerits=p,, correspond to the carrier and carrier-plasmon scattering, may give rise to addi-
usual distribution functions of the semiclassical Boltzmann tional “intracollisional effects;” in this case the main feature is a
theory while the off-diagonal termswf # @) describe the de- single-particle spectral broadening usually referred to as “colli-
gree of quantum-mechanical phase coherence between gtates  sional broadening’(Ref. 20. Such an effect can be easily in-
and as. cluded in our theoretical approach by adding an imaginary con-

22such semiclassical rates exhibit the well-known structure of Fer- tribution to the self-energf) in Eq. (32). However, in the low-
mi's golden rule; they describe the scattering probability for a  density limit considered in our simulated experiments such
phonon-induced transition between statesand «’. Their collisional-broadening effects are expected to be negligible.
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