
01 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Low-Complexity, Efficient 9/7 Wavelet Filters VLSI Implementation / Martina, Maurizio; Masera, Guido. - In: IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS. II, EXPRESS BRIEFS. - ISSN 1549-7747. - STAMPA. - 53:11(2006),
pp. 1289-1293. [10.1109/TCSII.2006.883092]

Original

Low-Complexity, Efficient 9/7 Wavelet Filters VLSI Implementation

Publisher:

Published
DOI:10.1109/TCSII.2006.883092

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1504254 since:

IEEE

1

Low-Complexity, Efficient 9/7 Wavelet Filters VLSI
implementation

Maurizio Martina, Member IEEE, Guido Masera, Member IEEE

Abstract— This paper proposes a novel low-complexity, effi-
cient 9/7 wavelet filters VLSI architecture for image compression
applications. The 9/7 wavelet filters are widely used in different
image compression schemes, such as the JPEG2000 image coding
standard. Thus the implementation of efficient codecs is of great
concern. The performance of a hardware implementation of the
9/7 filter bank depends on the accuracy of coefficients repre-
sentation. However the greatest part of current implementations
does not consider 9/7 wavelet filters starting from their original
derivation, but as taps to be implemented. The aim of this
work is to show that great complexity reduction with excellent
performance can be achieved going through the derivation of the
9/7 taps values.

Index Terms— low-complexity, 9/7 filter-bank, JPEG2000

I. INTRODUCTION

The Discrete Wavelet Transform (DWT) has gained wide
popularity due to its excellent decorrelation property [1]: many
modern image and video compression systems embody the
DWT as the transform stage (e.g. [2]). It is widely recognized
that the 9/7 filters [3] are among the best filters for DWT based
image compression [4]. In fact the JPEG2000 image coding
standard [5], [6] employs the 9/7 filters as the default wavelet
filters for lossy compression.

The performance of a hardware implementation of the 9/7
filter bank depends on the accuracy with which filter coeffi-
cients are represented. However high precision representation
increases hardware resources and processing time. To reduce
the complexity of the 9/7 filters the lifting scheme [7] can be
adopted. Unfortunately the lifting scheme increases hardware
timing accumulation due to its serial nature [8], so that
for certain applications it cannot be employed. The flipping
structure [8] is an attractive alternative to the standard lifting
scheme DWT, since it reduces timing accumulation, however
it still requires multiplications.

Complexity reduction can be achieved resorting to a filter
bank implementation, in particular very good results can be ob-
tained with the cascaded method proposed in [9] and exploited
in [10]. The basic idea described in [9] is to minimize the
number of bits required to represent the 9/7 coefficients. Since
this operation would move filters zeros from their original
position, the authors modify some terms to account for zeros
compensation. Other techniques to reduce the complexity of
filter banks implementations are based on distributed arith-
metic (e.g. [11]) where only adders are employed.

The authors are with CERCOM (Center for Multimedia Radio Communi-
cations) - Dipartimento di Elettronica - Politecnico di Torino. Copyright (c)
2006 IEEE. Personal use of this material is permitted. However, permission
to use this material for any other purposes must be obtained from the IEEE
by sending an email to pubs-permissions@ieee.org.

G(z)

H(z)
~

G(z)
~

2

2 2

2

x x̂

H(z)

Fig. 1. Filter bank block scheme

Currently the compatibility of low complexity 9/7 filters
implementation into standard image/video coding systems has
not been stressed yet. The aim of this paper is to show that
great complexity reduction can be achieved analyzing the 9/7
filters directly from their analytical derivation [3]. In particular,
employing the proposed solution into a JPEG2000 encoder
and decoding with a standard JPEG2000 decoder, the image
quality loss is negligible. Moreover the complexity and the
power consumption with respect to a standard implementation
are nearly halved. It is worth noticing that the proposed
methodology can be extended to other filters belonging to the
9/7 family as it will be discussed in the following. Compared
to the best solution proposed in [9] our solution shows that T ,
the total number of non zero terms used when writing all the
coefficients in sum or difference of powers of two (SPT), is
the same: T = 32. Moreover our implementation shows that
T can be nearly halved exploiting filters symmetry without
any loss in terms of performance.

The paper is organized as follows: in section II the 9/7
filters theoretical derivation [3] is analyzed. In section III
the proposed low-complexity architecture is derived and de-
scribed. Experimental results, shown in section IV, prove that
the proposed low-complexity solution grants excellent perfor-
mance together with very interesting complexity and power
consumption figures. Finally in section V some conclusions
are drawn.

i

g g gg

x x x x x x x

0 1 2 3

i i−1 i+1 i−2 i−3i+2 i+3

0 01 12 2 33 4

h h h hh

x x x x x x x x x

0 1 2 3 4

i i−1 i+1 i−2 i−3 i−4i+2 i+3 i+4

yl yh i

w w w w w w w w w

Fig. 2. Fast 9/7 direct implementation

2

TABLE I
COEFFICIENTS FOR THE 9/7 FILTERS: ORIGINAL, PROPOSED, 9 BITS QUANTIZED

n 2−1/2h[n] 2−1/2h̃[n] 2−1/2h
′
[n] 2−1/2g

′
[n] 2−1/2h

(9)
qnt[n] 2−1/2g

(9)
qnt[n]

0 6
8
K1 −K2 + 2

8
K3

6
8
J1 − J2

1
2

+ 1
16

+ 1
32

+ 1
128

1
2

+ 1
16

0.601562500 0.556640625

±1 4
8
K1 − 7

8
K2 + 4

8
K3

4
8
J1 − 7

8
J2

1
4

+ 1
64

1
8

+ 1
16

+ 1
64
− 1

2
0.265625000 −0.296875000

±2 1
8
K1 − 4

8
K2 + 6

8
K3

1
8
J1 − 4

8
J2 − 1

16
− 1

64
− 1

32
−0.080078125 −0.029296875

±3 − 1
8
K2 + 4

8
K3 − 1

8
J2 − 1

64
1
32

+ 1
64

−0.017578125 0.044921875

±4 1
8
K3 0 1

32
− 1

256
0 0.025390625 0

II. THEORETICAL DERIVATION

Let’s consider the filter bank shown in Fig. 1, where H(z) =∑k
i h[i]z−i and G(z) =

∑l
i g[i]z−i are the low pass and

high pass analysis filters with length k and l respectively, and
H̃(z) =

∑k̃
i h̃[i]z−i and G̃(z) =

∑l̃
i g̃[i]z−i the low pass

and high pass synthesis ones with length k̃ and l̃. It is well
known that wavelet filter banks ought to satisfy the perfect
reconstruction conditions [1]: H(z)H̃(z)+G(z)G̃(z) = 2 and
H(−z)H̃(z)+G(−z)G̃(z) = 0. Imposing the biorthogonality
condition together with filters symmetry (G̃(z) = H(−z) and
G(z) = H̃(−z)) we can rewrite the perfect reconstruction
conditions as:

H(z)H̃(z) + H̃(−z)H(−z) = 2 (1)

H(−z)H̃(z) + H̃(z)H(−z) = 0 (2)

As shown in [3], writing the non distortion condition (1) on
h and h̃ in terms of trigonometric polynomials, it becomes
H(ξ)H̃(ξ) + H(ξ + π)H̃(ξ + π) = 1. Moreover, together
with divisibility of H and H̃ respectively by (1 + e−jξ)k and
(1 + e−jξ)k̃ [3] it leads to:

H(ξ)H̃(ξ) = cos(ξ/2)2l

[
l−1∑
p=0

(
l − 1 + p

p

)

· sin(ξ/2)2p + sin(ξ/2)2lR(ξ)
]

(3)

where R(ξ) is an odd polynomial in cos(ξ) and 2l = k + k̃.
The 9/7 filters have been proposed in [3] as a particular

case of trigonometric polynomials that satisfy (3) with
R ≡ 0, k = 4 and k̃ = 4. When R ≡ 0, k = 4
and k̃ = 4, we obtain that (3) becomes H(ξ)H̃(ξ) =
cos(ξ/2)8

[
1 + 4 sin(ξ/2)2 + 10 sin(ξ/2)4 + 20 sin(ξ/2)6

]
.

The term cos(ξ/2)8 can be split into two equal parts with
degree 4. The polynomial in sin(ξ/2) can be considered as a
third order equation and factorized into two polynomials with
degree 2 and 4 respectively in order to obtain:

H(ξ)H̃(ξ) = 20 cos(ξ/2)8
[
(r + sin(ξ/2)2)

· (a + b sin(ξ/2)2 + sin(ξ/2)4)
]

(4)

where r is the real solution of the third order equation

1/20 + 4/20x + 10/20x2 + x3 = 0 (5)

the product and the sum of the two complex conjugate
solutions are respectively a and b. Thus (4) leads to:

H(ξ) =
cos(ξ/2)4

a

[
a + b sin(ξ/2)2 + sin(ξ/2)4

]
(6)

H̃(ξ) =
cos(ξ/2)4

r

[
r + sin(ξ/2)2

]
(7)

From (6) and (7) we can build filters coefficients [3] sub-
stituting: cos(ξ/2) = (ejξ/2 + e−jξ/2)/2 and sin(ξ/2) =
(ejξ/2 − e−jξ/2)/2j.

Thus we obtain the coefficients shown in Table I where
K1 = (a + b/2 + 3/8)/2a, K2 = (b + 1)/8a, K3 = 1/32a,
J1 = (r + 1/2)/2r, J2 = 1/8r. Similar expressions can be
found for other filters which satisfy (3).

III. PROPOSED ARCHITECTURE

The standard architecture for a fast 9/7 implementation is
the so called, direct implementation, where samples that have
to be multiplied by the same tap are first added together
(wi with i ∈ 0, 1, 2, 3, 4), then multiplied by the proper tap
and finally partial results are combined with a tree adder (as
depicted in Fig. 2) to obtain the result yli (yhi). Since our
application is image compression, the

√
2 term in Table I will

appear twice in the computation: once during rows filtering
and once during columns filtering. The JPEG2000 image
coding standard embeds the

√
2 factors into the quantizer, so

that in the following description they won’t be considered any-
more. In order to reduce the direct implementation architecture
(DA) complexity, the analysis described in section II will be
employed to derive: 1) a preliminary architecture (PA), 2) a
low complexity architecture (LCA), 3) a very low complexity
architecture (VLCA).

Considering the two filters h and h̃ as vectors, we can
represent them as the product of a matrix M and a vector K
(for h) or J (for h̃). Besides h and h̃ symmetry suggests, for
the sake of simplicity, to concentrate only on taps with index
n ≥ 0 (see Table I). Thus h = M · K and h̃ = M (5,3) · J
where

M =




6
8 − 8

8
2
8

4
8 − 7

8
4
8

1
8 − 4

8
6
8

0 − 1
8

4
8

0 0 1
8




, K =




K1

K2

K3


 , J =

[
J1

J2

]
(8)

and M (5,3) is the sub-matrix obtained from M removing the
5th row and the 3rd column. Being G(z) = H̃(−z) a similar
expression for g can be easily derived: g = N (5,3) · J where

N =




6
8 − 8

8
2
8

− 4
8

7
8 − 4

8
1
8 − 4

8
6
8

0 1
8 − 4

8
0 0 1

8




N (5,3) =




6
8 − 8

8
− 4

8
7
8

1
8 − 4

8
0 1

8


 (9)

The matrix notation emphasizes how we can perform the
filtering operations required by the 9/7 filters reducing the
number of multiplications, as it will be detailed in next section.

3

i+4

1

1

yl

i+1i−1 i−4 xx

i

4

3

xx

1

ix

0

2

2

i+3

i yh

2

x xi−2 i+2 i−3

3

x x

w w w

t1

t2

1u

1/2 1/4 1/2 1/4 1/8 1/2 1/4 1/8 1/81/2 1/8

w

J

J

K

K

K

− −

t3

2u
−
−

−

w

1

Fig. 3. Fast modified 9/7 direct implementation

A. Preliminary architecture

The PA represents the first modification with respect to the
DA shown in Fig. 2. The basic idea is to perform the simple
operations described by the matrix M first, then to multiply
the results by the K values, and finally to add together the
intermediate values to obtain yli, as described by (10).

yli = h0w0 + h1w1 + h2w2 + h3w3 + h4w4

= (M1,1K1 + M1,2K2 + M1,3K3)w0 +
+(M2,1K1 + M2,2K2 + M2,3K3)w1 +
+ . . . + (M5,1K1 + M5,2K2 + M5,3K3)w4

= (M1,1w0 + M2,1w1 + . . . + M5,1w4)K1 +
+(M1,2w0 + M2,2w1 + . . . + M5,2w4)K2 +
+(M1,3w0 + M2,3w1 + . . . + M5,3w4)K3 (10)

where wi with i ∈ 0, 1, 2, 3, 4 are the values shown in Fig. 2.
The same approach can be used for yhi:

yhi = (N (5,3)
1,1 w0 + . . . + N

(5,3)
4,1 w3)J1 +

+(N (5,3)
1,2 w0 + . . . + N

(5,3)
4,2 w3)J2 (11)

In Fig. 3 a block scheme for the PA is shown, where it can
be observed that first the additions are applied and then the
multiplications by K or J are performed. Given other filters
that satisfy (3), a matrix expression similar to the ones shown
in (10) and (11) can be obtained. So that an architecture similar
to the one depicted in Fig. 3 can be derived for other filters.

B. Low-complexity architecture

The architecture shown in Fig. 3 reduces the number of
multiplications from 9 to 5. Concentrating on the values K1,
K2, K3, J1 and J2 it is possible to further reduce the num-
ber of multiplications. Considering the real values obtained
solving (5): r = 0.34238409485837, a = 0.14603482098280
and b = 0.15761590514163, we can reduce the number of
multiplications approximating K and J values on a very small
number of bit. As suggested in [9] better performance can be
achieved granting that original filters zeros are kept as much
as possible in their original position. Extensive simulations

Pole−Zero Map

Real Axis

Im
ag

 A
xi

s

original

approximated

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

original
approximated

Pole−Zero Map

Real Axis

Im
ag

 A
xi

s

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4

original
approximated

Fig. 4. Original and approximated h and h̃ filter zeros

show that K and J values can be approximated as: K1 =
(a+ b/2+3/8)/2a ' 2+1/16, K2 = (b+1)/8a ' 1, K3 =
1/32a ' 1/8 + 1/16 + 1/32, J1 = (r + 1/2)/2r ' 1 + 1/4
and J2 = 1/8r ' 1/4 + 1/8. These values can be obtained
starting from K1, K2, K3, J1 and J2 binary representation
on 16 bits and then trying to approximate them on a small
number of bits while granting that the zeros position is almost
the same of the original filters. In Fig. 4 zeros positions for
the original and the approximated filters are shown. As it
can be observed zeros of the approximated filter are very
close to the original ones. This approximation has a positive
impact from the architectural point of view. In fact with the
proposed approximation we can modify the architecture shown
in Fig. 3 to obtain a low-complexity architecture. In Fig.
5 the multiplierless, low-complexity proposed architecture is
depicted, where the multiplications have been substituted with
additions.

C. Very low-complexity architecture

From Fig. 5 it is possible to further reduce the architecture
complexity collapsing together some of the partial results.
This operation can be obtained from Fig. 5 writing yli and
yhi as functions of wi with i ∈ 0, 1, 2, 3, 4. More precisely
considering K

′
1 = 2+1/16, K

′
2 = 1, K

′
3 = 1/8+1/16+1/32,

4

J
′
1 = 1+1/4 and J

′
2 = 1/4+1/8, we can build the equivalent

filters h
′

and g
′

as h
′
= M ·K ′

or g
′
= N (5,3) ·J ′ (see Table

I). The implementation of h
′

and g
′

leads to the architecture
shown in Fig. 6 where multipliers are not employed and the
number of adders is reduced with respect to the architecture
shown in Fig. 5. It is worth noticing that h

′
and g

′
can be

represented on 9 bits as 2 complement numbers, with 1 bit
for the sign and the integer part and 8 bits for the fractional
part. However h

′
and g

′
are slightly different from the filters

we would obtain quantizing the original h and g on 9 bits (h(9)
qnt

and g
(9)
qnt). This difference impacts on filters performance, as it

will be detailed in section IV, since the position of h
′

and g
′

zeros is near h and g zeros, whereas the position of h
(9)
qnt and

g
(9)
qnt zeros is rather far from h and g ones. Compared with the

best solution proposed in [9] our solution exhibits SPTh′ = 19
and SPTg′ = 13. However, exploiting filters symmetry, the
proposed architecture’s complexity depends only on the SPT
of taps with non negative index (h

′
0, h

′
1, h

′
2, h

′
3 h

′
4 and g

′
0, g

′
1,

g
′
2, g

′
3). Thus the proposed very low-complexity architecture

needs only SPTh′ = 12 and SPTg′ = 8. Moreover the
architecture depicted in Fig. 6, exploiting some SPT terms that
are common both to h

′
and g

′
, further reduces the amount of

hardware required. In fact as it is shown in Table I many terms
are common to both h

′
and g

′
, namely both h

′
0 and g

′
0 need

the terms 1/2 + 1/16.

x

1

yl

i−4 xx

43

ix

i

0

i+1 i+2i−2 xx

2

i+3i−3 xx i+4i−1 x

i yh

−

t1

t2

1u

1/2 1/4 1/2 1/4 1/8 1/2 1/4 1/8 1/81/2 1/8

w

t3

2u
−
−

2

1/16

−

−

1

1/4

1

1/4

1/8

1/8

1/16

1/32

w w ww

1

Fig. 5. Fast, low complexity, modified 9/7 direct implementation

IV. EXPERIMENTAL RESULTS

The proposed very low-complexity architecture has been
tested inside the JPEG2000 image coding standard framework
[5]. A free JPEG2000 codec written in C language, openjpeg
[12] that is Class-1 Profile-1 compliant with the standard, has
been employed for our tests. Five standard images have been
used: ‘Lenna’ 256× 256 (img1), ‘Barbara’ 512× 512 (img2),
‘Boat’ 512 × 512 (img3), ‘Golhill’ 512 × 512 (img4) and
‘Fingerprint’ 512 × 512 (img5) [13]. The number of DWT
decomposition levels (L) has been varied from 1 to 3 for
256×256 images and from 1 to 4 for 512×512 images. This
corresponds to Λ = L + 1, where Λ is the number of DWT

3

i+2x

0

i−2 xx

2

xx i+3i−3i−1

yl i

xx

yh i

i+4i−4

1

i xx

4

i+1

1/256

w w ww w

1/161/2 1/32 1/128 1/2 1/4 1/8 1/16 1/64 1/321/16 1/64 1/32 1/64 1/32

Fig. 6. Fast, very low complexity, 9/7 implementation

resolution levels required by openjpeg. Different compression
ratios (ρ) have been imposed, namely 1:1, 8:1, 16:1, 32:1 and
64:1, precinct and code-block size are the encoder default val-
ues. First we evaluated the original openjpeg implementation
performance, in terms of peak signal to noise ratio (PSNR), for
the different L and ρ values on the aforementioned images.
Then we substituted the standard 9/7 lifting scheme imple-
mentation of the encoder with proposed very low-complexity
filter bank one, leaving the standard 9/7 lifting scheme at the
decoder [13] (original openjpeg decoder). Finally we employed
the h

(9)
qnt and g

(9)
qnt filters to show the loss of quality with

respect to the proposed solution (see Table I). To obtain the
results shown in Table II, a filter bank implementation must
be employed. Since the equivalent lifting scheme (obtained
converting h′[n] and g

′
[n]) is based on divisions [7], it requires

a higher number of fractional bits. This is a critical aspect
in fixed point DWT implementations as in openjpeg. Results
shown in Table II prove that the proposed very low-complexity
9/7 filters are compatible with the JPEG2000 image coding
standard. In fact given a JPEG2000 bit-stream generated via
the proposed very low-complexity DWT, a standard JPEG2000
decoder can decode it granting high quality in terms of
PSNR even at ρ=1:1. This adavantage stems from the position
of our filter bank zeros. In fact, as shown in Fig. 4, they
are extremely close to the 9/7 original zeros. Moreover the
DA and the VLCA have been implemented in VHDL and
synthesized on a 0.13 µm standard cells technology. Since
all the proposed implementations have in common the first
additions (the shaded part in Fig. 2, 3, 5 and 6) the wi with
i ∈ 0, 1, 2, 3, 4 have been considered as the input signals of the
architectures. To make the comparison fair the architectures
have been implemented as combinational blocks. Even if this
choice can not achieve high clock frequencies, we are granted
that further complexity in term of sequential elements is not
added into the design. In fact with registers the logic syn-
thesizer could perform retiming operations, that would make
the comparison not fair. Thus the results obtained with the
logic synthesizer design compiler (by Synopsys) actually

5

TABLE II
PERFORMANCE COMPARISON OF THE PROPOSED LOW-COMPLEXITY DWT VERSUS THE STANDARD JPEG2000 IMPLEMENTATION AND A JPEG2000

IMPLEMENTATION WITH DWT TAPS REPRESENTED ON 9 BITS, PSNR FOR MULTIPLE DECOMPOSITION LEVELS AND COMPRESSION RATES

Image L
Openjpeg [dB] Openjpeg 9 bit [dB] Low-complexity [dB]

1:1 8:1 16:1 32:1 64:1 1:1 8:1 16:1 32:1 64:1 1:1 8:1 16:1 32:1 64:1

img1
1 49.41 37.08 30.59 25.22 19.36 43.92 36.88 30.50 25.17 19.14 49.35 37.11 30.62 25.22 19.33
2 49.16 38.50 33.29 28.72 24.61 39.38 36.33 32.56 28.47 24.48 48.79 38.50 33.30 28.74 24.60
3 49.26 38.75 33.44 29.11 25.82 36.66 34.91 31.97 28.44 25.44 48.48 38.72 33.48 29.13 25.79

img2

1 49.57 35.77 29.48 24.05 20.63 45.16 35.82 29.63 24.12 20.55 49.48 35.75 29.52 24.06 20.61
2 49.25 37.56 32.16 27.69 24.17 40.88 36.42 31.82 27.74 24.25 49.07 37.56 32.08 27.70 24.18
3 49.21 37.87 32.78 28.75 25.31 38.15 35.29 31.83 28.36 25.38 48.80 37.78 32.74 28.75 25.32
4 49.21 37.89 32.78 28.83 25.79 36.34 34.29 31.38 28.22 25.45 48.53 37.77 32.82 28.86 25.79

img3

1 49.42 37.66 32.64 28.22 23.39 44.62 37.52 32.58 28.29 23.49 49.45 37.61 32.63 28.28 23.39
2 49.11 38.87 33.96 30.14 26.96 40.35 37.10 33.31 30.07 26.85 48.92 38.84 34.01 30.10 26.96
3 49.06 39.04 34.46 30.88 27.86 37.38 35.54 32.93 30.17 27.57 48.72 39.03 34.47 30.91 27.96
4 49.06 39.08 34.55 30.99 28.06 35.44 34.14 32.16 29.78 27.41 48.58 38.99 34.55 31.01 28.00

img4

1 49.80 35.77 31.68 27.55 23.14 44.76 35.70 31.70 27.54 22.93 49.77 35.79 31.70 27.57 23.13
2 49.57 36.32 32.87 30.10 27.37 40.37 35.24 32.35 29.87 27.42 49.30 36.33 32.94 30.16 27.37
3 49.55 36.45 33.15 30.53 28.43 37.54 34.12 31.94 29.77 28.00 49.12 36.40 33.16 30.52 28.43
4 49.54 36.45 33.19 30.52 28.48 35.24 32.98 32.23 29.31 27.72 49.15 36.44 33.19 30.52 28.45

img5

1 49.68 35.80 31.73 27.76 17.72 42.89 35.60 31.68 28.02 17.58 49.63 35.78 31.73 27.95 17.72
2 49.54 36.18 32.36 29.14 25.99 37.96 34.42 31.51 20.89 26.12 49.31 36.17 32.36 29.13 25.98
3 49.51 36.26 32.45 29.48 26.79 34.82 32.71 30.65 28.44 26.20 49.32 36.24 32.46 29.47 26.78
4 49.52 36.25 32.48 29.52 26.88 32.58 31.20 29.64 27.85 25.95 49.29 36.24 32.49 29.52 26.88

represent the complexity of the three architectures. In Table III
post synthesis results are shown. The proposed architectures
produce both a low pass and a high pass coefficient every
clock cycle. Therefore for an R × C image RC/2 clock
cycles are required to perform the 1D DWT. Considering
that openjpeg represents the 9/7 taps on 13 bits it can be
observed that the proposed low-complexity architecture shows
interesting figures both in terms of complexity and power
consumption. In fact compared with a direct implementation,
the proposed one shows nearly the complexity of a 9 bit
direct implementation, with the performance of a 13 bit direct
implementation. However for the sake of completeness Table
III shows results for different data widths. Namely samples
are considered to be represented on m = 12, 13, 14, 15 and
16 bits, whereas taps for the DA on n = 9, 10, 11, 12 and
13 bits. Finally to compare the proposed VLCA with other
architectures the competitive, multiplierless solution proposed
in [11] have been implemented: both the former and the latter
show the same latency (RC/2). Since [11] is derived from a
13 bits filter bank, it shows the same PSNR of the original
openjpeg model. Table III shows that the proposed VLCA has
a reduced complexity even compared with [11].

V. CONCLUSION

In this paper a very low-complexity, efficient 9/7 wavelet
filters implementation, has been derived. A detailed analysis
of the proposed solution architectural impact has been shown
with performance and comparisons with the direct imple-
mentation. The proposed architecture shows to be compatible
with the JPEG2000 image coding standard: very high quality
can be achieved employing the proposed architecture in a
low complexity JPEG2000 encoder and decoding with a
standard JPEG2000 decoder. Moreover the proposed very low-
complexity architecture shows noteworthy figures in terms of
complexity and power consumption.

TABLE III
(A)REA [KGATES] AND (P)OWER [MW] FOR DA, VLCA AND [11]

DA VLCA [11]
m n=9 n=10 n=11 n=12 n=13
12 2.77 3.30 3.76 4.22 4.74 1.95 3.78
13 2.96 3.53 4.02 4.50 5.07 2.06 4.05

A 14 3.15 3.76 4.28 4.80 5.41 2.18 4.32
15 3.34 3.99 4.54 5.09 5.74 2.29 4.58
16 3.53 4.21 4.80 5.38 6.01 2.41 4.85
12 10.85 12.97 14.88 16.79 18.87 6.89 17.75
13 11.57 13.82 15.90 17.87 20.14 7.28 19.02

P 14 12.31 14.80 16.93 19.03 21.46 7.74 20.29
15 13.09 15.67 17.94 20.15 22.74 8.20 21.54
16 13.78 16.51 18.91 21.26 23.98 8.66 22.80

REFERENCES

[1] G. Strang and T. Q. Nguyen, Wavelets and Filter Banks. Wellesley-
Cambridge, MA: Wellesley, 1996.

[2] D. Taubman, “High performance scalable image compression with
EBCOT,” IEEE Trans. on Image Processing, vol. 9, no. 7, pp. 1158–
1170, Jul. 2000.

[3] M. Antonini et al. “Image coding using the wavelet transform,” IEEE
Trans. on Image Processing, vol. 1, no. 2, pp. 205–220, Apr. 1992.

[4] J. Liao et al. “Wavelet filter evaluation for image compression,” IEEE
Trans. on Image Processing, vol. 4, no. 8, pp. 1053–1060, Aug. 1995.

[5] M. Boliek, “JPEG 2000 Final Committee Draft,” 2000.
[6] B. F. Wu and C. F. Lin, “Memory-efficient architecture for JPEG 2000

coprocessor with large tile image,” IEEE Trans. on Circuits and Systems-
II, vol. 53, no. 4, pp. 304–308, Apr. 2006.

[7] I. Daubechies and W. Sweldens, “Factoring Wavelet Transforms into
Lifting Steps,” Bell Labs, Lucent Technologies, Tech. Rep., 1996.

[8] C. T. Huang et al. “Flipping Structure: an efficient VLSI architecture
for lifting-based discrete wavelet transform,” IEEE Trans. on Signal
Processing, vol. 52, no. 4, pp. 1080–1089, Apr. 2004.

[9] K. A. Kotteri et al. “Design of multiplierless, high-performace, wavelet
filter banks with image compression applications,” IEEE Trans. on
Circuits and Systems-I, vol. 51, no. 3, pp. 483–494, Mar. 2004.

[10] K. A. Kotteri et al. “A comparison of hardware implementations of
the biorthogonal 9/7 DWT: convolution versus lifting,” IEEE Trans. on
Circuits and Systems-II, vol. 52, no. 5, pp. 256–260, May 2005.

[11] M. Alam et al. “Efficient distributed arithmetic based DWT architec-
ture for multimedia applications,” in IEEE International Workshop on
System-on-Chip for Real-Time Applications, 2003.

[12] “http://www.openjpeg.org.”
[13] M. Martina, “Low Complexity 9/7 Wavelet: Modified OpenJPEG

model,” downloadable at www.vlsilab.polito.it/∼martina.

