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Abstract 
This paper describes a novel approach to traffic analysis in high speed networks 
based on data mining techniques. Data mining techniques are here applied as a 
means to effectively process the significant amount of captured data. The paper 
provides a first evaluation of the proposed approach in terms of its ability of 
extracting relevant information and its computational requirements. Such 
evaluation is based on experiments run on a prototypal implementation of the 
proposed approach. 
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1. Introduction 
One of the most critical issues in keeping a network under control is capturing and 
analyzing its traffic. The complexity of these tasks is increasing as networks 
become faster and faster. Major problems stem from the CPU power needed to 
process captured network traffic and the storage requirements of historical data. 
   Often, traffic capturing and analysis goes through the steps depicted in Figure 1, 
all of which are critical when operating at high data rates. Some limited processing 
(e.g. associating each packet to its corresponding flow) is carried out in real-time 
immediately during the capture session. Then, results can be stored on a disk to be 
further elaborated with off-line tools, which do not suffer the limitations stemming 
from real-time processing. 
   Ad-hoc solutions based on advanced hardware (e.g. the network interface cards 
provided by Endace [16]) and the use of SMP workstations or even clusters can 
mitigate the problems related to on-line monitoring and analysis (the first steps in 
Figure 1). However, no straightforward solution exists to reduce the criticalities of 
the subsequent steps. For instance, a 10 Gbps pipe carries more than 100 TBytes in 
the course of a day, which is a tremendous amount of data to be stored for 
subsequent processing. This results in two problems: on the one hand, the 
infrastructure needed to store such amount of data is sophisticated and costly and, 



 

on the other hand, locating relevant information within the saved data is 
computationally intense and time consuming. 
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Figure 1: Basic steps in network traffic capture and analysis. 

   A possible solution to the first problem was presented in a previous paper [13] by 
the same authors and encompasses a format to represent captured packets that (i) 
limits the amount of data stored and (ii) enables efficient processing. The second 
problem is addressed by the present paper proposing the application of data mining 
techniques for extracting relevant information from extremely large data sets stored 
according to the above mentioned format.  
   Section 2 summarizes the work presented in [13], which is key to the solution 
proposed here for two reasons. First, the outcome of the network analysis process 
depends on the quality of the information stored during the on-line phase. Second, 
the complexity of off-line data processing depends on the amount and format of 
such data. The application of data mining techniques to traffic analysis is presented 
in Section 0, including some preliminary results (obtained with the prototypal 
implementation in the Analyzer [1] traffic capturing and analysis tool). Section 4 
presents relevant literature with particular focus on work that apply data-mining 
techniques to network monitoring. Finally, Section 5 discusses the benefits and 
limitations expected from the deployment of the proposed approach, especially for 
what concerns the extraction of relevant information, which is still under 
evaluation. 

2. Data Collection and Storage 
Saving to disk each captured packet — or possibly just the most relevant bytes of it 
— may be feasible in some cases, but it anyway requires a significant amount of 
resources. Therefore, such approach cannot be considered as a general basis for 
scalable traffic monitoring procedures. In any case, single packets are not 
necessarily relevant for many types of traffic analysis whose focus is on packet 
flows. Our solution, similarly to the well-known and widely used Cisco System’s 
Netflow version 9, targets such types of traffic analysis. A probe collecting data 
saves a given set of information related to each flow, rather than dumping to disk 
(part of) the content of each packet. A flow is a set of packets that have the same 
value in a given set of fields, which are not necessarily IP source/destination 
address, source/destination port, and protocol type — widely used as flow 
identifiers in TCP/IP networks. Our flow definition is rather general and several 
fields can be included in the set that best characterizes each flow. For instance, if 



 

the administrator is interested in the analysis of Differentiated Services traffic, the 
value of the DS field can be saved for each flow. Alternatively, if the administrator 
is interested only in accounting based on the IP source address, this can be the only 
parameter identifying a flow. Due to the flexible architecture of the underlying 
dumping mechanism deployed by the proposed solution, the addition of a new field 
in the definition of flows does not preclude the possibility of extracting statistics on 
previously stored data that do not have such information. 
   Table 1 lists the fields extracted by default from each packet by the NetLogger 
module [14] that is a prototypal implementation of the traffic analysis solution 
integrated into Analyzer. Flow identification is not necessarily based on all of these 
fields, some of which might even not be present; for example, ARP-related fields 
will not be present when analyzing IPv6 packets. The NetLogger module can be 
customized to extract any field in any protocol header. 
 
Protocol Field name 
Ethernet Source and destination address, Protocol type 
VLAN Priority, VLAN ID 
ARP Source and destination IP address 
IP / IPv6 Traffic class, Prot.l type / Next header, Source and destination address 
ICMP / ICMPv6 Type 
TCP /UDP Source and destination port 

Table 1: Default list of fields extracted by the NetLogger module. 

   For each packet, after having devised the value of the applicable fields listed in 
Table 1, the probe determines the flow the packet belongs to and updates a set of 
counters (e.g. number of bytes/packets seen, timestamps, etc.). The selected fields 
are extracted for each flow and periodically dumped to disk together with the value 
of the above counters. The prototypal NetLogger module dumps (and clears) the 
entire content of the flow cache every N minutes; a session lasting longer will be 
represented by several subsequent records. The time between subsequent dumps of 
the flow cache is called flushing interval. 
   The NetLogger module implements the probe that captures network traffic, 
extracts flow information and dumps it to disk on the machine itself; therefore no 
protocols for exchanging data between the probe and the collector are needed. In 
case probe and collector are on different machines, Netflow version 9 (or the 
newest IETF IPFIX standard) can be used for transferring data. 
   To facilitate further information processing in our prototype flow information is 
saved into a database. SQLite was selected for this purpose since it provides very 
fast access and its overhead is only 5 times the time required to store data on a flat 
(text) file, as shown by the figures presented in [13]. 
   Figure 2 shows with an example the structure of the database (all details can be 
found in [13]). Although this structure is slightly more complex than the one 
traditionally deployed in traffic monitoring applications (one table with a fixed 
number of fields, and one record per flow), it has proved to be more flexible 
because it can accommodate a different number fields for each flow record (called 
transactions within the database structure) without changing the database structure. 



 

   Experimental results in [13] show that the NetLogger module storing each flow 
record in an SQLite database at the default flushing interval of 2 minutes features a 
20 to 1 reduction in disk space requirement when compared to saving each packet. 
The resulting disk files can be further compressed by means of general-purpose 
compression utilities, such as gzip, thus obtaining disk-saving factors of more than 
80:1. However, the amount of data resulting from this process is still rather high. In 
fact, the authors believe a further reduction in data size can only be obtained 
through the deployment of data mining techniques, as presented in the next section. 
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Figure 2. Snapshot of records stored in the database. 

3. Extracting relevant information 
A set of standard statistics (e.g. the protocol distribution, the amount of traffic sent 
by every host, etc.) can be easily obtained from the data stored as described above. 
However, even though the proposed approach results in significantly less 
information than a raw packet dump would produce, locating added-value 
information (e.g., locating an ongoing security attack) might be extremely 
cumbersome, if at all possible, for the network administrator. 
   We have been experimenting the application of data mining techniques to large 
databases structured as described in the previous section, wherein each sample of a 
flow (called “transaction” in the NetLogger database) is represented by a variable-
length record. Particularly, our prototypal NetMiner module [15], integrated in 
Analyzer, implements data mining techniques for the extraction of Frequent 
Itemsets and Association Rules [2]. 
   An Itemset is a set of elements — pairs of field/value records in the database — 
characterized by a given value in one or more fields (e.g IP source address and 
TCP source port). An Itemset is considered Frequent if its cardinality exceeds a 
given threshold with respect to the total number of samples.  
   Two parameters are used to characterize frequent itemsets: minimum support and 
maximum number of items to be considered within a transaction. The support of an 
itemset X (e.g. {dest_host=X, dest_port=Y}) is defined as the number of 



 

transactions where X is present, divided by the total number of transactions. The 
data mining process returns only itemsets whose support is greater than a given 
threshold named minimum support. This aims at avoiding returning itemsets with 
little relevance. The itemset {dest_host=X, dest_port=Y} has cardinality two; 
a high value for the maximum number of items (i.e., itemset cardinality) makes 
processing heavier, but allows discovering more complex relationships that link 
together several elements. 
   Association Rules are extracted from frequent itemsets and show correlations 
among (contained) elements. Usually, association rules are written in the form: 
 

A => B (support %, confidence %) 
 

   A is often referred to as the body of the rule, while B as the head of the rule. 
Parameters used to customize the quantity (and quality) of data mining results are 
minimum support, minimum confidence, and maximum number of items to be 
considered within a transaction. The support is the number of transactions in which 
the body of the association rule (e.g. {IP dest_addr=S}) is present, divided by 
the total number of transactions. The confidence is the support of sets that contain 
body and head (A and B), divided by the support of sets that contain the body (A). 
The association rule holds if its confidence is above a given minimum level.  
   For instance, if a host S is active mostly as a web server, the association rule 
 

If (IP dest_addr = S) → TCP dest_port = 80 (1.2%, 87%) 
 

shows that there is a high probability (87%) that the flows directed to the server 
(characterized by the value S in the IP destination address field) contain 80 (the 
default TCP port for a web server) in the TCP destination port field, and that this 
association rule is valid for the 1.2% of the transactions. 

3.1. Extracting and Understanding Mined Data 

Data stored in the database by the NetLogger module are exported to a flat file, 
then processed by the Apriori [3] tool, which is widely used for extracting frequent 
itemsets from a database. Frequent itemsets and association rules are derived 
according to the parameters chosen by the user (confidence, support, maximum 
number of items returned within each itemset) and the results are stored in a new 
SQLite database. The structure of the new database (shown in Figure 3) has been 
designed in order to be flexible and support any type of association rule and 
frequent itemsets, irrespective of the number of items involved. Two examples of 
stored association rule and frequent itemset are shown in Figure 4 and Figure 5. 
   Interpretation of results of the data mining process is a major problem. This is 
mainly due to the large amount of information returned by data mining techniques 
that the network administrator is required to go through. For example, it is not 
uncommon that hundred of thousands association rules be identified on a traffic 
trace. The problem of sifting through them is emphasized by the fact that the 
network administrator is not — and should not become — a data mining expert. 
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Figure 3: Structure of the database containing mined results. 
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Figure 4: Example of an Association Rule 

stored in the database. 
Figure 5: Example of a Frequent 

Itemset stored in the database. 

   Being designed specifically for network analysis applications, the user interface 
of the NetMiner module (shown in Figure 6) facilitates the network administrator 
in browsing the results of the data mining process. In essence, the NetMiner user 
interface provides ways to group rules that lead to the same networking semantics 
and give separate access to them. For instance, the application of the data mining 
process on a traffic capture might yield a set of rules that associate each IP address 
to a MAC address, i.e. the link-layer address of the network card sending the 
packets. As shown in the leftmost panel in Figure 6, the NetMiner user interface 
allows  (i) a name to be associated to each relevant set of rules and (ii) the set of 
rules to be organized in categories. The view in the rightmost panel in Figure 6 — 
obtained once the name corresponding to a set of rules is selected in the leftmost 
panel — is created by executing an SQL query on the database storing mined data. 



 

   The NetMiner user interface provides a list of predefined sets of rules and 
corresponding queries that can help network administrators getting a certain level 
of understanding of the mined data. Since the list of sets of rules and corresponding 
queries are specified in a XML file, they can be easily extended by the network 
manager himself or by third parties. 

 

 
Figure 6: Screenshot of the NetMiner module: list of relevant sets of rules in the 

left panel and results of the corresponding queries in the right panel. 

   The queries can be designed to highlight potential network problems by singling 
out “strange” results among the mined data. For instance, an IP address that is 
being associated to more than one MAC address (which, in data mining terms, 
means that the association rule between the IP address and the MAC address has 
confidence < 100%) can be a symptom of a network misconfiguration. One of the 
predefined NetMiner queries on the mined data (see the background right pane of 
Figure 6) easily brings this to the attention of the network manager. 
   The NetMiner module implements also a “compare mining sets” feature: queries 
(as defined in the XML file mentioned above) are run on two NetMiner databases 
and the differences between the two sets of results are shown. The comparison of 
databases devised from traffic captured at different times provides the network 
manager with a clear view of changes. For example, selecting the query intended to 
single out servers in the comparative mode allows the servers activated/deactivated 
in the time between the two captures to be easily identified. 



 

3.2. Interpreting Mined Data 

Among the most interesting results of our tests is the ability to effectively locate 
peer-to-peer applications. Locating and monitoring traffic generated by these 
applications that are usually installed and controlled directly by network users is 
important for network administrators. However, this is not easy with traditional 
traffic monitoring and analysis methods. For example, often peer-to-peer 
applications are not among the top network speakers (i.e., they do not generate 
much traffic), thus they cannot be identified by looking for large amount of data 
being transferred. Moreover, they use random ports, therefore they cannot be 
located by looking for traffic originated from or destined to specific ports. 
Conversely, the proposed data mining based approach easily locates them by 
singling out association rules between hosts and ports used. 
   Even though the specific issue of identifying peer-to-peer applications could be 
addressed by tools keeping track of network flows (and some other heuristics) in 
addition to counting transmitted bytes, data mining techniques provide an 
additional advantage: being agnostic with respect to network data. Therefore they 
have the potential of identifying unanticipated anomalies by extracting new rules 
as traffic patterns changes. However, deploying such potential requires the network 
manager to have a look at the “new rules” (the ones that have not been classified 
by existing queries) and to figure out whether they are signs of new network 
anomalies. 

3.3. Performance Evaluation and Scalability Issues 

From Data Mining theory, the complexity of the Apriori algorithm is linear in the 
number of input transactions and grows exponentially in the number of attributes 
(i.e. the number of elements of each itemset, which represents the complexity of 
the relations to be extracted). However, this does not provide any hints on the real 
cost of this approach. Therefore, a set of experiments was conducted on the 
NetMiner module to quantitatively assess the performance and scalability of the 
proposed solution. The assessment was based on the following indexes:  
• processing time representing the effort required to extract data-mining results 

from a set of real-life campus traffic captures; 
• mined information being produced by the data mining process; 
• disk space required to store the extracted results. 
   The experiments were conducted with four sets of transactions, each one devised 
from one hour of traffic captured in the campus network of our University. The 
four sets contain a significantly different number of transactions (i.e. flow records 
generated by the NetLogger module), since the corresponding traffic had been 
captured in different times of day: Set 1) 268860 transactions, captured at night; 
Set 2) 379695 transactions, captured in the evening, Set 3) 545273 transactions, 
captured in the afternoon; Set 4) 921250 transactions, captured in the morning. 



 

3.3.1. Processing Time 

Table 2 reports the average processing time per transaction for each of the 
abovementioned sets (rows) and for different values of minimum support 
(columns). As expected, smaller values of minimum support (which means that 
also not frequent relations are extracted) imply longer per-transaction processing 
time. Less obvious, per-transaction processing time decreases with growing set 
sizes, thus showing that the approach has good scalability. An experimental 
evaluation of the optimal support is left for future work. 
 

Minimum support  
0.5% 0.25% 0.125% 0.05% 0.025% 0.0125% 0.005% 

Set 1 1.16 1.26 1.48 1.70 2.64 3.95 10.46 
Set 2 1.17 1.24 1.42 1.57 2.24 3.19 7.49 
Set 3 1.15 1.22 1.31 1.40 1.93 2.52 5.20 

D
at

as
et

 

Set 4 1.08 1.09 1.17 1.20 1.49 1.91 3.36 

Table 2: Processing time (ms) for each transaction. 

   A more accurate look at the figures in Table 2 seems to suggest that scalability is 
better for smaller values of minimum support (compare the processing times 
shown in the first and last columns). However, this phenomenon is related to the 
way processing time was measured as the time required by NetMiner for (i) 
extracting the transactions, (ii) converting them into a format suitable for data-
mining, (iii) extracting frequent itemsets / association rules, and (iv) importing 
them into the results database. Only the third step is actually related to the data 
mining process and its execution time is longer with smaller minimum support 
values. The first two steps aim at extracting data from the NetLogger database and 
format them in the way accepted by Apriori and their cost grows linearly with the 
number of transactions. The last step inserts the Apriori results into another 
database in order to make access to them easier and grows linearly with the number 
of extracted relations. With large minimum support values, step (iii) does not 
require long execution time, hence the constant per-transaction processing time of 
steps (i) and (ii) is predominant. Conversely, the longer execution time of step (iii) 
weighs more on the overall per-transaction processing time with low values of 
minimum support. Steps (i), (ii), and (iv) are strictly related to our implementation 
and can be avoided.  

3.3.2. Number of Data-Mining Results 

Table 3 shows the number of association rules extracted from the four sets of 
transactions (rows) with different values of minimum support (columns). The fact 
that the total number of extracted rules decreases for bigger sets, is a further 
manifestation of the scalability of the data mining techniques deployed in the 
presented solution. 
 



 

Minimum support  
0.5% 0.25% 0.125% 0.05% 0.025% 0.0125% 0.005% 

Set 1 22892 52589 106949 242110 430759 860685 2987204 
Set 2 22255 46917 96222 250953 456386 918005 2944277 
Set 3 19274 44415 84887 230933 461037 894737 2562332 

D
at

as
et

 

Set 4 16678 38964 85821 206277 433320 868044 2257974 

Table 3: Number of association rules extracted by the mining process. 

3.3.3. Size of the Data-Mining Result Sets 

The third set of measures concerns the size of the resulting NetMiner database for 
different transaction sets (rows) and different values of minimum support 
(columns). This data can help in deciding whether saving mining results rather than 
the set of transactions devised from the captured traffic, represents an efficient 
solution for long-term storage to enable historical analysis of traffic. 
 

Minimum support  
0.5% 0.25% 0.125% 0.05% 0.025% 0.0125% 0.005% 

Set 1 6.8 15.5 31.9 73.1 132.5 266.5 933.1 
Set 2 6.6 13.8 28.6 76.2 139.0 283.0 919.6 
Set 3 5.6 13.1 25.0 69.9 141.7 276.1 798.0 

D
at

as
et

 

Set 4 4.8 11.5 25.5 62.2 132.2 267.2 699.3 

Table 4: Size (MB) of the results database. 

Table 4 and Table 5 confirm the scalability properties previously shown. In this 
case, not only the per-transaction space needed to save information decreases 
(Table 5) with the set size (i.e., the amount of traffic captured), but also the total 
size of the results database is smaller (Table 4). If the minimum support is above a 
certain limit (0.0125 in our experiments), the size of the results database is smaller 
than the size of the original transaction database and the set of extracted 
association rules can be considered a sort of “compressed description” of the 
original transaction set. . 
 

Minimum support  
0.5% 0.25% 0.125% 0.05% 0.025% 0.0125% 0.005% 

Set 1 25 58 119 272 493 991 3471 
Set 2 17 36 75 201 366 745 2422 
Set 3 10 24 46 128 260 506 1463 

D
at

as
et

 

Set 4 5 12 28 68 144 290 759 

Table 5: Average per-transaction size (Bytes) of the results database. 

3.3.4. Data Mining and Scalability Issues 

The scalability of the mining process with respect to the size of the transaction set 
can be explained as follows. First, many of the association rules are extracted in 



 

any case, irrespective of the number of transactions contained in the data set. For 
instance, a rule that associates an IP address with the corresponding MAC address 
will always be extracted, be the database small or large. Consequently, while these 
association rules represent a high per-transaction contribution (in terms of all of the 
above mentioned metrics) when dealing with small transaction sets, their per-
transaction contribution becomes less relevant as the set size grows. Second, when 
dealing with a larger number of transactions some rules may not be extracted 
because their support falls below the minimum support threshold. 
   In other words, large transaction sets are prone to providing a higher number (in 
relative — per-transaction — terms) of high-significance rules, decreasing the 
impact of low-significance ones. 

4. Related Work 
While [4] presents some theoretical considerations on the deployment of data 
mining techniques to network monitoring, to the best of the authors’ knowledge, 
experiences and results are not available in the literature. Experiences with the 
application of data mining techniques to network related problems, such as web log 
analysis [5] and enterprise-wide management [6], can only be found. 
   The application of data mining techniques to network traffic is more widely 
studied and deployed in the realm of network security, particularly intrusion 
detection. Historically, IDS have been built using a signature-based approach, also 
referred as misuse detection: detection methods are based on identifying 
“signatures” present inside malicious traffic; where the “signature” can be a 
sequence of bytes, in a packet or a sequence of packets. Misuse detection 
techniques, that are widely adopted, provide an efficient way to identify known 
problems, for which a signature exists. For example, an open-source IDS system 
like snort [7] can reach 100% detection rate on a test set made up of only known 
intrusions. Additionally, these systems have a very low false positive rate (i.e. the 
percentage of normal traffic reported to be an intrusion). However, these 
techniques are, in general, not effective against novel attacks that have no matched 
rules or pattern yet and require regular updates with signatures, that developers 
have to manually program, of newly discovered intrusions. 
   Data mining algorithms are being used for research purposes and in some 
commercial products to build a model of the network traffic and to search for 
patterns that deviate significantly from the established normal usage profiles: these 
are “anomalies” and can be treated as possible intrusions. Anomaly detection 
techniques can be effective against unknown or novel attacks since they do not 
require knowledge about specific intrusions. Also, they do not require manual 
programming (such as description of signatures of new intrusions), since the 
automatically inferred normal behavior of the network is used to identify attacks. 
   The first applications of data mining to IDSs deployed labeled data to train the 
system [8] [9]: a training set, consisting of traffic already marked as “normal” or 
“intrusion”, is supplied to a learning algorithm. The system is then provided with 
unlabeled traffic and classifies it as normal or containing an intrusion. Thus, the 



 

initial application of data mining techniques to IDSs in fact relates to “misuse” 
detection rather than anomaly detection. The advantage of these techniques over 
standard “signature-based” methods is limited by the fact that manually labeling a 
set to train the algorithm is equivalent to defining signatures. In addition, some of 
the experiments showed that the system is able to identify only intrusions already 
present into the training set. 
   Instead, data mining methods for intrusion detection working with unlabeled 
traffic provide significant advantage over signature-based methods. LERAD [10] 
discovers relationships among attributes with the objective of modeling network 
protocols. Results are encouraging (>60% of detection rate, with a very low false 
positive rate), but far from making the algorithm usable in real-life scenarios. 
   Other approaches [11][12] use clustering-based techniques to detect anomalies, 
aiming at identifying “normal values” for certain fields in packet headers versus 
anomalies. This method showed a detection rate around 40%-55% with a 1.3%-
2.3% false positive rate, which is still unacceptable. 

5. Concluding Remarks 
The object of this work is the application of data mining techniques to network 
monitoring, particularly for keeping track of active hosts and some of the 
characteristics of their network traffic. Several work propose the deployment of 
data-mining techniques within Intrusion Detection Systems (IDS), but according to 
their results such approaches are still far from being applicable in a real network. 
We propose a more limited, but feasible, approach. 
   The mining process (therefore the extracted results) is identical for both IDS and 
network monitoring applications. However, our methodology does not try to infer 
IDS properties from the extracted rules, but focuses on a subset of rules that help 
describing the network and its traffic: which nodes are servers, which are routers, 
which are the top talkers (in terms of bytes/sec and sessions/sec), and so on. A 
network administrator benefits from this data because he can identify unauthorized 
servers (e.g., peer-to-peer server nodes), network anomalies (e.g., IP spoofing 
activity), and even security threats (e.g. a large number of connections to a remote 
server due to a Trojan that infected some local machines). 
   While the data collection and storage approach proposed in Section 2 and its 
implementation in the NetLogger module can be considered stable, the data mining 
approach and its implementation within the NetMiner module still need detailed 
evaluation and a field trial. Even though the tests conducted on the campus 
network of our University (including about 6,000 end-systems) enabled us to gain 
some insight in the benefits and shortcomings of the proposed approach, much 
more can be learned through a more extensive deployment in various environments 
and by various users. 
   This preliminary work using NetMiner has demonstrated that the approach 
features lights and shadows. Data mining techniques have shown good scalability, 
which is perhaps the most challenging issue in high speed network monitoring. 
However, the interpretation of results of the data mining process is far from being 



 

straightforward, mainly due to the large amount of information that the network 
administrator is required to go through. Our solution to this problem consisted in 
the creation of a graphic user interface (GUI) designed to hide the above 
complexity. A drawback of the deployment of such GUI it that it might as well 
hide relevant results that are not being classified within predefined categories. We 
believe that more work concerning this point is required. 
   An interesting evolution of our approach is to make it able to work in real-time. 
Currently, the NetMiner module gets data from the NetLogger module, processes it 
and returns the results. While this works reasonably well to signal network 
anomalies (such as an abusive server), it is not suitable for real-time network 
monitoring. A real-time engine that processes traffic according to the rules that 
have been defined as “interesting” (i.e. the rules presented by the above-mentioned 
GUI) might open the way to new applications. However, in order to be able to 
process network data in real-time a program has to be created that looks for data 
matching “interesting” rules. Such engine will loose the ability to discover 
unknown relationships because it does no longer implement a data mining 
algorithm — that is able to automatically discover new relationships (e.g. a 
relationship between a specific IP source addresses and TCP ports). 
   A network administrator that simply uses the GUI without digging manually into 
the data mining results will incur exactly the same problem. An intermediate 
approach could be the deployment of a run-time engine in conjunction with an 
offline data-mining process whose objective is to extract unknown results, which 
can be used to discover anomalies. 
   More investigation and experimental results are needed on an important by-
product of the proposed approach: using the outcome of the data mining process as 
an extremely compact representation of the captured network traffic. In fact, the 
size of the output of the proposed data mining techniques can be more than 
50 times smaller than size of the database generated by the network traffic storage 
solution presented in Section 2 (which is already several times smaller than a raw 
network traffic dump). Consequently, it would be interesting to assess the amount 
of the relevant information that can be inferred from the output of the data mining 
process versus the one that can be inferred from the traffic database (as described 
in Section 2). In this case, the latter could be discarded and only the former kept for 
later reference, thus dramatically reducing the storage requirement for keeping 
historical network traffic traces. 
   Future work will include also the evaluation of clustering techniques in addition 
to the already deployed frequent itemsets and association rules. Moreover, it 
should be interesting to explore the possibility to add temporal capabilities that 
would enable the correlation of sequential events. 
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