
20 August 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Data Mining Techniques For Effective and Scalable Traffic Analysis / Risso, FULVIO GIOVANNI OTTAVIO; Baralis, E.;
Baldi, Mario. - (2005), pp. 105-118. (Intervento presentato al convegno 9th IFIP/IEEE International Symposium on
Integrated Network Management (IM05) tenutosi a Nice, France nel May 2005).

Original

Data Mining Techniques For Effective and Scalable Traffic Analysis

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

©2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1494560 since: 2016-11-28T14:44:55Z

IEEE

Data Mining Techniques for
Effective and Scalable Traffic Analysis

M. Baldi, E. Baralis, F. Risso
Dipartimento di Automatica e Informatica - Politecnico di Torino
Corso Duca degli Abruzzi, 24
10129 Torino, Italy
{mario.baldi, elena.baralis, fulvio.risso}@polito.it

Abstract
This paper describes a novel approach to traffic analysis in high speed networks
based on data mining techniques. Data mining techniques are here applied as a
means to effectively process the significant amount of captured data. The paper
provides a first evaluation of the proposed approach in terms of its ability of
extracting relevant information and its computational requirements. Such
evaluation is based on experiments run on a prototypal implementation of the
proposed approach.

Keywords
Traffic Analysis, Network Monitoring, Data Mining

1. Introduction
One of the most critical issues in keeping a network under control is capturing and
analyzing its traffic. The complexity of these tasks is increasing as networks
become faster and faster. Major problems stem from the CPU power needed to
process captured network traffic and the storage requirements of historical data.
 Often, traffic capturing and analysis goes through the steps depicted in Figure 1,
all of which are critical when operating at high data rates. Some limited processing
(e.g. associating each packet to its corresponding flow) is carried out in real-time
immediately during the capture session. Then, results can be stored on a disk to be
further elaborated with off-line tools, which do not suffer the limitations stemming
from real-time processing.
 Ad-hoc solutions based on advanced hardware (e.g. the network interface cards
provided by Endace [16]) and the use of SMP workstations or even clusters can
mitigate the problems related to on-line monitoring and analysis (the first steps in
Figure 1). However, no straightforward solution exists to reduce the criticalities of
the subsequent steps. For instance, a 10 Gbps pipe carries more than 100 TBytes in
the course of a day, which is a tremendous amount of data to be stored for
subsequent processing. This results in two problems: on the one hand, the
infrastructure needed to store such amount of data is sophisticated and costly and,

on the other hand, locating relevant information within the saved data is
computationally intense and time consuming.

Capture On-line
Processing Dump results

DiskDisk

On-line monitoring and analysis

Off-line analysis

Off-line
Processing Dump results

DiskDisk

Network card

Figure 1: Basic steps in network traffic capture and analysis.

 A possible solution to the first problem was presented in a previous paper [13] by
the same authors and encompasses a format to represent captured packets that (i)
limits the amount of data stored and (ii) enables efficient processing. The second
problem is addressed by the present paper proposing the application of data mining
techniques for extracting relevant information from extremely large data sets stored
according to the above mentioned format.
 Section 2 summarizes the work presented in [13], which is key to the solution
proposed here for two reasons. First, the outcome of the network analysis process
depends on the quality of the information stored during the on-line phase. Second,
the complexity of off-line data processing depends on the amount and format of
such data. The application of data mining techniques to traffic analysis is presented
in Section 0, including some preliminary results (obtained with the prototypal
implementation in the Analyzer [1] traffic capturing and analysis tool). Section 4
presents relevant literature with particular focus on work that apply data-mining
techniques to network monitoring. Finally, Section 5 discusses the benefits and
limitations expected from the deployment of the proposed approach, especially for
what concerns the extraction of relevant information, which is still under
evaluation.

2. Data Collection and Storage
Saving to disk each captured packet — or possibly just the most relevant bytes of it
— may be feasible in some cases, but it anyway requires a significant amount of
resources. Therefore, such approach cannot be considered as a general basis for
scalable traffic monitoring procedures. In any case, single packets are not
necessarily relevant for many types of traffic analysis whose focus is on packet
flows. Our solution, similarly to the well-known and widely used Cisco System’s
Netflow version 9, targets such types of traffic analysis. A probe collecting data
saves a given set of information related to each flow, rather than dumping to disk
(part of) the content of each packet. A flow is a set of packets that have the same
value in a given set of fields, which are not necessarily IP source/destination
address, source/destination port, and protocol type — widely used as flow
identifiers in TCP/IP networks. Our flow definition is rather general and several
fields can be included in the set that best characterizes each flow. For instance, if

the administrator is interested in the analysis of Differentiated Services traffic, the
value of the DS field can be saved for each flow. Alternatively, if the administrator
is interested only in accounting based on the IP source address, this can be the only
parameter identifying a flow. Due to the flexible architecture of the underlying
dumping mechanism deployed by the proposed solution, the addition of a new field
in the definition of flows does not preclude the possibility of extracting statistics on
previously stored data that do not have such information.
 Table 1 lists the fields extracted by default from each packet by the NetLogger
module [14] that is a prototypal implementation of the traffic analysis solution
integrated into Analyzer. Flow identification is not necessarily based on all of these
fields, some of which might even not be present; for example, ARP-related fields
will not be present when analyzing IPv6 packets. The NetLogger module can be
customized to extract any field in any protocol header.

Protocol Field name
Ethernet Source and destination address, Protocol type
VLAN Priority, VLAN ID
ARP Source and destination IP address
IP / IPv6 Traffic class, Prot.l type / Next header, Source and destination address
ICMP / ICMPv6 Type
TCP /UDP Source and destination port

Table 1: Default list of fields extracted by the NetLogger module.

 For each packet, after having devised the value of the applicable fields listed in
Table 1, the probe determines the flow the packet belongs to and updates a set of
counters (e.g. number of bytes/packets seen, timestamps, etc.). The selected fields
are extracted for each flow and periodically dumped to disk together with the value
of the above counters. The prototypal NetLogger module dumps (and clears) the
entire content of the flow cache every N minutes; a session lasting longer will be
represented by several subsequent records. The time between subsequent dumps of
the flow cache is called flushing interval.
 The NetLogger module implements the probe that captures network traffic,
extracts flow information and dumps it to disk on the machine itself; therefore no
protocols for exchanging data between the probe and the collector are needed. In
case probe and collector are on different machines, Netflow version 9 (or the
newest IETF IPFIX standard) can be used for transferring data.
 To facilitate further information processing in our prototype flow information is
saved into a database. SQLite was selected for this purpose since it provides very
fast access and its overhead is only 5 times the time required to store data on a flat
(text) file, as shown by the figures presented in [13].
 Figure 2 shows with an example the structure of the database (all details can be
found in [13]). Although this structure is slightly more complex than the one
traditionally deployed in traffic monitoring applications (one table with a fixed
number of fields, and one record per flow), it has proved to be more flexible
because it can accommodate a different number fields for each flow record (called
transactions within the database structure) without changing the database structure.

 Experimental results in [13] show that the NetLogger module storing each flow
record in an SQLite database at the default flushing interval of 2 minutes features a
20 to 1 reduction in disk space requirement when compared to saving each packet.
The resulting disk files can be further compressed by means of general-purpose
compression utilities, such as gzip, thus obtaining disk-saving factors of more than
80:1. However, the amount of data resulting from this process is still rather high. In
fact, the authors believe a further reduction in data size can only be obtained
through the deployment of data mining techniques, as presented in the next section.

srcIP3

...

2

1

ID

...

Ethernet

Ethernet

Protocol

...

dst

src

Field

srcIP3

...

2

1

ID

...

Ethernet

Ethernet

Protocol

...

dst

src

Field

0A0A0A0A313

............

2

1

Field_ID

2

1

ID

1

1

Trans_ID

0003E318EA70

00E063137E04

Value

0A0A0A0A313

............

2

1

Field_ID

2

1

ID

1

1

Trans_ID

0003E318EA70

00E063137E04

Value

10:12:59

10:13:58

Last_Seen

6280

11988

Bytes_Count

7

19

Packets_Count

1

1

Interface_ID

10:14:00

10:12:00

Start_Time

............

10:12:51

10:12:01

First_Seen

2

1

ID

10:13:59

10:13:59

End_Time

2

3

Num_Elements

10:12:59

10:13:58

Last_Seen

6280

11988

Bytes_Count

7

19

Packets_Count

1

1

Interface_ID

10:14:00

10:12:00

Start_Time

............

10:12:51

10:12:01

First_Seen

2

1

ID

10:13:59

10:13:59

End_Time

2

3

Num_Elements

Transactions table

Elements table

Field Types table

Figure 2. Snapshot of records stored in the database.

3. Extracting relevant information
A set of standard statistics (e.g. the protocol distribution, the amount of traffic sent
by every host, etc.) can be easily obtained from the data stored as described above.
However, even though the proposed approach results in significantly less
information than a raw packet dump would produce, locating added-value
information (e.g., locating an ongoing security attack) might be extremely
cumbersome, if at all possible, for the network administrator.
 We have been experimenting the application of data mining techniques to large
databases structured as described in the previous section, wherein each sample of a
flow (called “transaction” in the NetLogger database) is represented by a variable-
length record. Particularly, our prototypal NetMiner module [15], integrated in
Analyzer, implements data mining techniques for the extraction of Frequent
Itemsets and Association Rules [2].
 An Itemset is a set of elements — pairs of field/value records in the database —
characterized by a given value in one or more fields (e.g IP source address and
TCP source port). An Itemset is considered Frequent if its cardinality exceeds a
given threshold with respect to the total number of samples.
 Two parameters are used to characterize frequent itemsets: minimum support and
maximum number of items to be considered within a transaction. The support of an
itemset X (e.g. {dest_host=X, dest_port=Y}) is defined as the number of

transactions where X is present, divided by the total number of transactions. The
data mining process returns only itemsets whose support is greater than a given
threshold named minimum support. This aims at avoiding returning itemsets with
little relevance. The itemset {dest_host=X, dest_port=Y} has cardinality two;
a high value for the maximum number of items (i.e., itemset cardinality) makes
processing heavier, but allows discovering more complex relationships that link
together several elements.
 Association Rules are extracted from frequent itemsets and show correlations
among (contained) elements. Usually, association rules are written in the form:

A => B (support %, confidence %)

 A is often referred to as the body of the rule, while B as the head of the rule.
Parameters used to customize the quantity (and quality) of data mining results are
minimum support, minimum confidence, and maximum number of items to be
considered within a transaction. The support is the number of transactions in which
the body of the association rule (e.g. {IP dest_addr=S}) is present, divided by
the total number of transactions. The confidence is the support of sets that contain
body and head (A and B), divided by the support of sets that contain the body (A).
The association rule holds if its confidence is above a given minimum level.
 For instance, if a host S is active mostly as a web server, the association rule

If (IP dest_addr = S) → TCP dest_port = 80 (1.2%, 87%)

shows that there is a high probability (87%) that the flows directed to the server
(characterized by the value S in the IP destination address field) contain 80 (the
default TCP port for a web server) in the TCP destination port field, and that this
association rule is valid for the 1.2% of the transactions.

3.1. Extracting and Understanding Mined Data

Data stored in the database by the NetLogger module are exported to a flat file,
then processed by the Apriori [3] tool, which is widely used for extracting frequent
itemsets from a database. Frequent itemsets and association rules are derived
according to the parameters chosen by the user (confidence, support, maximum
number of items returned within each itemset) and the results are stored in a new
SQLite database. The structure of the new database (shown in Figure 3) has been
designed in order to be flexible and support any type of association rule and
frequent itemsets, irrespective of the number of items involved. Two examples of
stored association rule and frequent itemset are shown in Figure 4 and Figure 5.
 Interpretation of results of the data mining process is a major problem. This is
mainly due to the large amount of information returned by data mining techniques
that the network administrator is required to go through. For example, it is not
uncommon that hundred of thousands association rules be identified on a traffic
trace. The problem of sifting through them is emphasized by the fact that the
network administrator is not — and should not become — a data mining expert.

Confidence

Support

Field_Value

Field_ID

ID

Association Rules

Confidence

Support

Field_Value

Field_ID

ID

Association Rules

Field

Protocol

ID

Field_Type

Field

Protocol

ID

Field_Type

N
1

Field_Value

Field_ID

Association_RuleID

Ass_Rule Body Elements

Field_Value

Field_ID

Association_RuleID

Ass_Rule Body Elements N

1

N

1

Field_Value

Field_ID

Frequent_Itemset_RuleID

Freq_Itemset Body Elements

Field_Value

Field_ID

Frequent_Itemset_RuleID

Freq_Itemset Body Elements

ID

Support

Frequent Itemsets

ID

Support

Frequent Itemsets

N

1

N

Figure 3: Structure of the database containing mined results.

...

1

1

Rule_ID

...

2

1

Field_ID

...

01020304

AABBCCDDEEFF

Field_Value

...

1

1

Rule_ID

...

2

1

Field_ID

...

01020304

AABBCCDDEEFF

Field_Value

Assoc_Rules_Body Elements table

sportTCP3

...

2

1

ID

...

IP

Eth

Protocol

...

src

src

Field

sportTCP3

...

2

1

ID

...

IP

Eth

Protocol

...

src

src

Field

Field Types table

...

50

Field_Value

...

2.3%

Support

...

1

ID

...

3

Field_ID

...

95%

Confidence

...

50

Field_Value

...

2.3%

Support

...

1

ID

...

3

Field_ID

...

95%

Confidence

Association Rules table

(Eth.src == AABBCC-DDEEFF and IP.src=1.2.3.4) ⇒ TCP.sport=80
with support= 2,3%, Confidence= 95%

Body Head

...

1

1

Rule_ID

...

2

1

Field_ID

...

0A0B0C0D

AABBCCDDEEFF

Field_Value

...

1

1

Rule_ID

...

2

1

Field_ID

...

0A0B0C0D

AABBCCDDEEFF

Field_Value

Freq_Itemset_Body Elements table

sportTCP3

...

2

1

ID

...

IP

Eth

Protocol

...

src

src

Field

sportTCP3

...

2

1

ID

...

IP

Eth

Protocol

...

src

src

Field

Field Types table

...

2.3%

Support

...

1

ID

...

2.3%

Support

...

1

ID

Frequent Itemsets table

(Eth.src == AABBCC-DDEEFF and IP.src=1.2.3.4)
with support= 2,3%

Body

Figure 4: Example of an Association Rule

stored in the database.
Figure 5: Example of a Frequent

Itemset stored in the database.

 Being designed specifically for network analysis applications, the user interface
of the NetMiner module (shown in Figure 6) facilitates the network administrator
in browsing the results of the data mining process. In essence, the NetMiner user
interface provides ways to group rules that lead to the same networking semantics
and give separate access to them. For instance, the application of the data mining
process on a traffic capture might yield a set of rules that associate each IP address
to a MAC address, i.e. the link-layer address of the network card sending the
packets. As shown in the leftmost panel in Figure 6, the NetMiner user interface
allows (i) a name to be associated to each relevant set of rules and (ii) the set of
rules to be organized in categories. The view in the rightmost panel in Figure 6 —
obtained once the name corresponding to a set of rules is selected in the leftmost
panel — is created by executing an SQL query on the database storing mined data.

 The NetMiner user interface provides a list of predefined sets of rules and
corresponding queries that can help network administrators getting a certain level
of understanding of the mined data. Since the list of sets of rules and corresponding
queries are specified in a XML file, they can be easily extended by the network
manager himself or by third parties.

Figure 6: Screenshot of the NetMiner module: list of relevant sets of rules in the

left panel and results of the corresponding queries in the right panel.

 The queries can be designed to highlight potential network problems by singling
out “strange” results among the mined data. For instance, an IP address that is
being associated to more than one MAC address (which, in data mining terms,
means that the association rule between the IP address and the MAC address has
confidence < 100%) can be a symptom of a network misconfiguration. One of the
predefined NetMiner queries on the mined data (see the background right pane of
Figure 6) easily brings this to the attention of the network manager.
 The NetMiner module implements also a “compare mining sets” feature: queries
(as defined in the XML file mentioned above) are run on two NetMiner databases
and the differences between the two sets of results are shown. The comparison of
databases devised from traffic captured at different times provides the network
manager with a clear view of changes. For example, selecting the query intended to
single out servers in the comparative mode allows the servers activated/deactivated
in the time between the two captures to be easily identified.

3.2. Interpreting Mined Data

Among the most interesting results of our tests is the ability to effectively locate
peer-to-peer applications. Locating and monitoring traffic generated by these
applications that are usually installed and controlled directly by network users is
important for network administrators. However, this is not easy with traditional
traffic monitoring and analysis methods. For example, often peer-to-peer
applications are not among the top network speakers (i.e., they do not generate
much traffic), thus they cannot be identified by looking for large amount of data
being transferred. Moreover, they use random ports, therefore they cannot be
located by looking for traffic originated from or destined to specific ports.
Conversely, the proposed data mining based approach easily locates them by
singling out association rules between hosts and ports used.
 Even though the specific issue of identifying peer-to-peer applications could be
addressed by tools keeping track of network flows (and some other heuristics) in
addition to counting transmitted bytes, data mining techniques provide an
additional advantage: being agnostic with respect to network data. Therefore they
have the potential of identifying unanticipated anomalies by extracting new rules
as traffic patterns changes. However, deploying such potential requires the network
manager to have a look at the “new rules” (the ones that have not been classified
by existing queries) and to figure out whether they are signs of new network
anomalies.

3.3. Performance Evaluation and Scalability Issues

From Data Mining theory, the complexity of the Apriori algorithm is linear in the
number of input transactions and grows exponentially in the number of attributes
(i.e. the number of elements of each itemset, which represents the complexity of
the relations to be extracted). However, this does not provide any hints on the real
cost of this approach. Therefore, a set of experiments was conducted on the
NetMiner module to quantitatively assess the performance and scalability of the
proposed solution. The assessment was based on the following indexes:
• processing time representing the effort required to extract data-mining results

from a set of real-life campus traffic captures;
• mined information being produced by the data mining process;
• disk space required to store the extracted results.
 The experiments were conducted with four sets of transactions, each one devised
from one hour of traffic captured in the campus network of our University. The
four sets contain a significantly different number of transactions (i.e. flow records
generated by the NetLogger module), since the corresponding traffic had been
captured in different times of day: Set 1) 268860 transactions, captured at night;
Set 2) 379695 transactions, captured in the evening, Set 3) 545273 transactions,
captured in the afternoon; Set 4) 921250 transactions, captured in the morning.

3.3.1. Processing Time

Table 2 reports the average processing time per transaction for each of the
abovementioned sets (rows) and for different values of minimum support
(columns). As expected, smaller values of minimum support (which means that
also not frequent relations are extracted) imply longer per-transaction processing
time. Less obvious, per-transaction processing time decreases with growing set
sizes, thus showing that the approach has good scalability. An experimental
evaluation of the optimal support is left for future work.

Minimum support
0.5% 0.25% 0.125% 0.05% 0.025% 0.0125% 0.005%

Set 1 1.16 1.26 1.48 1.70 2.64 3.95 10.46
Set 2 1.17 1.24 1.42 1.57 2.24 3.19 7.49
Set 3 1.15 1.22 1.31 1.40 1.93 2.52 5.20

D
at

as
et

Set 4 1.08 1.09 1.17 1.20 1.49 1.91 3.36

Table 2: Processing time (ms) for each transaction.

 A more accurate look at the figures in Table 2 seems to suggest that scalability is
better for smaller values of minimum support (compare the processing times
shown in the first and last columns). However, this phenomenon is related to the
way processing time was measured as the time required by NetMiner for (i)
extracting the transactions, (ii) converting them into a format suitable for data-
mining, (iii) extracting frequent itemsets / association rules, and (iv) importing
them into the results database. Only the third step is actually related to the data
mining process and its execution time is longer with smaller minimum support
values. The first two steps aim at extracting data from the NetLogger database and
format them in the way accepted by Apriori and their cost grows linearly with the
number of transactions. The last step inserts the Apriori results into another
database in order to make access to them easier and grows linearly with the number
of extracted relations. With large minimum support values, step (iii) does not
require long execution time, hence the constant per-transaction processing time of
steps (i) and (ii) is predominant. Conversely, the longer execution time of step (iii)
weighs more on the overall per-transaction processing time with low values of
minimum support. Steps (i), (ii), and (iv) are strictly related to our implementation
and can be avoided.

3.3.2. Number of Data-Mining Results

Table 3 shows the number of association rules extracted from the four sets of
transactions (rows) with different values of minimum support (columns). The fact
that the total number of extracted rules decreases for bigger sets, is a further
manifestation of the scalability of the data mining techniques deployed in the
presented solution.

Minimum support
0.5% 0.25% 0.125% 0.05% 0.025% 0.0125% 0.005%

Set 1 22892 52589 106949 242110 430759 860685 2987204
Set 2 22255 46917 96222 250953 456386 918005 2944277
Set 3 19274 44415 84887 230933 461037 894737 2562332

D
at

as
et

Set 4 16678 38964 85821 206277 433320 868044 2257974

Table 3: Number of association rules extracted by the mining process.

3.3.3. Size of the Data-Mining Result Sets

The third set of measures concerns the size of the resulting NetMiner database for
different transaction sets (rows) and different values of minimum support
(columns). This data can help in deciding whether saving mining results rather than
the set of transactions devised from the captured traffic, represents an efficient
solution for long-term storage to enable historical analysis of traffic.

Minimum support
0.5% 0.25% 0.125% 0.05% 0.025% 0.0125% 0.005%

Set 1 6.8 15.5 31.9 73.1 132.5 266.5 933.1
Set 2 6.6 13.8 28.6 76.2 139.0 283.0 919.6
Set 3 5.6 13.1 25.0 69.9 141.7 276.1 798.0

D
at

as
et

Set 4 4.8 11.5 25.5 62.2 132.2 267.2 699.3

Table 4: Size (MB) of the results database.

Table 4 and Table 5 confirm the scalability properties previously shown. In this
case, not only the per-transaction space needed to save information decreases
(Table 5) with the set size (i.e., the amount of traffic captured), but also the total
size of the results database is smaller (Table 4). If the minimum support is above a
certain limit (0.0125 in our experiments), the size of the results database is smaller
than the size of the original transaction database and the set of extracted
association rules can be considered a sort of “compressed description” of the
original transaction set. .

Minimum support
0.5% 0.25% 0.125% 0.05% 0.025% 0.0125% 0.005%

Set 1 25 58 119 272 493 991 3471
Set 2 17 36 75 201 366 745 2422
Set 3 10 24 46 128 260 506 1463

D
at

as
et

Set 4 5 12 28 68 144 290 759

Table 5: Average per-transaction size (Bytes) of the results database.

3.3.4. Data Mining and Scalability Issues

The scalability of the mining process with respect to the size of the transaction set
can be explained as follows. First, many of the association rules are extracted in

any case, irrespective of the number of transactions contained in the data set. For
instance, a rule that associates an IP address with the corresponding MAC address
will always be extracted, be the database small or large. Consequently, while these
association rules represent a high per-transaction contribution (in terms of all of the
above mentioned metrics) when dealing with small transaction sets, their per-
transaction contribution becomes less relevant as the set size grows. Second, when
dealing with a larger number of transactions some rules may not be extracted
because their support falls below the minimum support threshold.
 In other words, large transaction sets are prone to providing a higher number (in
relative — per-transaction — terms) of high-significance rules, decreasing the
impact of low-significance ones.

4. Related Work
While [4] presents some theoretical considerations on the deployment of data
mining techniques to network monitoring, to the best of the authors’ knowledge,
experiences and results are not available in the literature. Experiences with the
application of data mining techniques to network related problems, such as web log
analysis [5] and enterprise-wide management [6], can only be found.
 The application of data mining techniques to network traffic is more widely
studied and deployed in the realm of network security, particularly intrusion
detection. Historically, IDS have been built using a signature-based approach, also
referred as misuse detection: detection methods are based on identifying
“signatures” present inside malicious traffic; where the “signature” can be a
sequence of bytes, in a packet or a sequence of packets. Misuse detection
techniques, that are widely adopted, provide an efficient way to identify known
problems, for which a signature exists. For example, an open-source IDS system
like snort [7] can reach 100% detection rate on a test set made up of only known
intrusions. Additionally, these systems have a very low false positive rate (i.e. the
percentage of normal traffic reported to be an intrusion). However, these
techniques are, in general, not effective against novel attacks that have no matched
rules or pattern yet and require regular updates with signatures, that developers
have to manually program, of newly discovered intrusions.
 Data mining algorithms are being used for research purposes and in some
commercial products to build a model of the network traffic and to search for
patterns that deviate significantly from the established normal usage profiles: these
are “anomalies” and can be treated as possible intrusions. Anomaly detection
techniques can be effective against unknown or novel attacks since they do not
require knowledge about specific intrusions. Also, they do not require manual
programming (such as description of signatures of new intrusions), since the
automatically inferred normal behavior of the network is used to identify attacks.
 The first applications of data mining to IDSs deployed labeled data to train the
system [8] [9]: a training set, consisting of traffic already marked as “normal” or
“intrusion”, is supplied to a learning algorithm. The system is then provided with
unlabeled traffic and classifies it as normal or containing an intrusion. Thus, the

initial application of data mining techniques to IDSs in fact relates to “misuse”
detection rather than anomaly detection. The advantage of these techniques over
standard “signature-based” methods is limited by the fact that manually labeling a
set to train the algorithm is equivalent to defining signatures. In addition, some of
the experiments showed that the system is able to identify only intrusions already
present into the training set.
 Instead, data mining methods for intrusion detection working with unlabeled
traffic provide significant advantage over signature-based methods. LERAD [10]
discovers relationships among attributes with the objective of modeling network
protocols. Results are encouraging (>60% of detection rate, with a very low false
positive rate), but far from making the algorithm usable in real-life scenarios.
 Other approaches [11][12] use clustering-based techniques to detect anomalies,
aiming at identifying “normal values” for certain fields in packet headers versus
anomalies. This method showed a detection rate around 40%-55% with a 1.3%-
2.3% false positive rate, which is still unacceptable.

5. Concluding Remarks
The object of this work is the application of data mining techniques to network
monitoring, particularly for keeping track of active hosts and some of the
characteristics of their network traffic. Several work propose the deployment of
data-mining techniques within Intrusion Detection Systems (IDS), but according to
their results such approaches are still far from being applicable in a real network.
We propose a more limited, but feasible, approach.
 The mining process (therefore the extracted results) is identical for both IDS and
network monitoring applications. However, our methodology does not try to infer
IDS properties from the extracted rules, but focuses on a subset of rules that help
describing the network and its traffic: which nodes are servers, which are routers,
which are the top talkers (in terms of bytes/sec and sessions/sec), and so on. A
network administrator benefits from this data because he can identify unauthorized
servers (e.g., peer-to-peer server nodes), network anomalies (e.g., IP spoofing
activity), and even security threats (e.g. a large number of connections to a remote
server due to a Trojan that infected some local machines).
 While the data collection and storage approach proposed in Section 2 and its
implementation in the NetLogger module can be considered stable, the data mining
approach and its implementation within the NetMiner module still need detailed
evaluation and a field trial. Even though the tests conducted on the campus
network of our University (including about 6,000 end-systems) enabled us to gain
some insight in the benefits and shortcomings of the proposed approach, much
more can be learned through a more extensive deployment in various environments
and by various users.
 This preliminary work using NetMiner has demonstrated that the approach
features lights and shadows. Data mining techniques have shown good scalability,
which is perhaps the most challenging issue in high speed network monitoring.
However, the interpretation of results of the data mining process is far from being

straightforward, mainly due to the large amount of information that the network
administrator is required to go through. Our solution to this problem consisted in
the creation of a graphic user interface (GUI) designed to hide the above
complexity. A drawback of the deployment of such GUI it that it might as well
hide relevant results that are not being classified within predefined categories. We
believe that more work concerning this point is required.
 An interesting evolution of our approach is to make it able to work in real-time.
Currently, the NetMiner module gets data from the NetLogger module, processes it
and returns the results. While this works reasonably well to signal network
anomalies (such as an abusive server), it is not suitable for real-time network
monitoring. A real-time engine that processes traffic according to the rules that
have been defined as “interesting” (i.e. the rules presented by the above-mentioned
GUI) might open the way to new applications. However, in order to be able to
process network data in real-time a program has to be created that looks for data
matching “interesting” rules. Such engine will loose the ability to discover
unknown relationships because it does no longer implement a data mining
algorithm — that is able to automatically discover new relationships (e.g. a
relationship between a specific IP source addresses and TCP ports).
 A network administrator that simply uses the GUI without digging manually into
the data mining results will incur exactly the same problem. An intermediate
approach could be the deployment of a run-time engine in conjunction with an
offline data-mining process whose objective is to extract unknown results, which
can be used to discover anomalies.
 More investigation and experimental results are needed on an important by-
product of the proposed approach: using the outcome of the data mining process as
an extremely compact representation of the captured network traffic. In fact, the
size of the output of the proposed data mining techniques can be more than
50 times smaller than size of the database generated by the network traffic storage
solution presented in Section 2 (which is already several times smaller than a raw
network traffic dump). Consequently, it would be interesting to assess the amount
of the relevant information that can be inferred from the output of the data mining
process versus the one that can be inferred from the traffic database (as described
in Section 2). In this case, the latter could be discarded and only the former kept for
later reference, thus dramatically reducing the storage requirement for keeping
historical network traffic traces.
 Future work will include also the evaluation of clustering techniques in addition
to the already deployed frequent itemsets and association rules. Moreover, it
should be interesting to explore the possibility to add temporal capabilities that
would enable the correlation of sequential events.

ACKNOWLEDGMENTS
The authors wish to thank A. Cerutti and P. Giverso for their work on the
implementation of the NetLogger and NetMiner modules and P. Fasano who once
suggested us to use data mining techniques for analyzing network traffic.

References
[1] The NetGroup at Politecnico di Torino, Analyzer 3.0, http://analyzer.polito.it/
[2] J. Han, M. Kamber, Data mining: concepts and techniques, Morgan

Kaufmann, 2001.
[3] R. Agrawal & R. Srikant, Fast Algorithms for Mining Association Rules,

Proceedings of the 20th Int.l Conference of Very Large Data Bases, 1994.
[4] K.E. Burn-Thornton, J. Garibaldi, A.E. Mahdi, Pro-active network

management using data mining, Proceedings of the Global
Telecommunications Conference, 1998 (GLOBECOM 98), November 1998.

[5] Q. Yang, H.H. Zhang, Web-log mining for predictive Web caching, IEEE
Transactions on Knowledge and Data Engineering, Volume: 15, Issue: 4,
July-Aug. 2003, pg. 1050 – 1053.

[6] A. Knobbe, D. Van der Wallen, L. Lewis, Experiments with data mining in
enterprise management, Proceedings of the 6th IFIP/IEEE Int.l Symposium on
Integrated Network Management, 24-28 May 1999, pg 353 – 366.

[7] Martin Roesch, Lightweight Intrusion Detection for Networks, Proceedings of
the 13th Conference on Systems Administration (LISA 99), pg. 229 – 238.

[8] W. Lee, S.J. Stolfo, Data mining approaches for intrusion detection,
Proceedings of the 7th USENIX Security Symposium, 1998.

[9] W. Lee, S.J. Stolfo, A Framework for Constructing Features and Models for
Intrusion Detection Systems, ACM Transactions on Information and System
Security, vol. 3, November 2000.

[10] M.V. Mahoney, P.K. Chan, Learning rules for anomaly detection of hostile
network traffic, 3rd IEEE International Conference on Data Mining 2003
(ICDM 2003), November 2003, pg. 601-604.

[11] Karlton Sequeira, Mohammed J. Zaki, ADMIT: Anomaly-base Data Mining
for Intrusions, 8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, July 2002.

[12] L. Portnoy, E. Eskin, S.J. Stolfo, Intrusion detection with unlabeled data
using clustering, Proceedings of the ACM Workshop on Data Mining
Applied to Security (DMSA 2001), November 2001.

[13] M. Baldi, E. Baralis, F. Risso, Data Mining Techniques for Effective Flow-
based Analysis of Multi-Gigabit Network Traffic, Proceedings of the IEEE
International Conference on Software, Telecommunications and Computer
Networks (SoftCom 2004), Split (Croatia), October 2004, pg. 330 – 334.

[14] A. Cerutti, Ingegnerizzazione di una architettura distribuita per l’analisi di
traffico di rete, Laurea Degree thesis, Politecnico di Torino, September 2003.

[15] P. Giverso, Data Mining Techniques for Network Traffic Analysis, Laurea
Degree thesis, Politecnico di Torino, September 2003.

[16] Endace Measurement Systems, web site at http://www.endace.com

