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We propose an implementation of holonon{geometrical quantum gates by means of semiconductor
nanostructures. Our quantum hardware consists of semiconductor macroatoms driven by sequences of ultrafast
laser pulsegall optical contro)). Our logical bits are Coulomb-correlated electron-hole p@sitons in a
four-level scheme selectively addressed by laser pulses with different polarization. A universal set of single-
and two-qubit gates is generated by adiabatic change of the Rabi frequencies of the lasers and by exploiting the
dipole coupling between excitons

DOI: 10.1103/PhysRevA.67.062315 PACS nuntber03.67.Lx

I. INTRODUCTION nomic quantum computatiatHQC) ([16,17). In this paper,
we shall analyze in a detalied manner a recent proposal for
In the recent years, the interest about quantum computadQC with semiconductor quantum dqti3].
tion (QC) and quantum information processit@IP) has We shall start by recalling the basic facts about HQC
been Considerab|y growing_ App”cations of Q|P' e.g., quan.(sec. |D and the excitonic transitions in semiconductor mac-
tum cryptography and quantum teleportation, have been prgoatoms(Sec. Il). In Sec. IV, we will show how to encode
posed and verified experimentally. In QC, it has been showfluantum information in excitonic state and how to realize
that quantum algorithms may speed up some classically insingle-qubit gates by means of laser pulses. The two-qubit
tractable problems in computer scierjdg. gates resorting to a biexcitonic shift are illustated in Sec. V.
Unfortunately this power inherent to quantum featuresSection VI contains the conclusions, and Appendixes are
(i.e., entanglement, state superpositiandifficult to be ex- added to improve the self-consistency of the paper.
ploited because quantum states are typically highly unstable,
i.e., the undesired coupling with the many degrees of free- II. QUANTUM HOLONOMIES
dom of the environment may lead to decoherence and to the ) ) )
loss of the information encoded. Another source of error can When a quantum state undergoes an adiabatic cyclic evo-
be the imperfect control of parameters driving the evolutionfution, & nontrivial phase factor appears. This is cafied-
of the system. This can lead to wrong output states. Tnetrical phasebecause it only depends on the global prop-
implement effective QIP techniques, these two problem@mes, i.e, not on the path in the parameter space but only on
must be faced and solved. the swept solid angle. If the evolving state is nondegenerate,

For the problem of decoherence, some methods have bedff have only an Abelian phagBerry phas¢19)), but if it is
proposed theoretically, for e.g., via error correcting cdd@gs Qegenerate we have a non_—Abehan_operator. Thgn we can use
it is possible to find errors induced by the environment andt t© Process the quantum information encoded in the state.
correct them. Other approaches propose to encode informa- More precisely, if we have a family of isodegenerate
tion in states that are stable against environmental i@ise HamiltoniansH(\) depending onm dynamically control-
or to eliminate dynamically the noise effecfd,5]). A few  lable parameters, we encode the information in @fold
quantum hardwares have been proposed for the implementd€generate eigenspafef a HamiltonianH(Xo). Changing
tion of quantum gates; e.g., nuclear magnetic resonfice 'S and drivingH(\) along a loop, we produce a nontrivial
ion traps[7—10] semiconductor quantum doter macroat-  transformation of the initial stateyro)— U] o).
oms ([11-13); in each of these implementations we have _Th_ese transformations, calldeblonomiesare the_ gener-
different gates and different ways of processing information@alization of Berry's phase, and can be computed in terms of

A conceptually novel approachtspological computation the  Wilczek-Zee  gauge  connection[20]:  U(C)
([14,15) in which the gate parameters depend only on the= P exp{cA), where P denotes path ordering<; is the
global features of the control process, being therefore insedoop in the parameter space, amd=X]_;=A d\, is
sitive to the local fluctuations. Though interesting the topo-theu(n)-valued connection. IfD;(\)) (i=1, ... h) are the
logical gates proposed so far are quite difficult to realize ininstantaneous eigenstates &f(\), the connection is
practice because they are based on nonlocal quantum stal@s,) .z =(D ,|9/9Q*|Dg) (a,8=1,...n).
of many-body systems with complex interactions. It is useful to introduce thecurvature two-form F

Another approach that has some of the glofgglometri- =X, F, dx*/A\dx”, whereF,,=d,A,—d,A,+[A,.A,l
cal) features of the quantum gates and seems closer to tHeallows us to evaluate the dimension of the holonomy group
present experimental technology is the the so-calietb- and when this coincides with the dimensionldfn) we are
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able to perform the universal quantum computation with ho- TABLE I. I'g (conduction bang I';, I'g periodic part of Bloch
lonomies. function.

For computation purposes, we note that if the connection
components commufe , ,A,]=0, the curvature reduces to [Jtot 1 J2) v r
F..=d,A,—d,A, and we can use Stokes theorem to com-, ; iIst) I
pute the holonomles The holonomic transformation can b 2:2) _ 6
calculated easilyJ =exp(/dF,,d\,/\d\,), and depends on 3,-3) i1S1) -
the “flux” of F,, through the surfacS delimited byC. It is 1
now clear that holonomies are associated to the geometrici‘ﬁi) El(XHY)T)
features of the parameter space.

Even if with an holonomy we can build every kind of 1 N
transformationlogical gate, it is useful to think in terms of \/§|( L)
few simple gates that constitute a universal @&t, which 1
can be composed to obtain any unitary opepator 12,3 —\/g\ZTH —|(X+ )

Many efforts have been made to implement geometrical \/—
guantum gatesi.e., nuclear magnetic resonan&l] or su-
perconducting nanocwcun[szz]) because they are believed 3.~ 3) \/—|Zl> |(X—IY 1) I's (LH)
to be fault tolerant for errors due to an imperfect control of
parameter$23,24]. The nonadiabatic realizations of Berry's | L —|ZT>+—|(X+iY)1
phase logic gates have been studied as {@&}28. More 22 3 3 )
recently, schemes for the experimental implementation of
non-Abelian holonomic gates have been proposed for atomig — i|zl>+i|(x—iY)T) r,
physics,[29] ion traps[30], Josephson junctiori81], Bose- V3 V3
Einstein condensat¢82], and neutral atoms in cavify33].

The basic idea is to have a four-lev&l system with an
excited state |€)) connected to a triple degenerate spaceconsidered. A common choi¢gl8,30) is to realize a selec-
with the logical qubits [0) and |1)) and anancilla qubit  tive phase shift gate);=e'¢sltH(4,

(|a)); the three degenerate states are separately addressed
and controlled. The effective interaction Hamiltonian de-
scribing the system ién interaction picturg

I's (HH)
I's (HH)

|%!_g>

I's (LH)

le
Nh—\

IIl. EXCITONIC TRANSITIONS

In what follows, we show that if we can act on a quantum
Hint=7%1€)(Qo(0]+Q(1|+ Q4 (a])+H.c. (1)  dot with coherent opticallase) pulses, we can produce
Coulomb-correlated electron-hole paiesxcitons and deal
H possesses a two degenerate stétafied dark statey  with an interaction Hamiltonian similar to the one described
with E(t)=0 and two bright stateswith E(t)=*=Q (Q in Eq. (1). By changing the laser parameters along the adia-
=[Qol?+]Q4[?+]Q,]%). At t=0, we codify the logical batic loop, we can produce the same single-qubit gates as in
information in one of these dark staté=., |0) or |1)) and  Ref.[30].
then, changing the Rabi frequencieQ;( i=0, 1,a), we In the GaAs-based IllI-V compounds, the six electrons in
perform a loop in the parameter spa¢¢(0)=H(T)]. If the  the valence band are divided in a quadruplés 6ymmetry
adiabatic condition is fullfilled at a generic timethe state of  which corresponds td;,;=3/2, and a doubletl{; symme-
the system will be a dark state bi(t) and the Hamiltonian try) which corresponds tol,,;=1/2. If we consider a
loop will correspond to a loop for the state vector. Since forGaAs/ALGa;_,As quantum dot, the confining potential
the adiabatic condition the excited state is never populatedalong thez growth axig breaks the symmetry and lifts the
the instantaneous dark state will be a superposition of thdegeneracj34]. The states of the quadruplet are separated in
degenerate states. With this loop, we produce a rotation id,= +3/2 [heavy holes(HH)] and J,= *=1/2 [light holes
the degenerate spaciy, |1), |a)), starting from a logical (LH)]. TheI'; electrons havd,= = 1/2. We can rewrite the
qubit and passing through tlaacilla qubit. At the beginning  eigenstates of,,; andJ, using the|S), |X), |Y), |Z) states
and at the end of the cycle, we have only logical bits, but(the fourI" point Bloch function, Table)l
after a loop a geometrical operator is applied to them. Since If we shine the quantum dot with a laser beam, we excite
we can diagonalizél), it is easy to calculate the connection an electron from the valence band to the conduction band. In
and the holonomy associated to the loop. the dipole approximation, we have to calculate the amplitude
We can construct two single-qubit gatds:1=ei¢l‘1><1| transition(f|e-r|i) (wheree is the polarization vector of the
(selective phase shift and U,=e'%2% [oy=i(]1)(0] electromagnetic wavej) and |f) are the initial and final
—]0)(1])]. These two gatesl; andU,) are noncommut- states respectively
able, so we can construct non-Abelian holonomies since The only nonvanishing transition amplitudes for our cal-
U,U,#U,U,. culations are/ S|x|X), (S|y|Y), (S|z|Z).
To obtain a universal set of gates, we must introduce a Using this relation and Table I, we can calculate which
two-qubit gate; since these gates exploit the interaction betransitions are allowed and which ones are forbidden.
tween two qubits, they will depend on the physical systems First we note that, for states such [X+iY)), we can
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have a transition only using the “negative” circularly polar- Et E° E- LH
ized light, e=€,— i €, A
(Sle-r[(X+iY))=(S|(x—iy)[(X+iY))
HH
=(S[x[X)+(Sly|Y)
=2(9x|X) 2
+ 0 -
(x| X)=(S|y|Y) for the symmetry of our system
Using “positive” circularly polarized light, we have no
transition,
(Sle-r|(X+iY)y=(S|(x+iy)[(X+iY)) G
=(Sx|X)—(S|y|Y) FIG. 1. Level scheme for LH and HH.
=0. ) 31 1 1 . -
- | 23/ 7272 o
The latter are callegholarization selection rule$PSR.
We have also to consider the spin wave function in the 3 1 11
initial and final states. If the initial state has spin (@own) ‘—,— —> —>—,—> for o".
the final state must have spin (ghown) [spin selection rules 2" 2 2°2

(SSR)]. For example, . . . .
These transitions are allowed with circulgrositive or

negative polarization €=e,*ie,) and propagation along
the z (growth) axis. If we have the wave propagating along
) ] thex ory axis and the polarization alormythen the transition
(S|(x=iy)|(X+iY))(1]])=0. (4 is allowed by PSR. Using also the SSR, we get the two
allowed transitions:

(Sl(x=iy)[(X+iY))(T[1)=2(S[x|X),

A. Heavy-hole transitions

11|31
From Table I, we have the heavy hole and fhg (con- <§,§ z §,§> ~(9|2|2), (5)
duction band states; using SSR we can say that the only
I dt iti
allowed transitions are 1 113 1 . i
57 525 5) ~(SlZ|2). (6)

33 1 . 11\ |
25 :—2|(X"“|Y)T>H 35 =i[ST),
With the operatow®, we have the following transitions:

3 3\ 1 iy 1 1 s ‘3 1> 1 1> for o
P e - — |5y 5/ = 1Al a1 o,
2" 2) TG Xz 5) SIS 2'2| 7|22
The first transition is produced by the “negative” circu- ’E _ l> _>} _ E> for o©.
larly polarized light(we write the corresponding operator as 2" 2 2" 2

o) and the second transition is produced by the “positive”

circularly polarized light ¢*) for the PSR. Such transitions with polarization along th@xis have been
In terms of excitongelectron-hole pains if we perform a  experimentally observe(B5]. _ . .

transition witho~, we promote an electron with spin 3/2 of  Exciting light-hole electrons with three different kinds of

the valence band to the conduction band with spin 1/2, antight (left and right circular polarization and polarization

we get an exciton with angular momenturil (E~). With alongz axis), we can induce three different kinds of transi-

o* we promote an electron with spir3/2 of the valence tions with the same enerdg5].

band to the conduction band with spin 1/2, and we have an [n terms of excitons if we make a transition wigti", we
exciton with angular momentum 1E(). promote an electron with spim 1/2 from the valence band to

the conduction band with spitt 1/2, and we get an exciton
with angular momentumt1 (E*). Using light propagating
alongx or y axis with z polarization, we promote an electron

For the light hole, we have more allowed transitions; thiswith spin +1/2 from the valence band to the conduction
is due to the presence of the) states in the wave function. band with spin+1/2, and we have an exciton with angular
As for the HH transitions, using™ we have momentum 0 E).

B. Light-hole transitions

062315-3



SOLINAS et al. PHYSICAL REVIEW A 67, 062315 (2003

The allowed transitions and the corresponding energy- TABLE II. Rabi frequencies for allowed transitions.
level scheme for HH and LH are shown in Fig. 1.
Qnm v c Exciton
C. I'; transitions QL3 3 N i E-
212
In the same way we can compute the transition selectiof 1 -2 -3 — -1 E*
rules for thel'; electrons: 0t _1 -1 - z E*
O 11 L — -1 E-
11 1 1 22 : 2
§,§>H‘§,—§> for o, 033 %1 — %1 Ez
941 -3 - - :
1 1 11
E,—E —>§,§ for (T+, R N . N
iy m=prn EX (1) =Ege '“'e-(v,mler|c,n). (11
E E>_)‘£ E> for o° The last term is the dipole transition amplitude.
2°2) |22 The termc’. v 3, describes the promotion of an elec-

tron with spin= 3/2 to the conduction band with spinl/2,
> for o°. and then it describes the+creation of a “heavy” exciton with
angular momentunt 1 (E~) from the ground stat&. In the
same way, we can rewrite the terms in Ef0) taking ac-
Like for the LH, we have three different kinds of transitions count of thelight-hole transition. With this new notation, we
that can be distinguished by the light polarization. have nonvanishing coefficientas discussed in Sec. Jlin
Those transitions are energetically higher with respect torgple |1.
the LH and HH ones. Therefore, we should be able to forbid The Hamiltonian becomes
them using properly tuned laser sources with bandwidth

AE<Er,—Ei4=0.3 eV[36]. Hine=—#[Q wnlEx)(Gl+ Q1 il EGNGI+Q (WlE])

1 1> ‘1 1

2727272

— 0
IV, EXCITON INTERACTION HAMILTONIAN X(G+Q_ W ECN(G|+ Qo i ECNG|+H.c]. (12)

AND SINGLE-QUBIT GATES . . . .
In the last term, we include the two identical kinds Bf

Now we want to write the interaction Hamiltonian for the excitons.

exciton transitiongexcludingl"; transitions. As we stated before, if we can address the light or heavy
The Hamiltonian for the light-matter interaction (e  hole we can distinguish betwees,, and E};; so using
use the electric field instead of the vector poter{té]) light with specified frequency tuned to LH transition, we can
- write
Hine=—€e[P-E*(t)+H.c], (7)

- e o Hing=—A(Q (Wl ES)+Q_ (W[ED)+ Qo | ED))
whereE(t) is the electric fieldP is the polarization operator
defined as X(G|+H.c. (13

This Hamiltonian has the same structure as the one pro-
posed in Ref[30] to implement the holonomic quantum
computation with trapped ions. So we can construct the same
and geometrical single-qubit gatesJ{ and U,) using , for ex-

ample,E* andE~ as|1) and|0) bits, respectively, an&®
anm={(c,nler|v,m). (9) as ancilla bitja).
For the first gate, we chooseQ}_=0, Q.=
c, andc| are the annihilation and creation operators for an— () sin(0/2) €'¢, andQ,=0 cos@?2). The dark states are
electron in the conduction band with spinn=*1/2); v,,  given by|E~) and|)=cos@?2)|E")+sin(6/2)e'¢|E®). By
and v:rn are the annihilation and creation operators for anevaluating the connection associated with this two-
electron in the valence band with spim(m=*=1/2 (LH) or  dimensional2D) degenerate eigenspace, it is not difficult to

P=> vlicy(v.mler|c,n)=2> vicouk, (8)
n,m n,m

m==3/2 (HH)]. . see that the unitary transformatidd,=e 1E E"| (¢,
Then, using the dipole approximation[ E*(t) =3¢ sin#dddy) can be realized as a holonomy. For the sec-
=Eqe' (K~ Ve~E e “t¢], ond gate, we choos@ _= () sinfcose, O =0 sindsing,

and Q= cosh. The dark states are now given by;)
=c0SHcoSg|E)+coshsinglET)—singE® and  |y,)
=cosg|E")—sing|E"). In this case, the unitary transforma-
tion U,=€'%% (where ¢,=¢sindddde and ioy
We define =|E*)E"|—|E"){E"]) can be implemented.

Hine=—| > vica(v.mler|c,n)-E*(t)+H.c.|. (10)
n,m
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A

08

0.6 |

04|

02|

Q-

0 L L L
0 0.5 1 15 2 Q4
0
FIG. 2. (a) Loop in the §-¢ parameter spacéb) Evolution of |[E*) in the |E™)—|E*)—|E®) space for gate 2 ang,= /4.

We performed numerical simulations to show how ourHadamard gat¢also shown in Figs. ®) and (4)], and we
scheme works and how we can satisfy adiabaticity requesthoosed,, in order to obtainfd() = =/4.
and apply logical gates. The exciton states have energies be- Figure 3 shows the state populations during the quantum-
tween 1.5 eV and 1.7 eV, which correspond to sub-mechanical evolution; as we can see, st&pis never popu-
femtosecond time scale; then by using femtosecond lasdated(as expected in the adiabatic limiFor the case of gate
pulse, we avoid transition between theound and exciton 1 [see Fig. 8], state|E") is decoupled in the evolution
states during the evolution. Using Rabi frequencies of abouthile state]E ") evolves to the ancilla statéE°)) to even-
0.02 fs * (corresponding toQ 1=50fs) and evolution tually end in|[E™) (as we expect for the dark statén the
times of T,4=7.5 ps(as in the simulation we get for the InSet, we show the phase accumulated |By) state; of

adiabatic condition()T,,=150>1, which assures us that course, in the central region the phase is undefined.

there will be no transition between thdark andbright states Th? qga&ntgm evoluttrllon of gate g in F'?(? Its tmore d all
(separated by energy. complicated because there are no decoupled states, and al

. . i . . the three degenerate states are populated. We star{ Edn

h Iln Fig. 2a), thetloopdln thez ¢ spa(t:ﬁ IS shlc_)(;/vn. S';ge the and end in a superposition OE*)-|[E”). It can be better

olonomic operalor depends on the sSofid ang @ understood by looking at Fig. 4, where we show the evolu-
=$dod¢ sing), the only contribution from this loop comes i) of the dark state in théE™), |[E7), |E®) space. As
from the first part and can be easily calculat¢d()  enioned above, the initial dark state evolves in the degen-
= 1/2(sin6n— 6cOSfy). Then it is sufficient to changé, 10 erate space: it starts from the*) axis, then passes through
apply a different operator. In Fig(&), we show the loop in 3 superposition of the three states, and ends in the
the manifold of the control parameters for gate(2(, Q*, |E*)-|E7) plane[(|ET)+|E™))/{2 statd.
09, since the parameters are real, the 3D veftcevolves The numerical simulations show that our scheme works,
on a sphere. These two figures refer to the implementation aind we are able to produce the desidered gates with realistic

A B
1 < = 1
S \ B

k
°
Phase
Undefined
ST

Population

Population
\-.-.

0 t/Tua 1o t/Tua !
FIG. 3. (a) Simulated time evolution of the HQC gate 1 wifh = #/4 and initial statdE ™). The inset showgwhere it is definefthe
quantity ¢, whereg:=arg{ W (t)|E*)/|{ ¥ (t)|E™)|. (b) Simulated time evolution of the HQC gate 2 wiih,= 7/4 (Hadamard gajeand
initial state|E™).
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this has been recently studip#fl] by numerical simulations;
moreover, given a gate we can also find the best loop opti-
mizing the length in the parameter space or satisfying some
experimental constraint. It is difficult to apply the same ap-
proach to dynamical gates since they are typically thought
and performed by sequences of specified building-block op-
erations(e.g., laser-pulse sequenges

1 For complicated enough operations, one typically needs a
lot of dynamical gates; the holonomic approach could be
preferred to the dynamical one for its simplicity, i.e., single
(few) adiabatic loop versus many dynamical gates, which in
turn might even lead to ahorterrealization time.

FIG. 4. Evolution of the initial statéE™) in the |E7)—|E™) A. Laser bandwidth

—|E®) space for gate 2 and,= /4. o o o
We saw that by using light with different polarizations, we

. . . - 0 .
parameters for the semiconductor quantum @8 and for can induce different transitions and generkte, E* exci-

the recent ultrafast laser technolo@®9]. Moreover, it is tons. To selec_t which elect'ron. to excitelt, LH I'7) we
clear (also with the gates in Refl18]) that we are able to have to use (_:ilfferent energies; in fd¢} transitions are the
apply different gates in the same gating time because thE10st energetic ones, then there are the LH and the HH tran-
latter depends only on the adiabatic constrdartd not on sitions. , L .

the gate we choos@nd, through the adiabatic limitation, we _FOF circular ¢-) polarization light propagating along tize
can apply several quantum gates. In fact, recent stid@ls 2XiS; We havd 36] the ratios of probabilities to excite the
have shown that excitons can exhibit a long dephasing timElative electron:

(comparable to hole-electron recombination tirag a nano- P(HH)

second time scale. The degeneracy in our model has an im- =3,
portant role(even if the request can be made weaker and we P(LH)

can use almost-degenerate state i.e. see Sec),l9n this

can further prolong the dechoerence time till the recombina- P(HH) 3
tion of light hole. T, — 2

We are now in a position to make a comparison between
the performance of holonomic and standard dynamical quan-
tum gates. From a theoretical point of view, we can applyS ) .
about 100 single-qubit holonomic gates within decoherencel® E<Ein—Enn, PULAE<Er —E,}) to excite HH instead
recombination time. The dynamical gates are faster then thef LH and forbid thel'; transitions.
holonomic ones. The gating time depends on the Rabi fre- For light propagating along the(y) axis withz polariza-
quency and the gate we choose, with the parameters used ign, the HH transitions are forbidden and
the previous simulations, we can estimate this operation time
to be about 0.1 pssee e.g., Ref.13]). In this kind of nano- P(LH)
structures, we have to deal with decoherence times of the o
order of 100 p$40], and then one should be able to apply up !
to thousands of dynamical quantum gates. The comparison o ) ) o
gets even worse when one turns to consider two-qubit gate. SO even if this laser bandwidth SE<Ep —Ey, it is
The dynamical gates can be still realized on the picoseconthore likely to produce LH transitions. As we mentioned be-
time scale, whereas the HQC requires much longer tsee  fore in a practical situation, we should be able to prohibit the
e.g., Fig. 7 due to the combination of two concurrent slow- I'; transition just with these choices.
ing constraints{1) validity—in the presenparticular HQC Now we show that even if we are not able to energetically
scheme—of the second-order perturbative Hamiltoriat); distinguish the HH and LH transitions the holonomic scheme
(2) the adiabaticity requirement with respect to the effectiveproposed works as usual. The level scheme for this configu
Hint - ration is shown in Fig. 5. We can excifg,, excitons orE(,,

On the other hand, for the adiabatic model we have just t@xciton. If we have an adiabatic evolution fast enough, the
satisfy the adiabatic condition, that is the choice of the gate¢hree levels are mixed during the evolution and so, for our
applied depends only on the loop in the parameter spacecheme, they can be considered degenerate.
even relatively complicated quantum computations can be The energy gap between HH and LH excitons is of the
enacted by asingle adiabatic loop. This could open new order of 0.05-0.03 eV35,42—-44, whereas betweeh, and
perspectives in quantum circuits implementation. We carHH-LH the gap is about 0.3 eV. Both of these energy gaps
imagine to build quantum algorithms using new fundamentabre very large compared to the bandwidth of the picosecond
gates that can be applied within the same adiabatic timeand femtosecond pulsed laser, so in practical applications
Now the task is to find a loop to implement the desired gatepne should be able to separate LH and HH excitons.
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Et E’ E- EE
----- T ee===-- LH 2E+46
AE
HH
===FE+§/2
+ 0 - E
0
G GG
FIG. 5. Level scheme for geometrical gates when is impossible FIG. 6. Level scheme for the two-photon process.

to address only HH or LH.

difference does not affect the logical information. Then, in

both models, we can avoid problems with the dynamical
During the evolution along the adiabatic loop, the statephase.

acquires a dynamical phase in addition to the geometrical

B. Dynamical phase

phase. In the first proposal of adiabatic gates with standard V. TWO-QUBIT GATE
two-level systems, additional work is needed to eliminate
this undesidered phase. In Rp45] they show how this dy- For the two-qubit gate, we cannot take directly the Duan-

namical phase can be eliminated: we have to run the ged=hirac-Zoller(DCZ) model but we use the biexcitonic shift
metrical gate several times in order to let the dynamical13]. In fact if we have two coupled quantum dots, the pres-
phases cancel each other. The drawback in this method &nce of an exciton in one of thefa.g., in dotb) produces a
that we have to iterate several times the adiabatic gate andhift in the energy level of the othée.g., dota) from E to
because of the adiabatic condition, long time is needed té&+ /2.
apply the final geometrical gate. Let us consider the two dots in the ground s{&@e); if
In this model, if we use LH excitons, the logical and the we shine them with circulafpositive or negativelight at
ancilla states are degenerate and the ground state is neuet 6/2 energy, we should be able to produce two excitons
populated during the evolution; so the dynamical phase shiftEE) (see Appendix A For energy conservation, this is the
is the same for the two logical qubits and can be neglectedonly possible transitioiithe absorption of a single photon is
If we encode logical information in the HH excitons at energyE). The detuning allows us to isolate the two-
(*) and use the LH exciton (0) as ancilla qubit, we have arexciton space|EE)) from the single-exciton spaceéHG),
energy differenc\E and then a dynamical phase appears|GE)). The level scheme is shown in Fig. 6.
Again, we can neglect it because at the begirieigcoding To show how the two-photon process happens, we solved
of information and at the endreading informatiop of the  numerically the Schidinger equation for a four-level system
evolution, |E%) state is never populated and then the phas¢|EE), |EG), |GE), |GG)). In Fig. 7(a), we show the popu-

B

A
1 1

Poptulation
Poptulation

0 7
0 t 0 t/Teq 1

FIG. 7. (&) Production of a biexciton state and isolation of }&& ®2—|G)®2 space. The Rabi oscilation betwg@)®2 and|G)®? states
are evident and the statgsG) and|GE) are weakly populatedb) Simulated population evolution for the two-qubit gate. The values of the
parameters ares=5 meV, |Q, _|=8/15 (for single laser Rabi frequenty, T,q=0.8 ns. The gate fidelitF =|(W;gealV(Tad))|?
=0.9859.
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lation evolution of the states; the Rabi oscillations between The associated connection is
|EE) and|GG) are evident and the statgSG), |GE) are

weakly populated. In order to fulfill the perturbation condi- 0 1/2 / |sind|

tion and clearly show Rabi oscillations we choo8&) 1+|siné|

=15. Ag= . (16)
We have another degree of freedom in our system: the —1/2 /M 0

polarization. Shining the dot with circular or linear polariza- 1+|siné|

tion, we will obtain|GG)—|E'E!) (i,j=+,—,0) and can . _

reproduce the scheme with polarized excitons. The general Of course, for dn‘ferept values df, [A,,A,]=0 and we

Hamiltonian for the two-photon process (B interaction can ca_lculate the I_oop integral and then the holonomy. From
numerical calculation, we have

representation
2h? - ffﬁl/zx/ [sind| d9—f4771/2\/ UL
Hmt:—T__Z O(ﬁiﬁje'(¢i+¢j>|E'El><GG|+H.c.). = 1+[sing] ~ Jo 1+|sin |
NEESES

(14 =3.6806

The total two-exciton space has dimension nine but weand for the holonomic operator,
can restrict to four-dimensional space, turning off the two
laser with the same polarizatigne., — or 0), and because
of this situation the scheme is slightly different from the
one proposed in the other papers. In Rdf8], we show
how to construct a phase gate; turning on theand O We write explicitly the final state usingD,(4))
lasers and modulating them to simulate the evolution in gate=|E*)®2 and|D,(47))=1/\J2(|ETE")+|E"E™)),

1, we were able to obtain the geometrical operatby

17

Cosa Sina
—sinae cosa/’

U:eiaa'y:<

=exp(4|E"YE"|®?). We can decouple the logical states with ina B B
negative energy, but we still need four laséngo with + U|E")®?=cosalE")**~ 2 ([ETET)+[ETET)).
polarization and two with O polarizati¢rio produce a loop (18)

in the |[E*)®2—|E®%)®2 space. Thet and O lasers must be

resonant with the two-exciton transition, but in this schemeThis is an entangling gate, and then we have another non-

we also produce nonlogical statds" E) and|E°E™) since  trivial gate.

they have the same energyuij(+ wj1=2E+ 6). Then we Now we have to satisfy both the second-order perturba-

have a bigger dark space with dimension three, and théve [from Eq. (14), §/|Q;|>>1] and the adiabatic require-

scheme is not directly repeated. A detailed calculation of thenent; this implies thal ,¢> 6/|Q;|>>1//€);|. Because of the

dark states is given in Appendix B. two-photon scheme the operation times for the two-qubit
Now we show how to construct another two-qubit geo-gates are necessarily longer than the ones for the single qu-

metrical operator with the same scheme. Since, in general, arit.

adiabatic loop will produce a superposition aif the dark In Fig. 7, we show the numerical simulation obtained by

states, we change the laser polarization+(8) so that the solving the Schrdinger equation. It is difficult to follow the

system can evolve in the logical space. We note that thevolution of the states because of the number of the states

space is big enough to produce nontrivial transformatiorpopulated during the evolution and because of their mixing.

even without the ancilla qubits. Moreover, it can be noted th$G G) state never appears in
We choose the single-laser Rabi frequencies in order tthe evolution,|E~)®? state is not present at the end of the
have Q""=Qsin@2), QO "=Qcos@@?2), Q"  evolution, and the final state is a superposition|Bf )2
=0 /|sin(@2)cos@2)|, where O<@<4=. The dark state and(symmetrically |[E*E™)—|E"E™) state. In the simula-
are tions, we choosé=5 meV (as in Ref[13]) and, for single-

laser Rabi frequency();| = §/15 (to satisfy the perturbation

0 .0 requesyt, with these parameters, the adiabatic timeTig
|D1>:CO§|++>_S'”§|__>’ =0.8 ns.

1 VI. CONCLUSIONS
D2)= E(H =)=l=+),

In summary, we have shown that geometrical gates can be
implemented in quantum dots with optical control. We use
[sing| 0 P polarized excitons to encode Iogi_cal information and we

|D3)= /—_( sin |+ +>+co$|——) have been able to copstrgct a unl_versal set of_geome'gncal
1+|sing]\ ™2 quantum gates. The biexcitonic shift due to exciton-exciton
dipole coupling is exploited to implement the two-qubit

1 . . .
T (4 =V — ), 15 gates. Numerical simulations clearly suggest that one should
V2(1+]sing|) ( )+ 2 (19 able to apply severdla few) single-qubit(two-qubi holo-
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nomic gates within the decoherence time.

Even though the fault-tolerance features of this geometri-  C(t)= (——> > del<EE|H|nt|m>el(w en
cal approach have not been completely clarified so($ae
e.g., Ref[46]), HQC surely provides, on one hand, a sort of n _ o
an intermediate step towards topological quantum computing XJ dr(m[H;|GG)e'“" ~ )7, (A5)
and on the other hand, it is a natural arena in which we 0
explore fascinating quantum phenomena.

Finally, we hope that the theoretical investigations pre-
sented here will be effective in stimulating novel experimen-
tal activity in the field of coherent phenomena in semicon-
ductor nanostructures.

Using 0"+ o' —2w=0, performing the double integra-
tion, we get

. 1
o0~( 3| 3 (@l lmy oo ——
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ei(w’w)t_l)

(0 —w)

The term 1-e'(® ~)%(w'—w) oscillates so the leading
APPENDIX A: TWO-PHOTON PROCESS term is proportional ta

Here we show how a two-photon process may occur in

our system. Let us consider two coupled quantum dots. The Ne) (EE[Hind m}(m|Hin GG)
energy-level spacing in this case is different, in fact the pres- e()~ 2 o' — o t. (A7)
ence of an exciton in one of thefa.g., in dotb) produces a
shift in the energy level of t_he otheée_.g., _dota) from E to Now we go back to the second-order Hamiltoni@8)
E+ /2. We have the following Hamiltonian: (two-photon procegs and calculate the evolution A
=wge=2w andAw— w=0)
Ho=(2E+ 8)(|EXE|)®?+E(|EG)EG|+|GE)(GE|).
(Al i [t ) ~
=— ZJ dty(EE[H{|GG)e! (oot
Using two lasers with frequencies=(E+ 6/2) (A=1), 0
the interaction Hamiltonian i$we explicitly take into ac- i _ t
count the time dependené® =,e ' from Eq.(11)] == g<EE|Hi(§t)|GG> fodtl
[ ~
Hin= 1 2 (Die”*E)(G[+ G e G)(ED. = (—h)t
(A2) =it (A8)

The effective Hamiltonian for the process(the apex 2

indicate that it is a second-order prodess The twoc(z)’s are calculated to the same order, so using Egs.

(A6) and (A8)

H@=—#0e “ENG|*2+H.c., (A3) 1

'm ﬁ: 2 <EE|Hint|m><m|Hint|GG>. (A9)

£i2°m o'—w

where w= 2w is the frequency that produces the transition
between|GG) and |EE). There are four possible states
(IGG), [EG), |GE), |EE)); let the initial state b¢GG) and
we want to know the amplitude coefficient for théG)
—|EE) (Fig. 6). To do this we use the interaction picture,

In our system,

(EE|Hinl EG)(EG|Hini| GG)=(EE|Hni| GE)

X(GE|H;n|GG)
<i|eiHOt/ﬁHime7iHot/ﬁ|j>:ei(wi7wj)teriwt<i|’|‘_‘|im|j> o nt
:ﬁzﬂlﬂz (AlO)

and we have the Rabi frequency for the two-photon process

(the matrix elementi|H;,|j) is time independeptwith the as function of the single-photon procesa!(— w= o/%).

initial conditions [(0))=|GG) (|¢(t))==c;j(1)[ij), i.]
=E,G), o' =wgg— o0y, and o"=w,,, with perturbation ~ ~
theory to the second order, we gémnf’s are the intermediate 0= 21,Q, (A11)
states EG) and|GE) with energyE="7w,,) 5
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We take into account the two-exciton production Bf L 0
and E°, and choose);;=0;, Q,=0,e"% with i=+,0. Q7" =0sin;e’,
The phenomenological HamiltonidA3) became

4
2h%_ 00_
Hin=— —5-02%“[EXG|**+He.  (AL2) (7= cos;,
[. 0 6
APPENDIX B: HOLONOMIC STRUCTURE 0t=0 smzcosiexpu ¢l2). (B3)

OF THE TWO-PHOTON PROCESS

To explicitly calculate the dark state of Hamiltoniély), ~ The dark states in EqB2) explicitly take the form
we change notation and include the phase in the definition of
Rabi frequencies)! =006 9, rewrite the Hamil- ID,)=co 0|++>_Sin€e—i<p||00>’
tonian taking account of production of the same spin exci- 2 2
tons (=]), choose the loop in order to have symmetric Rabi

frequencied’ =QJ1, and we obtain(with |[E')=]i)): 1
|D2)=—=(|+0)—[0+)),
2h? ++y* JIyvx|ii +iy* i \/E
Hine= = —5~ (@7 [+ +)+ (Q)*[1)) + (@) * (| +])
i |Dg)= sin sinfei‘P’2|nL +)+co ae““”2|00>
+]j+))(GG|+H.c., (B1) 9= N1tsing *" >
where we can takg=0,— to implement different gates since 1
we reduce the dark space and work with just two polarized — ———(|+0)+|0+)). (B4)
excitons. V2(1+sing)
In addition to the decoupled states which do not appear in ) ) )
Eq. B1, we have three dark state@%=|Q " *|?+|Q)|?): The connection associated is
(Q* [+ +)=(Q")*jj) | sing .
— 0 ipl2
D) Q ’ V2N 57 sing®
Agz - 0 ’
sin
1 o —1/2 g 1¢2 0
D)= —7(+i)=li+)). 1+sing
V2 (B5)
Dy)= —— @@+ )0l
QV|Q"2+ Q%2 .0 ) sing _
—isif= i12 —singe'¢?
02 B 2 2+sing
_7(|+J>+|J+>)] (BZ) N y sing igl2 i sing
N . i 2\/—1+Sin03|n0e i 1T sing
Now we can explicitly calculate some connection for par- (B6)

ticular loops. we choosg=0 for the laser Rabi frequencies

Q" = sin@2)expiel2), Q=\Qcos@2) (i=1,2 is The holonomic operator cannot be analytically calculated be-
the dot inde¥ and we use a loop in thé and ¢ plane cause the connections do not commute. Then we calculated it
similar to the one in Fig. 2 (& #< 7 and O< ¢<7/2); then  with computer simulations by discretization of the loop in
we have for the effective Rabi frequencies the parameter space.
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