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Nonadiabatic geometrical quantum gates in semiconductor quantum dots
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In this paper, we study the implementation of nonadiabatic geometrical quantum gates with in semiconduc-
tor quantum dots. Different quantum information enconding~manipulation! schemes exploiting excitonic de-
grees of freedom are discussed. By means of the Aharanov-Anandan geometrical phase, one can avoid the
limitations of adiabatic schemes relying on adiabatic Berry phase; fast geometrical quantum gates can be, in
principle, implemented.
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I. INTRODUCTION

The holonomic quantum computation proposal~HQC! @1#
recently led to a number of investigations@2# aimed to asses
its feasibility. At variance with ‘‘ordinary’’ dynamical quan
tum gates, the Holonomic ones depend only on geometr
features~i.e., the angle swept by a vector on a sphere! of a
suitable quantum control process. It has been argued
HQC might lead to computational schemes more rob
against some class of errors. Despite the fact that this cru
property has not been clearly demonstrated so far~for a criti-
cal view, see e.g., Ref.@3#!, HQC surely provides a sort of a
intermediate step towards topological quantum compu
@4,5#. The latter represents an intriguing and ambitious pa
digm for inherently fault-tolerant QC.

Many proposals for practical HQC follow the adiaba
approach@2#; it consists in changing the Hamiltonian param
eters in order to produce a loop in the Hamiltonian sp
@H(0)5H(T)#. For an adiabatic evolution, if we start from
an eigenstateun(0)& of H(0) with eigenvalueEn(0), during
the evolution we remain in the instantaneous eigenve
un(t)& of H(t) with eigenvalueEn(t). At the end of the loop,
the state will differ by the initial state only for a phase fact
~Berry phase!. If the eigenstate is degenerate, we end up i
superposition of the degenerate states and then we ha
non-Abelian holonomic operator@6#.

On the other hand, it is well known that the major o
stacle against the practical realization of quantum inform
tion processing~QIP! @7# is provided by the detrimental in
teraction with environmental degrees of freedom. T
interaction results, typically in an extremely short time,
the destruction of the quantum coherence of the informat
encoding quantum state, which in turns spoils the comp
tion @7#. It follows that for QIP purposes, it is very importan
to have fast logical gates to be able to realize numer
logical operations within decoherence time.

The fact that we have to change parameters slowly is
obvious drawback of the adiabatic approach. Then, the p
sibility of having geometrical gate without the adiabatic lim
tation looks very appealing.

In 1987 Aharanov and Anandan~A-A ! @8# showed that
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there is an additional geometrical phase factor forall the
cyclic evolution of the states~not only for the adiabatic
ones!. The A-A phase is a generalization of the Berry pha
and we recover this when the adiabatic condition is resto
Recently, some proposals for nonadiabatic geometrical g
have been made@9#.

In this paper, we shall propose a universal set of nona
batic geometrical gates using excitonic states in semicond
tor quantum dots. The schemes illustrated below rely on
physical setup analyzed in Ref.@10# and on the abstract geo
metrical structure of Ref.@11#.

II. EXCITON –NO EXCITON QUBIT

In Ref. @12#, it has been shown how excitonic states in
quantum dot can be used to perform universal QIP. The lo
cal states were the ground stateuG& and the excitonic state
uE&, and they were driven byall-optical control ~with ul-
trafast laser!. Even if the decoherence time in this system
quite short, the ultrafast laser technology used for the co
ent manipulations allows, in principle, to perform a lar
number of operations.

Let us start by showing how the scheme by Qiet al. @11#
can be applied in this semiconductor context. We hav
two-level system (\51 andv0 energy separation! interact-
ing with a laser field~radiation-matter interaction! and, then,
the interaction Hamiltonian can be written as

Hint52@Ve2 ivLt2fuE&^Gu1H.c.#. ~1!

In a rotating frame~with precession frequencyvL), the
total Hamiltonian is~using ‘‘spin’’ formalism! HR5B•s,
with B5@V cosf,V sinf,(v02vL)/2# ands5(sx ,sy ,sz).
This is the Hamiltonian presented in Ref.@11# and, then, we
can obtain the same gates. WithBÞ0 the spin will precede
on the Bloch sphere on a plane orthogonal toB according the
Bloch’s equations.

Following Ref. @11#, it is easy to see that—by choosin
the laser parameters~phase and frequencies! in a suitable
way—one can produce a sequence of laser pulses that e
a loop on the Bloch sphere; the final state will acquire
geometrical phase independent of the velocity during the
©2003 The American Physical Society09-1
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versed loop~no adiabatic approximation!. The final operator
depends on the angle swept on the sphere by the state v
during the evolution. With a sequence of twop-pulses, we
can obtain two single-qubit gates. First, we takevLÞv0
~off-resonant laser! and then produce twop-pulses with dif-
ferent phases~i.e., Df5p) and obtain the following gate :

u0&→cosgu0&2singu1&,

u1&→cosgu1&1singu0&, ~2!

whereg is half the angle swept by the vector on the Blo
sphere and it depends on the gate parameters~i.e., the laser
frequency! g52 arctan„2V/(v02vL)….

For aselective phasegate, we have a resonant conditio
v05vL and produce twop-pulses with opposite phase
(f152f25f0), and we have

u0&→ei g̃u0&,

u1&→e2 i g̃u1&, ~3!

whereg̃52f0.
We note that the dynamical phase factor in standard g

metric quantum computation must be eliminated with seve
adiabatic loops in order to let the phase factor cancels e
other. In this model, it does not appear because the motio
the Bloch sphere is on a plane orthogonal toB, and so it can
be easily shown that̂cuHuc&50 and the dynamical phas
factor is zero. Of course, these geometric gates are m
faster than the adiabatic ones@10# that had the limitation of
the slow change of parameters.

This kind of geometrical manipulation of excitonic
encoded information should be easier to implement and
verify experimentally, because they are just produced b
sequence ofp-pulses with constant parameters~frequency or
phase of the laser! with just one laser instead of three lase
in which the intensity and the phase change during the e
lution.

For the two-qubit gate, we have to exploit qubit-qub
interaction in order to construct nontrivial operators; th
every system has different implementation of such ga
Since we work with semiconductor excitons, we use excit
exciton dipole interaction.

Let us consider two dots with exciton energyv0/2 ~the
energy is rescaled in order to have2v0/2 for the ground
states!. If the two dots are coupled, the presence of an ex
ton in one of them causes an energetic shiftd in the other
because of the dipole-dipole interaction. States with a sin
exciton are not shifted. The energy levels are shown in F
1. The Hamiltonian accounting for the biexcitonic shift
H05(v01d)uEE&^EEu2v0uGG&^GGu.

The dipole interaction between dots can be used to c
struct nontrivial two-qubit gates both dynamical@12# and
geometrical@10#. In fact, if we use two lasers tuned to th
two-exciton state transition@vL

15vL
25(v01d)/2#, we can

avoid single-photon processes~which produceuEG& and
uGE& states! and favor only two-photon processes~which
produceuEE&).
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The effective interaction Hamiltonian for the two-photo
process is

Hint52
2\2

d
V1

2 e2 i (vL,11vL,2)e2 i (f11f2)uE&^Gu ^ 21H.c.,

~4!

wherevL,i and f i are the frequency and the phase of t
laseri.

The total Hamiltonian is similar to that in Eq.~1! and,
then, using a properly chosen sequence of synchron
pulses@so that the two-photon Rabi frequencies in Eq.~4!
simulate the one in Eq.~1!#, we can apply a phase gate sim
lar to that in Eq.~3! and complete the universal set of qua
tum gates.

III. EXCITON SPIN QUBIT

A further excitonic encoding can be obtained followin
the spin-based scheme presented in Ref.@10#. There, a four-
level system with three degenerate excited states (uE6& and
uE0&) and a ground state (uG&) was used; the excitonic state
were connected withuG& by three different lasers with cir
cular (6) and linear~alongz axis! polarization and, modu-
lating the phase and the frequency of the three lasers,
were able to construct adiabatic holonomic gates.

To obtain nonadiabatic geometrical gates, in this syst
the basic idea is to encode logical information in two deg
erate exciton states with different total angular momenta,
uE6&. The extension of the previous gating model is n
completely straightforward; in fact, the logical qubitsuE1&
and uE2&, due to angular-momentum conservation
radiation-matter interaction, are not directly, i.e., by a on
photon ladder operators, connected.

In order to circumvent this problem and to enact such
ladder operator, one can resort to an off-resonant two-pho
Raman process. This is a standard trick in quantum op
Each quantum dot is shined by a couple of lasers hav
polarizations1 and2, and a frequency with a detuningD
with respect to the excitonic transition energy. The lev
scheme with the associate transition is shown in Fig. 2. P
vided thatV6!D ~theV6’s are the laser Rabi frequencies!,
first-order processes are then strongly suppressed; the
namics is well described by the following second-order
fective Hamiltonian

FIG. 1. Energy levels for two coupled dots with dipole-dipo
interaction.d is the biexcitonic shift.
9-2
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He f f5
V1V2

D
uE1&^E2u1H.c. ~5!

It should be now clear—since the above Hamiltonian str
ture is same as that of Eq.~1!—that even for this kind of
excitonic encoding using different polarizations, one can
alize all the required single-qubit operations.

Another single-qubit gate that can be implemented ea
is the phase-shiftgate. Our scheme hasa priori separated
subspaces because of the different response to polarize
ser. So, if we wantuE1& to get a phase factor, we can ju
switch the1 laser to resonant frequency, and then appl
pulse sequence that produces gate 2. Since we can ne
the phase accumulated byuG& and no phase is accumulate
by uE2&, the gate operator will beU5exp(ig̃uE1&^E1u),
where, as before,g̃ is half the solid angle swept in the evo
lution. These two gates complete the single-qubit gate s

Finally, to obtain a universal set of quantum logical gat
we must construct a two-qubit gates. The easiest to be im
mented in our model is aselective phase gate. As shown
before, using lasers resonant with the two exciton with po
tive polarization, we can select two-photon processes
couple only theuE1E1&2uGG& states@10#. The effective
Hamiltonian for these two-photon processes is similar to t
in Eq. ~4! with uE1& instead of a generic exciton stateuE&.

The two lasers are polarized with1 polarization and fol-
low the pulse sequence for gate 1; the final geometric op
tor will be U5exp(ig̃uE1E1&^E1E1u), where g̃ is half the
angle swept on the Bloch sphere in theuE1E1&2uGG&
space.

A few remarks are now in order regarding the differe
kind of excitonic polarization we have considered so far.
the second—polarization-based—encoding we need mor
ser pulses~and then longer time for the application of th
gates! with respect to the model following the first schem
with nonpolarized excitons. This makes the setup sligh
more complicated, but now the logical 1 and 0 states co
spond here to energetically degenerate states with the s
orbital wave function structure. This fact should~1! make the
qubit more robust againstpuredephasing processes~2! set to
zero the qubit self-Hamiltonian, i.e., thesz component al-

FIG. 2. Connection of the logical subspacesE1 andE2. TheD
is the detuning of the lasers that allows us to connect the two s
through the Raman transition.
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lowing for a simplified gate design and, then, no recoupl
pulse are required.

On the other hand, it should be noted that in the sec
scheme, both the code words correspond tounstablestates,
indeed excitons will eventually recombine through the se
conductor gap by emitting a photon. On the contrary, in
first encoding scheme, the logical 0 corresponds to
ground stateuG& of the crystal, and it is therefore a stab
state.

Exciton recombination corresponds in the first scheme
the amplitude-damping processu1&°u0&. One can take care
of this kind of environment-induced error by both the tec
niques of quantum error correction@13# or error avoiding
@14# depending on the spatial symmetry of the damping p
cess. Using polarization encoding, spontaneous decay g
rise to a leakage to the computational subspace in the gro
state of the crystaluG& is no longer a computational cod
word. In this case, one can resort to leakage-eliminat
strategies based on active intervention on the system@15#.

IV. SIMULATIONS

To test our models, we performed numerical simulatio
of the quantum gates solving the Schro¨dinger equation. For
the first model~with no polarized excitons!, we took uE& as
starting state and then simulated the evolution when we
plied the pulse sequences presented. In Fig. 3, the resul
the simulation for gate 1 are shown; the parameters are

es

FIG. 3. Gate 1 for the unpolarized excitons model. The para
eters are chosen in order to obtain aNOT gate.~a! Evolution of uE&
state on the Bloch sphere.~b! Population evolution for the logica
statesuE& and uG&.
9-3
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FIG. 4. Gate 2 for the unpolarized excitons model.~a! Evolution of uE& state on the Bloch sphere.~b! Population evolution for the logica
statesuE& and uG&.
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sen in order to obtain aNOT gate. In Fig. 3~a!, the curve
traversed by the state in the Bloch space and in Fig. 3~b! the
population evolutions are presented. Once decided wh
gate has to apply, we can have an estimate of the gate t
For thisNOT gate, the laser frequency is not resonant and
constrained by the gate choice (vL5v022V); the time gate
is fixed by the Rabi frequency of the laser. For realistic la
parameters (V21550 fs), we havetgate150.1 ps.

In Fig. 4, we show~for gate 2) the loop in the Bloch
space; the population evolutions in Fig. 4~a! and the phase
accumulated during the evolution~inset! Fig. 4~b!. The pa-
rameters are chosen in order to obtaing̃5p/4, and the final
state is (11 i )/A2uE&. The laser frequency is resonant wi
the transition (vL5v0), and with the same Rabi frequenc
used before we havetgate250.15 ps.

In the second model, first we have to test the validity
the approximation used in Eq.~5!; for this purpose, we simu
lated the evolution of the three-level system showed in Fig
and show the result in Fig. 5. We chooseD/V510 (V1

5V25V) and, as we can see, this is sufficient to avo
population ofuG& state and to have the standard Rabi os
lations between the logical states.

We note that, because of the perturbative request in
~5!, theeffectivemagnetic fieldB has smallx andy compo-
nents, and then a sequence of twop-pulses is not sufficien

FIG. 5. Population evolutions for the three-level system w
polarized~logical! excitonsuE1&, uE2&, anduG& with lasers with a
D detuning. The perturbative parameter isD/V510.
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to construct a generic superposition of logical qubits. Eve
the geometrical phase accumulated during the loop is sm
it is sufficient to iterate the procedure to apply the desi
geometrical operator. Using the same perturbation param
as in Eq.~5!, we simulate the evolution ofuE1&. In Fig. 6,
we show the population evolutions of the statesuE1&
2uE2& when they are subjected to ap-pulse sequence in
order to obtain aNOT gate. Of course the gating time in th
situation depends on which gate we want to apply and
parameter used in the model.

V. CONCLUSIONS

In summary, we proposed two approaches to geome
nonadiabatic quantum information processing in semic
ductor quantum dots. In both the cases, we have been ab
construct a universal set of quantum gates using
Aharonov-Anandan phase. In the first scheme, the qub
realized by the presence or absence of a~ground! state exci-
ton. A coupling with an external laser field allows for th
nonadiabatic realization of the geometrical gates. The dip
dipole coupling between excitons plays an essential role
action of the entangling two-qubit gate.

In the second approach, we encode information in deg
erate states using, as quantum degree of freedom, the p

FIG. 6. Populations of logical states for polarized excit
model. The phase accumulated in a single loop isg
50.027 025 4 and we iterate the cycle ofp-pulse 59 times to
obtain aNOT gate.
9-4



-
ip

na-
a-
os-
ntal
cur-

NONADIABATIC GEOMETRICAL QUANTUM GATES IN . . . PHYSICAL REVIEW A67, 052309 ~2003!
ization, i.e., total spin, of the excitons (uE6&). The logical
states are not directly connected, but we showed first how
avoid this problem with two-photon~Raman! transition and
second how to implement in this way aselective phasegates
~for one and two qubits!. Numerical simulations with realis
tic parameters show that these gates can be, in princ
s.

.

i-

a

e

05230
to

le,

enacted within the decoherence time. The models for no
diabatic~fast! QIP presented in this paper combine the fe
tures of geometrical gates with the ultrafast gate control p
sible in semiconductor nanostructures; an experime
verification of these schemes seems under the reach of
rent technology.
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