
15 August 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Click vs. Linux: Two Efficient Open-Source IP Network Stacks for Software Routers / Bianco, Andrea; Birke, ROBERT
RENE' MARIA; D., Bolognesi; J. M., Finochietto; G., Galante; Mellia, Marco; M. L. N. P. P., Prashant; Neri, Fabio. -
STAMPA. - (2005), pp. 18-23. (Intervento presentato al convegno IEEE Workshop on High Performance Switching and
Routing (HPSR) tenutosi a Hong Kong (China) nel 12-14 May 2005) [10.1109/HPSR.2005.1503186].

Original

Click vs. Linux: Two Efficient Open-Source IP Network Stacks for Software Routers

Publisher:

Published
DOI:10.1109/HPSR.2005.1503186

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1415108 since:

IEEE

Click vs. Linux: Two Efficient Open-Source IP
Network Stacks for Software Routers

Andrea Bianco∗, Robert Birke∗, Davide Bolognesi∗, Jorge M. Finochietto∗, Giulio Galante†, Marco Mellia∗,
Prashant M.L.N.P.P.‡, Fabio Neri∗

∗ Dipartimento di Elettronica, Politecnico di Torino, 10129 Torino, Italy, Email: {bianco, finochietto, mellia, neri}@polito.it
† Networking Lab, Istituto Superiore Mario Boella, 10138 Torino, Italy, Email: galante@ismb.it

‡ Indian Institute Of Technology, Guwahati, India, Email: prasanth@iitg.ernet.in

Abstract—Software routers based on off-the-shelf hardware
and open-source operating systems are gaining more and more
momentum. The reasons are manifold: first, personal computer
(PC) hardware is broadly available at low cost; second, large-
scale production and the huge market spur the manufacturers to
closely track the improvements made available by Moore’s Law;
third, open-source software leaves the freedom to study the source
code, learn from it, modify it to improve the performance, and
tailor its operation to one’s own needs. In this paper we focus
only on the data plane performance and compare the default
Linux IP stack with the Click modular IP stack in terms of
the forwarding throughput. The results are surprising and show
that a high-end PC is easily able to fit into the multi-gigabit-per-
second routing segment, for a price much lower than commercial
routers.

I. INTRODUCTION

Routers are the glue keeping IP packet networks together,

and have always received a lot of attention from both the

academic and the industrial community.

Traditionally, high-end networking equipment has always

been built with custom application specific integrated cir-

cuit (ASIC) components for efficiency reasons. Unfortunately,

equipment based on proprietary hardware and closed-source

software usually has several drawbacks. First, hardware pro-

duced by different vendors may interoperate only partly or

even not interoperate at all. Second, the unavailability of the

source code of the software and the lack of documentation on

the hardware, often make fixing problems and introducing new

features difficult. Third, last but not least, the price at which

commercial networking equipment is sold is often much higher

than its actual value.

On the contrary, software routers based on off-the-shelf PC

hardware and open-source software are becoming appealing

alternatives to proprietary network devices because of i) the
wide availability of multi-vendor hardware and documentation

on their architecture and operations, ii) the low cost, and iii)
the continuous evolution driven by the PC market’s economy

of scale. Indeed, the PC world benefits from both the de-facto

standards defined for hardware components, which enable the

development of an open multi-vendor market, and the large

availability of open-source software for networking applica-

tions such as Linux [1], Click [2] and the BSD derivatives [3]

for the data plane, as well as Xorp [4] and Zebra [5] for the

control plane, just to name a few.

Criticisms to software routers are focused on limited perfor-

mance, software instability, lack of system support, scalability

problems, and lack of functionalities. Performance limitations

can be compensated by the natural evolution of the PC archi-

tecture. Current PC-based routers and switches have the poten-

tiality for switching up to a few Gbit/s of traffic, which is more

than enough for a large number of applications. Today, the

maturity of open-source software overcomes most problems

related to stability and availability of software functionalities.

It is therefore important to explore the potentialities and the

intrinsic limitations of software routers.

In this paper we focus only on the data plane performance,

ignoring all the issues related to management functions and to

the control plane. Our aim is to assess the packet forwarding

rate of high-end PCs equipped with several Gigabit Ethernet

network interface cards (NICs) running at 1Gbit/s under the
Linux operating system.

Provided that, in a PC-based software router, networking

functions up to data link layer are performed by NIC hardware,

and the IP network layer is implemented as part of the

operating system kernel, the paper is organized as follows.

Section II gives a quick introduction to the PC architecture,

describes the operations and the bandwidth limitations of

its key components, and details how a PC can be used as

an IP router. Section III, overviews the different implemen-

tations of the IP stack available for a Linux-based system.

Section IV introduces the experimental setup, describes the

tests performed, and comments on the results obtained. Finally,

SectionV concludes the paper and draws a roadmap for future

work.

II. ARCHITECTURE OF A PC-BASED ROUTER

A PC comprises three main building blocks: the central

processing unit (CPU), random access memory (RAM), and

peripherals, glued together by the chipset, which provides
complex interconnection and control functions.

As sketched in Fig. 1, the CPU communicates with the

chipset through the front side bus (FSB). The RAM provides

temporary data storage for the CPU as long as the system is

on, and can be accessed by the memory controller integrated

on the chipset through the memory bus (MB). The NICs are

connected to the chipset by the peripheral component intercon-

nect (PCI) shared bus. All interconnections are bidirectional,

0-7803-8924-7/05/$20.00 (C) 2005 IEEE

. NIC N

CPU MEMORY

FSB MB
CHIPSET

PCI BUS

NIC 2NIC 1

Fig. 1. Key components in a PC-based router

but, unfortunately, use different parallelisms, protocols, and

clock speeds, requiring the implementation of translation and

adaption functions on the chipset.

State-of-the-art CPUs run at frequencies up to 3.8GHz.
High-end PCs are equipped with chipsets supporting multi-

ple CPUs connected in a symmetric multiprocessing (SMP)

architecture. Typical configurations comprise 2, 4, 8 or even

16 identical CPUs.

The front side bus is 64-bit wide and is driven by a quad-
pumped clock running at either 100, 133, 166, or 200MHz, al-
lowing for a peak transfer rate ranging from 3.2 to 6.4Gbyte/s.
The memory bus is usually 64-bit wide and runs at either

100, 133, 166, or 200MHz with double-pumped transfers,
providing a peak transfer rate of either 1.6, 2.1, 2.7 or
3.2Gbyte/s. The corresponding double data rate (DDR) syn-
chronous dynamic RAM (SDRAM) chips are soldered on dual

in-line memory modules (DIMM) marketed with the name

PC1600, PC2100, PC2700 and PC3200 respectively. In high-
end PCs the memory bandwidth is further doubled, bringing

the bus width to 128 bits, by installing memory banks in pairs.

Note that this allows to match the memory bus peak bandwidth

to that of the front side bus.

The PCI protocol is designed to efficiently transfer the

contents of large blocks of contiguous memory locations

between the peripherals and the RAM, without requiring any

CPU intervention. As the bus is shared, no more than one

device can act as a bus-master at any given time; therefore,
an arbiter is included in the chipset to regulate the access and
fairly share the bandwidth among the peripherals. Depending

on the PCI protocol version implemented on the chipset and

the number of electrical paths connecting the components, the

bandwidth available on the bus ranges from about 125Mbyte/s
for PCI 1.0, which operates at 33MHz with 32-bit parallelism,
to 2Gbyte/s for PCI-X 266, when transferring 64 bits on a
double-pumped 133MHz clock.
Typically, Gigabit Ethernet and Fast Ethernet NICs operate

as bus-masters to offload the CPU from performing bulk

data transfers between their internal memory and the RAM.

Each NIC is connected to one interrupt request (IRQ) line,

that is used to notify the CPU of events that need service

from the operating system. On the other hand, it is usually

possible to switch IRQ generation off altogether, leaving the

operating system with the burden of periodically polling the
NIC hardware and react accordingly.

Summarizing, common PC hardware enables to easily im-

plement a shared-bus, shared-memory router, where NICs

receive and transfer packets to the RAM, the CPU routes them

to the correct output interface, and NICs fetch packets from

the RAM and transmit them on the wire. In such configuration,

each packet travels twice through the PCI and the memory bus,

effectively halving the bandwidth available for routing traffic.

Therefore, a high-end PC equipped with a 1Gbyte/s 64-bit-
wide PCI-X bus running at 133MHz should be able to feed
up to 3-4 Gigabit Ethernet NICs, needing at most 125Mbyte/s
each.

III. IP NETWORK STACKS FOR LINUX

In a PC-based software router, networking functions related

to the physical and the data link layer are carried out by NIC

hardware, while the IP layer is implemented in software. This

section overviews a couple of enhancements to the Linux IP

stack and introduces Click [2], an alternative modular IP stack

for Linux easily reconfigurable at runtime.

A. Enhancements to the Linux IP Stack

Two long standing issues affecting the networking perfor-

mance of Unix-like operating systems are receive livelock,

described for the first time in [6], and excessive latency in the

allocation of packet buffers for the networking subsystem.

Receive livelock affects interrupt driven kernels and orig-

inates from a race condition between the NIC hardware-

IRQ handler and the network software-IRQ handler. The

NIC hardware-IRQ handler just pulls packets out of the NIC

reception-ring buffer and moves them to the operating system’s

backlog queue. The network software-IRQ gets packet from

the backlog queue and routes them to the correct output inter-

face, putting them on the NIC transmission-ring buffer. Un-

fortunately, when the router becomes overloaded with traffic,

the software-IRQ handler, which has lower priority than the

hardware-IRQ handler, never gets a chance of draining packets

from the backlog queue, practically zeroing the forwarding

throughput.

The key idea introduced in [6] and implemented in the

Linux network stack in [7] with the name new application

programming interface (NAPI) easily avoids receive livelock.

Fig. 2 sketches the operation of the Linux NAPI network stack:

the NIC hardware-IRQ handler is modified so that, when

invoked after a packet reception event, it enables polling mode

for the originating NIC by switching IRQ generation off and

by adding such NIC to the NAPI polling list. The networking
subsystem then periodically schedules the execution of the

poll network software-IRQ, which draws packets from the

RX RING TX RING

− Addr Lookup − TTL decrease

CHECKSUM FORWARDINGROUTING

− Checksum Update

Poll

Tx queue

Receiver Transmitter

Fig. 2. Operation of the NAPI network stack

0-7803-8924-7/05/$20.00 (C) 2005 IEEE

reception ring of the NICs on the polling list and routes them

to the transmission ring of the correct output NIC. When poll
finds a NIC reception ring empty, it deletes the NIC from the

polling list and re-enables IRQ generation for that NIC. The

operation of NAPI is controlled by two parameters: the quota
Q, which is the maximum number of packets to be removed
from any NIC reception ring and the budget B, which is the
maximum number of packets to be handled in each execution.

Of course, B is always greater than Q.

In the standard Linux network stack implementation, buffer

management is performed resorting to the operating system

general-purpose memory management algorithms, which re-

quires CPU expensive operations. Some time can be saved if

the buffer deallocation function is modified so as to store un-

used packet buffers on a recycling list to speed up subsequent

allocations, allowing the device driver to turn to the slower

general-purpose memory allocator only when the recycling list

is empty. This has been implemented in a patch [8] for 2.6
kernels, referred to as buffer recycling patch in the reminder
of the paper, which adds buffer recycling functionalities to the

e1000 driver for Intel Gigabit Ethernet NICs.

B. Click

Click is a modular IP stack for Linux running either in

kernel space or in user space. Its operations are reconfig-

urable at runtime just loading a new Click configuration, that
describes a directed graph connecting a number of different

elements, as depicted in Fig. 3 for a standard RFC 1812 [9] IP
router. The directed graph indicates the flow of the packets in

the router, whereas the elements perform different functions

such as: verifying the IP header checksum, extracting the IP

destination address, routing the packet, decrementing the time-

to-live field and fragmenting the datagram if it is larger than

the link maximum transfer unit. A configuration can be loaded

at runtime with no need of recompiling the operating system

kernel or rebooting. See [2], [10] for more detail.

Click can work in both IRQ and polling mode and im-

plements a special-purpose memory management system to

allocate/deallocate packet buffers.

Fig. 3. Example Click configuration for a standard RFC 1812 IP router

IV. PERFORMANCE EVALUATION

The aim of this section is twofold. First, comparing the

performance of different network stack configurations in terms

of the saturation forwarding rate obtained when all router
ports are offered the maximum possible load and the system

has reached a steady state. Second, devising several tests for

gaining a better understanding of the overall system behavior

and trying to pinpoint the hardware/software subsystems which

most affect the system performance.

Section IV-A introduces the testbed setup, whereas Sec-

tion IV-B and Section IV-C separately evaluate the maximum

reception rate and the maximum transmission rate when for-

warding among the different interfaces is disabled. The ratio-

nale behind this is to assess to what extent the combination

of the operating system kernel, the NIC driver and the NIC

hardware can handle either the transmission or the reception

of packets when they are performed without doing any other

activity. Section IV-D shows performance figures for a router

configuration where packets received from a given port are

simply transferred to a preassigned output port without even

looking at the destination IP address. The aim of this test is

to obtain an upper bound on the forwarding rate achievable

by the full-blown RFC 1812 router presented in Section IV-E,

and to quantify the impact of the per-packet processing and

the data touching overhead incurred in the latter case.

A. Testbed Setup

The router tested is based on a high-end PC with a Super-

Micro X5DPE-G2 mainboard equipped with one 2.8GHz Intel
Xeon processor and 1Gbyte of PC2100 DDR RAM consisting

of two interleaved banks, so as to bring the memory bus

transfer rate to 4.2Gbyte/s.
For this paper, we build upon the results of the work

presented in [11], where we performed a number of transmis-

sion/reception tests on several Gigabit Ethernet NICs produced

by Intel, 3Com (equipped with a Broadcom chipset), D-Link

and SysKonnect, using open-source software generators such

as rude [12], udpgen [13] and packetgen [14]. The
main conclusion drawn in [11] was that the highest packet

generation rate is obtained running packetgen on Intel PRO
1000 NICs with the 5.2.52 e1000 driver. Thus, also in this
paper, we present results obtained installing eight Intel PRO

1000 NICs on the router. All driver parameters were left

to their default values; NAPI was always enabled, whereas

the generation of pause Ethernet frames as well as automatic

interrupt rate moderation were disabled in all tests. The NAPI

quota Q and the NAPI budget B were left to their default
values of 64 and 300 packets. Moreover, since experiments

evaluating the packet forwarding rate ran in [11] showed that

the buffer recycling patch improves significantly the Linux IP

stack performance, all results in this paper were obtained on a

patched 2.6.1 kernel, which is the earliest for which the buffer
recycling patch is available.

Click was instead installed on a 2.4.21 Linux kernel, the
latest for which the click kernel module was available.
No major changes occurred in the networking code between

0-7803-8924-7/05/$20.00 (C) 2005 IEEE

kernel version 2.4 and 2.6. The only modification needed
to make a fair performance comparison between them is

to lower the default 1000Hz clock interrupt frequency of
2.6 kernels to 100Hz, which is the default for 2.4 kernels.
As far as Click is concerned, all tests were run with NICs

in polling mode, whereas the udpgen and the udpcount
configurations bundled in the Click software distribution were

used for running transmission and reception experiments.

Notice that, although Gigabit Ethernet NICs offer a raw

data rate of 1Gbit/s, the throughput actually achievable at
the IP layer is much lower because of physical and data-link

layer overhead. Indeed, the physical layer adds a minimum

12-byte inter-packet gap and precedes each layer-2 frame

with an 8-byte preamble, whereas the data-link layer needs

an 18-byte overhead and encapsulates a 46- to 1500-byte

payload. Consequently, Gigabit Ethernet NICs running at full

speed must handle a packet rate ranging between 81 274
and 1 488 095 packets per second [pkt/s] as the payload size
decreases from 1500 bytes to 46 bytes.
An Agilent N2X RouterTester [15], equipped with eight

Gigabit Ethernet ports, that can transmit and receive Ethernet

frames of any size at full rate, was used for generating

traffic for reception tests, measuring the traffic generated by

the router during transmission tests, as well as sourcing and

sinking traffic in routing tests.

Most of the results presented in this section were obtained

for minimum-size, i.e., 64-byte, Ethernet frames because they

expose the effect of the per-packet processing overhead. How-

ever, we also ran a few tests for different frame sizes, to check

to what extent the PCI bus and the memory subsystem could

withstand the increased bandwidth demand.

We considered both unidirectional flows, where each router
port, at any given time, only receives or transmits data, as well

as bidirectional flows, where all NICs send and receive packets
at the same time. All the results reported are the average of

five runs of the same test, each lasting 30 s.
The IP routing table used in routing tests was minimal and

only contained routes to the class-C subnetwork reachable

from each port. As a consequence, the number of IP desti-

nation addresses to which the RouterTester sent packets on

each subnetwork was always less than 255, so that the routing

cache never overflowed and the route-lookup overhead was

marginal.

All figures contain histogram plots: the scale on the left-

hand side is in millions of packets per second [Mpkt/s],

whereas the scale on the right-hand side represents the cor-

responding rate in gigabits per second [Gbit/s], except for

Fig. 6(b), where only gigabits per second are reported on the

left-hand side.

B. Packet Reception

Considering minimum-size frames, Fig. 4 compares the

maximum reception rate achieved by i) the standard Linux
stack with a NAPI enabled version of udpcount, which
checks the Ethernet frame protocol-type field and drops the

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8
 0

 0.5

 1

 1.5

 2

 2.5

 3

R
ec

ep
ti

o
n
 p

ac
k
et

 r
at

e
[M

p
k
t/

s]

R
ec

ep
ti

o
n
 b

it
 r

at
e

[G
b
it

/s
]

Number of active NICs

Linux udpcount
Linux no touch
Click udpcount

Fig. 4. Comparison of the router reception rate for different IP stacks versus
the number of NICs active at the same time

packet (histogram labeled Linux udpcount), ii) the same con-
figuration but when packets are dropped without checking the

Ethernet protocol-type (histogram labeled Linux no touch),
iii) udpcount for Click when polling is enabled (histogram
labeled Click udpcount). The same experiment was repeated
receiving traffic at the same time on a number of NICs variable

between one and eight, so as to evaluate the scalability in

packet reception.

In the Linux udpcount configuration, the reception rate
slowly decreases from about 1.1Mpkt/s to 1Mpkt/s as the
number of NICs receiving traffic increases from one to eight.

The same holds also for the Linux no touch setup, starting
from 1 488 095 pkt/s for one NIC, which corresponds to the
full 1Gbit/s line rate for minimum-size Ethernet frames, and
ending at about 1.25Mpkt/s for eight NICs. The difference
between the reception rates observed in the two configurations

depends on CPU cache misses. Indeed, provided that received

packets come from outside the router, trying to read, i.e.

touching, any of the data they contain, causes a miss in the
data cache, stalling the CPU for several clock cycles, while

waiting for the requested data to be fetched from the (relatively

slower) system RAM.

On the contrary, Click udpcount is able to receive all packets
sent to one NIC, and, in experiments with two or more

NICs active at the same time, receives about 3Mpkt/s. A
quick inspection on the Click source code showed that the

programmers introduced some inline assembly instructions to

prefetch the packet header before actually accessing it, so as

to prevent cache misses from happening.

Notice that, in all cases, the number of packets received in

an experiment is equally shared among all the active NICs. The

results obtained for one NIC show that, operating carefully,

Intel PRO 1000 hardware can receive minimum-size Ethernet

frames at full line speed.

C. Packet Transmission

Fig. 5 compares the maximum transmission rate generated

by packetgen on a baseline Linux stack (histogram labeled
Linux packetgen), with the maximum transmission rate ob-
tained by udpgen for Click (histogram labeled Click udpgen).

0-7803-8924-7/05/$20.00 (C) 2005 IEEE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8
 0

 0.5

 1

 1.5

 2

 2.5

 3

T
ra

n
sm

is
si

o
n
 p

ac
k
et

 r
at

e
[M

p
k
t/

s]

T
ra

n
sm

is
si

o
n
 b

it
 r

at
e

[G
b
it

/s
]

Number of active NICs

Linux packetgen
Click udpgen

Fig. 5. Comparison of the router transmission rate for different IP stacks
versus the number of NICs active at the same time

The aim of the experiment was to assess the impact of CPU

loading and of NIC hardware on the packet generation rate.

The tests were performed measuring with the RouterTester the

maximum transmission rate achieved by the router for 64-byte

Ethernet frames when varying the number of NICs generating

traffic at the same time between one and eight.

Linux packetgen generates a slightly decreasing packet rate
ranging from about 740 kpkt/s to about 690 kpkt/s, as the num-
ber of involved NICs increases. The story is pretty different,

instead, for Click udpgen, which increases the generation rate
almost linearly from 730 kpkt/s to 4.2Mpkt/s as the number of
NICs passes from one to seven, and seems to stabilize around

4.2Mpkt/s for eight NICs. As for packet reception, the number
of packets transmitted in each experiment is equally shared

among all the active NICs.

The results obtained lead to the astonishing conclusion

that, neither Linux nor Click can send minimum-size Ethernet

frames at full speed, even when working with one NIC. We

were nonetheless able to send a short burst of 64-byte Ethernet

frames at full speed, by triggering the transmission after they

had been successfully transferred to the NIC internal buffer.

This left us with the strong suspect that the transmission limit

observed might be originated by an excessive latency of PCI

memory-read transfers.

D. Packet Transfer

In this section we evaluate the maximum transfer rate, that
is, the maximum rate at which packets coming in from a given

port can be moved to a preassigned output port, without even

looking at their content. The rationale behind this is to prevent

cache misses from happening by avoiding any data touching

operation, so as to obtain an upper bound on the forwarding

rate achievable during normal router operations.

The experiments in this section were performed with a

modified Linux kernel in which the IP stack was completely

eliminated to implement a fixed port-to-port packet transfer

rule. For Click we only wrote and installed a minimal con-

figuration, which instantiates all the interfaces and connects

them in pairs, using one packet queue for each traffic flow.

From the packet transmission rates measured in the previous

section, it is possible to extrapolate that, very likely, in a

unidirectional scenario, the modified router will not be able to

transfer more than 740 kpkt/s when running Linux, and more
than approximatively 730 kpkt/s times the number input/output
interface pairs (with an upper bound of 4Mpkt/s), when
running Click. Taking also into account the reception rates,

it is possible to guess that the maximum transfer rate will be

limited to no more than 740 kpkt/s under Linux and to no more
than 3Mpkt/s under Click.
Fig. 6(a) shows the transfer rate obtained by Linux and

Click, when one, two, three, or four interface pairs are

crossed by one, two, three, or four unidirectional traffic flows.

Remember that, in each scenario, the router receives packets

from half of the interfaces and transfers them to the remaining

ones. Each histogram is split into three parts detailing the

traffic offered to the router (labeled Generation rate), the
amount of traffic actually seen by the router operating system

(labeled Reception rate), and the traffic actually transmitted
by output interfaces (labeled Transmission rate). For example,
the histogram for Linux with one flow shows that the modified

router is offered traffic at line rate. However, Linux only

receives around 1.4Mpkt/s because of packet drops in the NIC

 0

 1

 2

 3

 4

 5

 6

4321
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

P
ac

k
et

 r
at

e
[M

p
k
t/

s]

B
it

 r
at

e
[G

b
it

/s
]

(a) Number of flows

Linux Click
Generation rate
Reception rate
Tranmission rate

 0

 1

 2

 3

 4

 5

 6

1500128010247685122561286446

T
ra

n
sf

er
 b

it
 r

at
e

[G
b
it

/s
]

(b) Ethernet payload size [byte]

Linux BI
Linux UNI

Click BI
Click UNI

Fig. 6. Comparison of the router transfer rate for different IP stacks: (a) for minimum-size Ethernet frames, when the number of unidirectional traffic flows
is varied; (b) for different packet sizes, when the router is crossed by either four unidirectional or four bidirectional traffic flows

0-7803-8924-7/05/$20.00 (C) 2005 IEEE

reception queue which is not receiving enough service. Finally

only 650 kpkt/s get out of the output NIC, the difference being
dropped on the Linux transmission queue feeding the NIC. On

the other hand, Click can receive all packets generated by the

RouterTester, but is bound to the same transfer rate as Linux

by the transmission limit of the output NIC.

When using two flows, and therefore two output interfaces,

the transfer rate for both stacks becomes approximatively

1.2Mpkt/s, which is roughly twice the output NIC transmis-
sion limit.

Increasing further the number of flows, the packet transfer

rate achieved by Linux slightly decreases until about 1Mpkt/s
for four flows, because the system reception limit has been

reached. Instead, Click can transfer 1.8Mpkt/s (i.e., three times
as much as the output NIC transmission limit) for three flows,

and 2.1Mpkt/s for four flows, when the system reception limit
starts kicking in.

Fig. 6(b) reports the saturation transfer rate in Gbit/s for

Linux and Click, when the router is crossed by four traffic

flows, either unidirectional (UNI) or bidirectional (BI), and

the Ethernet payload size is varied from 46 to 1500 bytes.

Notice that the transfer rate achieved for maximum-size (i.e.,

1518-byte) Ethernet frames is 5.5Gbit/s, which corresponds
to 11Gbit/s of traffic flowing across the PCI bus and the
system RAM, owing to the shared-bus shared-memory router

architecture.

E. Packet Routing

In Fig. 7 we plot the saturation forwarding rate for min-

imum-size Ethernet frames as the number of flows ranges

from one to three. The maximum forwarding rate observed

is around 800 kpkt/s, which corresponds to about 500Mbit/s.
The astonishing drop in the performance with respect to

the (simpler) packet transfer case depends on the per-packet

overhead introduced when looking at the IP destination address

and selecting the correct output port.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

321
 0

 0.5

 1

 1.5

 2

 2.5

 3

F
o
rw

ar
d
in

g
 p

ac
k
et

 r
at

e
[M

p
k
t/

s]

F
o
rw

ar
d
in

g
 b

it
 r

at
e

[G
b
it

/s
]

Number of flows

Linux Click

Generation rate
Reception rate
Forwarding rate

Fig. 7. Comparison of the router forwarding rate for different IP stacks
versus the number of flows active at the same time

V. CONCLUSIONS AND FUTURE WORK

In this paper we assessed the feasibility of building a high-

performance IP router out of common PC hardware and the

Linux open-source operating system. We ran a number of

experiments to assess the saturation forwarding rate of both

the Linux and the Click IP stacks, completely ignoring all

issues related to the control plane.

A software router based on a high-end off-the-shelf PC

can transfer up to 750 kpkt/s, corresponding to 500Mbit/s,
when handling 64-byte packets, and 5.5Gbit/s, when handling
1518-byte packets. Configurations with up to eight ports, each

running at 1Gbit/s, can be easily and inexpensively built at
the price of a small decrease in the forwarding rate.

Provided that the major bottleneck in the systems seems to

be the per-packet processing overhead introduced by the CPU,

we are also profiling the Linux kernel networking code so as

to identify the most CPU intensive operations and implement

them on custom NICs enhanced with field programmable gate

arrays (FPGAs).

ACKNOWLEDGMENT

This work was performed in the framework of EURO [16],

a project involving six Italian Universities, partly funded by

the Italian Ministry of University, Education, and Research

(MIUR).

REFERENCES

[1] L. Torvalds, “Linux.” [Online]. Available: http://www.linux.org
[2] E. Kohler, R. Morris, B. Chen, and J. Jannotti, “The click modular
router,” ACM Transactions on Computer Systems, vol. 18, no. 3, pp.
263–297, Aug. 2000.

[3] “BSD Unix.” [Online]. Available: http://www.bsd.org
[4] M. Handley, O. Hodson, and E. Kohler, “Xorp: An open platform for
network research,” in Proc. of the 1st Workshop on Hot Topics in
Networks, Princeton, NJ, USA, Oct. 28–29, 2002.

[5] GNU, “Zebra.” [Online]. Available: http://www.zebra.org
[6] J. C. Mogul and K. K. Ramakrishnan, “Eliminating receive livelock in
an interrupt-driven kernel,” ACM Transactions on Computer Systems,
vol. 15, no. 3, pp. 217–252, Aug. 1997.

[7] J. H. Salim, R. Olsson, and A. Kuznetsov, “Beyond softnet,” in Proc.
of the 5th Annual Linux Showcase & Conference (ALS 2001), Oakland,
CA, USA, Nov. 5–10, 2001.

[8] R. Olsson, “skb recycling patch.” [Online]. Available: ftp://robur.slu.se/
pub/Linux/net-development/skb recycling

[9] F. Baker, “RFC 1812, requirements for IP version 4 routers,” June
1995. [Online]. Available: ftp://ftp.rfc-editor.org/in-notes/rfc1812.txt

[10] E. Kohler, “The click modular router,” Ph.D. dissertation, MIT, Cam-
bridge, MA, June 2000.

[11] A. Bianco, J. M. Finochietto, G. Galante, M. Mellia, and F. Neri, “Open-
source pc-based software routers: a viable approach to high-performance
packet switching,” in Proc. of the 3rd International Workshop on QoS in
Multiservice IP Networks, QoSIP 2005, Catania, Italy, Feb. 2–4, 2005,
pp. 353–366.

[12] J. Laine, “Rude/Crude.” [Online]. Available: http://www.atm.tut.fi/rude
[13] S. Zander, “UDPgen.” [Online]. Available: http://www.fokus.fhg.de/usr/

sebastian.zander/private/udpgen
[14] R. Olsson, “Linux kernel packet generator for performance evalua-

tion.” [Online]. Available: ftp://robur.slu.se/pub/Linux/net-development/
pktgen-testing

[15] Agilent, “N2X RouterTester 900.” [Online]. Available: http://advanced.
comms.agilent.com/n2x

[16] “EURO: University Experiment on Open-Source Routers.” [Online].
Available: http://www.diit.unict.it/euro

0-7803-8924-7/05/$20.00 (C) 2005 IEEE

