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Local optical spectroscopy of semiconductor nanostructures in the linear regime
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Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
~Received 30 November 1999!

We present a theoretical approach to calculate thelocal absorption spectrum of excitons confined in a
semiconductor nanostructure. Using the density-matrix formalism, we derive a microscopic expression for the
nonlocal susceptibility, both in the linear and nonlinear regimes, which includes a three-dimensional descrip-
tion of electronic quantum states and their Coulomb interaction. The knowledge of the nonlocal susceptibility
allows us to calculate a properly defined local absorbed power, which depends on the electromagnetic field
distribution. We report on explicit calculations of the local linear response of excitons confined in single and
coupled T-shaped quantum wires with realistic geometry and composition. We show that significant interfer-
ence effects in the interacting electron-hole wave function induce new features in the space-resolved optical
spectra, particularly in coupled nanostructures. When the spatial extension of the electromagnetic field is
comparable to the exciton Bohr radius, Coulomb effects on the local spectra must be taken into account for a
correct assignment of the observed features.
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INTRODUCTION

The recent achievements in the field of semiconduc
nanostructures have prompted a strong effort in develop
local experimental probes in order to obtain spatial maps
the nanostructures and their quantum states. While con
tional optical spectroscopy gives information on a large
gion containing thousands of nanostructures, confo
diffraction-limited microscopy has allowed the investigati
of individual nanostructures.1 To probe the spatial distribu
tion of quantum states, the spatial resolution must be redu
much below the optical wavelength; this has been obtai
by means of near-field scanning optical microsco
~NSOM!.2 In semiconductor quantum wires3 and dots4 the
resolution of these experiments has been increasing in re
years.

From the theoretical point of view it was soon recogniz
that the interpretation of NSOM spectroscopic data requ
us to take into account the effects of the fiber tip and diel
tric discontinuities on the electromagnetic~EM! field gener-
ated in the sample. For example, the near-field distribution
the EM field5 and its interaction with arrays of pointlik
particles6 have been studied in detail.

On the other hand, the interactions of a highly inhomo
neous EM field with the quantum states in the semicondu
nanostructures received much less attention.7 A theoretical
effort in this direction is important for different reason
First, when the dipole approximation is abandoned and
nonlocal response of the medium is taken into account, lo
absorption itself is in principle ill defined~i.e., it is not inde-
pendent of the EM-field distribution, as we will show!; a
general theoretical reformulation is therefore required. In
dition, it may be expected that spatial interference of qu
PRB 620163-1829/2000/62~12!/8204~8!/$15.00
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tum states plays an important role when variations of
electromagnetic field occur on an ultrashort length scale,
on the scale of the Bohr radius; hence, the necessity to
scribe the local absorption via a nonlocal susceptibility. T
analogy with ultrafast time-resolved spectroscopies,8 that
have demonstrated the importance of phase coherence i
quantum-mechanical time evolution of photoexcit
carriers,9 suggests that similar effects may occur in the sp
domain.

To investigate the response of semiconductor nanost
tures under these conditions, we have recently proposed10 a
theoretical approach based on a microscopic descriptio
electronic quantum states and their Coulomb interaction.
approach is intended to treat very high resolution prob
which might be capable of revealing Coulomb-induced c
herence effects; therefore, we consider an inhomogene
EM-field distribution with a spatial extension of the order
the Bohr radius of the material.11 In this paper we describe in
detail our theoretical approach and present absorption spe
calculated in the linear-response regime for a set of semic
ductor quantum wires~QWR! with realistic geometry and
composition, focusing on T-shaped structures as those
tained by the cleaved-edge overgrowth technique. We
that new features in the space-resolved optical spectra a
particularly in coupled nanostructures, owing to interferen
effects in the interacting electron-hole wave function, a
conclude that Coulomb effects on the local spectra mus
taken into account for a correct assignment of the experim
tal features.

In Sec. I we derive the microscopic expression of t
nonlocal susceptibility, including Coulomb interaction b
tween electrons and holes, which is valid both in the line
and nonlinear regimes. In Sec. II we show how a pro
8204 ©2000 The American Physical Society
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definition of local absorption can be introduced in the case
the spatially inhomogeneous EM field, which, however, d
pends on the shape of the EM-field distribution. In Sec.
we focus on the linear regime and we apply our scheme
single and coupled wire structures, studying, in particu
the effects of nonlocality and Coulomb interactions on lo
spectra.

I. THE NONLOCAL SUSCEPTIBILITY

In this section we derive a microscopic expression~i.e.,
based on microscopic electron and hole wave functions! of
the nonlocal optical susceptibilityx; this will be obtained
through a comparison between the macroscopic and the
croscopic expressions for the optical polarization of the s
tem. The knowledge ofx allows us to calculate the absorbe
power defined in Sec. II.

The macroscopic polarizationP(r ,t) induced by an elec-
tromagnetic fieldE(r ,t) is in general given by

P~r ,t !5E dr 8E dt8x~r ,r 8;t,t8!•E~r 8,t8!, ~1!

wherex(r ,r 8;t,t8) is the nonlocal~both in space and time!
susceptibility tensor. When the time dependence
x(r ,r 8;t,t8) is through t2t8 only ~stationary regime!, the
above equation can be transformed into a local equatio
the frequency (v) domain, i.e.,

P~r ,v!5E x~r ,r 8,v!•E~r 8,v! dr 8, ~2!

whereE(r ,v) andP(r ,v) are the Fourier transforms of th
time-dependent electric field and optical polarization in E
~1!.

In the usual case of a homogeneous EM-field distribut
the nonlocality ofx is neglected, andx}d(r2r 8) in Eq. ~2!.
In contrast, in order to describe the response of excito
states to an EM field with a spatial extension which is co
parable to the Bohr radius, the nonlocal character ofx in Eq.
~2! must be fully retained. Note also that, contrary to bu
states, excitonic states in a nanostructure do not have tr
lational invariance; hence,x depends separately on the sp
tial coordinatesr , r 8 and not on the relative coordinate alon

From a microscopic point of view the local~i.e., space-
dependent! polarization can be written as

P~r ,t !5q^Ĉ†~r ,t !rĈ~r ,t !&, ~3!

whereq is the electronic charge,^•••& denotes a proper en
semble average, and the field operatorĈ(r ,t) in the Heisen-
berg picture describes the microscopic time evolution of
carrier system.

Since in this paper we shall mainly focus on optical~i.e.,
electron-hole pairs! excitations, it is convenient to work
within the so-called electron-hole picture. This correspon
to writing the field operatorĈ(r ,t) as a linear combination
of electron and hole single-particle states,

Ĉ~r ,t !5(
e

ĉe~ t !Ce~r !1(
h

d̂h
†~ t !Ch* ~r !, ~4!
f
-
I
to
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whereĉe andd̂h denote destruction operators for an electr
in statee and a hole in stateh. Heree andh are appropriate
sets of quantum numbers labeling the conduction and
lence states involved in the optical transition, which are
scribed by the single-particle wavefunctionsCe/h(r ) and en-
ergy levelsee/h .

By inserting the above electron-hole expansion into E
~3!, and neglecting intraband contributions~absent for the
case of optical excitations!, the local polarization can be re
written as

P~r ,t !5(
eh

@peh~ t !Meh* ~r !1c.c.#, ~5!

where

Meh~r !5qCe* ~r !rCh* ~r ! ~6!

is the local ~i.e., space-dependent! dipole matrix element,
and peh(t)5^d̂hĉe& are nondiagonal~i.e., interband! ele-
ments of the single-particle density matrix, also referred to
interband polarizations.

Within the mean-field Hartree-Fock approximation, t
time evolution of the above interband polarizationspeh(t) is
described by the so-called semiconductor Bloch equati
~SBE’s!,12,13

]

]t
peh5

1

i\ (
e8h8

~Eee8dhh81Ehh8dee8!pe8h8

1
1

i\
Ueh~12 f e2 f h!1

]peh

]t U
coll

, ~7a!

]

]t
f e5

1

i\ (
h8

~Ueh8peh8
* 2Ueh8

* peh8!1
] f e

]t U
coll

, ~7b!

]

]t
f h5

1

i\ (
e8

~Ue8hpe8h
* 2Ue8h

* pe8h!1
] f h

]t U
coll

, ~7c!

where f e5^ĉe
†ĉe& and f h5^d̂h

†d̂h& denote electron and hol
distribution functions, i.e., diagonal density-matrix elemen
Here,

Eee85eedee82(
e9

Vee9e8e9 f e9 , ~8!

Ehh85ehdhh82(
h9

Vhh9h8h9 f h9 , ~9!

and

Ueh5Ueh2 (
e8h8

Veh8he8pe8h8 ~10!

are, respectively, the electron, hole and Rabi energies re
malized by the Coulomb interaction,12–16 and

Vi jkl 5E drE dr 8C i* ~r !C j* ~r 8!V~r2r 8!Ck~r 8!C l~r !

~11!
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8206 PRB 62MAURITZ, GOLDONI, MOLINARI, AND ROSSI
are the matrix elements of the three-dimensional Coulo
interactionV(r2r 8) within the single-particle electron-hol
representation. The last~collision! term in Eqs.~7! accounts
for incoherent~i.e., scattering and diffusion! processes.17

In the usual case of a homogeneous~i.e., space-
independent! optical excitation Eo the Rabi energyUeh
within the dipole approximation is given by

Ueh~ t !52Meh
o
•Eo~ t !, ~12!

where

Meh
o 5E Meh~r !dr ~13!

is the total dipole matrix element. In contrast, for the case
a local optical excitationE(r )—the one considered in thi
paper—the electromagnetic field cannot be factorized a
Eq. ~12! If, however, the space variation of the field is st
negligible on the atomic scale, the Rabi energy for a lo
excitation is given by18

Ueh~ t !52E Meh~r !•E~r ,t !dr . ~14!

Let us now focus on the stationary solutions of the SB
~7!. They can be easily found in the so-called quasiequi
rium regime, i.e., by assuming equilibrium distribution fun
tions f e , f h which, therefore, do not depend on time; let
define the indexl 5(e,h) and the matrices

Tll 85Eee8dhh81Ehh8dee8 , ~15a!

Wll 85Veh8he8~12 f e2 f h!, ~15b!

Sll 85Tll 82Wll 8 . ~15c!

Then, Eq.~7a! can be rewritten as

]pl~ t !

]t
5

1

i\ (
l 8

Sll 8pl 8~ t !1
1

i\
Ū l~ t !, ~16!

whereŪ l(t)5Ueh(t)(12 f e2 f h).
Let us suppose thatcl

l and Sl are the eigenvectors an
eigenvalues, respectively, of the matrixSll 8 ; note that, in
general,Sl is complex. The eigenvector componentsceh

l are
the matrix elements of the unitary transformation connect
our original noninteracting basisueh& with the excitonic ba-
sis ul&, ceh

l 5^ehul&. By applying this unitary transforma
tion, we can rewrite Eq.~16! in the excitonic basis,

]pl~ t !

]t
5

1

i\
Slpl~ t !1

1

i\
Ūl~ t !, ~17!

where

pl~ t !5(
l

cl
l* pl~ t !, ~18!

Ūl~ t !5(
l

cl
l* Ū l~ t !. ~19!

If we Fourier transform Eq.~17! we find
b

f

in

l

s
-

g

pl~v!52
Ūl~v!

Sl2\v
, ~20!

pl(v) andŪl(v) being the Fourier transforms ofpl(t) and
Ūl(t), respectively.

Let us consider again the local polarization fieldP(r ,t) in
Eq. ~5!, which in our excitonic picturel, can be rewritten as

P~r ,t !5(
l

@Ml* ~r !pl~ t !1c.c.#

5(
l
E

2`

1`

@Ml* ~r !pl~v!

1Ml~r !pl* ~2v!#e2 ivtdv, ~21!

with the definition Ml(r )5( lcl
l* M l(r ). By inserting the

stationary solution~20!, the dipole matrix elementMl(r ),
and Ūl(v), we obtain

P~r ,v!5E dr 8 (
l,eh,e8h8

ceh
l Meh* ~r !

3ce8h8
l* Me8h8~r 8!~12 f e82 f h8!

3F 1

Sl2\v
1

1

Sl* 1\v
G•E~r 8,v!, ~22!

P(r ,v) being the Fourier transform ofP(r ,t). The above
microscopic result has exactly the form of the macrosco
polarization in Eq.~1!, thus providing the desired micro
scopic expression for the nonlocal optical susceptibility te
sor x. If we neglect the nonresonant term in Eq.~22! ~the
rotating-wave approximation!, we obtain

x~r ,r 8,v!

5 (
l,eh,e8h8

ceh
l Meh* ~r !3ce8h8

l* Me8h8~r 8!~12 f e82 f h8!

Sl2\v
.

~23!

The above general expression describes the respons
the system at the microscopic level, provided that the sing
particle wave functions entering the local dipole matrix e
mentsMeh(r ) are available. For the description of the r
sponse to a local probe with the extension comparable to
Bohr radius in a typical semiconductor, like GaAs, it is su
ficient to describe the electron and heavy-hole states wi
the envelope function approximation, including fluctuatio
of the wave functions at the atomic scale only through b
parameters. Assuming isotropic electron and heavy-hole
ergy dispersion, we write, as usual,19 Ce(r )5uc(r )ce(r )
andCh(r )5uv(r )ch(r ), wherece/h(r ) are electron/hole en
velope functions, anduc/v(r ) are the atomic bulk wave func
tions at the conduction/valence edge. In this paper we c
sider only EM fields with a frequency corresponding
interband transition. Therefore, interpreting the space v
ablesr ,r 8 in Eq. ~22! as coarse grained at the atomic sca
we can write

Meh~r !5Mbce* ~r !ch* ~r !, ~24!

whereMb5Vc
21*Vc

uc(r )ruv(r )dr is the bulk dipole matrix

element, withVc the volume of the unit cell. Within such
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approximation scheme, the susceptibility tensorx in Eq. ~23!
becomes diagonal, with identical elements given by

x~r ,r 8,v!5uMbu2 (
l,eh,e8h8

ceh
l ce8h8

l*

3~12 f e82 f h8!
ce~r !ch~r !ce8

* ~r 8!ch8
* ~r 8!

Sl2\v
.

~25!

II. LOCAL-ABSORPTION SPECTRUM

Given the susceptibility function in Eq.~25!, the total ab-
sorbed power in a generic semiconductor structure can
evaluated according to

W~v!}E drE dr 8Im@E~r ,v!x~r ,r 8,v!E~r 8,v!#.

~26!

In the usual definition of the absorption coefficient within t
dipole approximation the nonlocality ofx is neglected:
x(r,r 8)}d(r2r 8). When nonlocality is taken into account,
is no longer possible to define an absorption coefficient
locally relates the absorbed power density with the light
tensity.

However, considering a light field with a given profilej
centered around the beam positionR, E(r ,v)5E(v)j(r
2R), we may define a local absorption that is a function
the beam position, and relates thetotal absorbed power to the
power of alocal excitation~illumination mode!:

aj~R,v!}E Im@x~r ,r 8,v!#j~r2R!j~r 82R!dr dr 8.

~27!

This expression is in principle not limited to low
photoexcitation intensities; viaf e , f h appearing in Eq.~25! it
provides a general description of linear as well as nonlin
local response, i.e., from excitonic absorption to the g
regime. On the other hand, in the linear-response reg
12 f e2 f h.1 and the quantity Cl(r e,r h)
5(ehceh

l ce(r e)ch(r h) can be identified with the exciton
wave function; in this case the explicit form of the loca
absorption coefficient~27! can be written as

aj~R,v!5ImF(
l

aj
l~R,v!

Sl2\v
G , ~28!

where

aj
l~R,v!}U E Cl~r ,r !j~r2R! dr U2

. ~29!

The effects of spatial coherence of quantum states are e
understood in the linear regime on the basis of Eq.~29!. For
a spatially homogeneous EM field, the absorption spect
probes the average ofCl over the whole space~global spec-
trum!. In the opposite limit of an infinitely narrow prob
beam,aj

l(R,v) mapsuClu2; the local absorption is nonzer
at any point where the exciton wave function gives a fin
contribution. It is, therefore, clear that ‘‘forbidden’’ exc
be

at
-

f

r
n
e

ily

m

tonic transitions, not present in the global spectrum, m
appear in the local one. In the intermediate regime of a n
row but finite probe, it is possible that a cancellation of t
contributions fromCl at different points in space take
place, leading to a nontrivial localization of the absorptio
The result will then be quite sensitive to the extension of
light beam.

III. NUMERICAL RESULTS

The theoretical formulation of Secs. I and II is valid fo
semiconductors of arbitrary dimensionality. To illustrate t
effects of nonlocality and Coulomb interaction on the loc
absorption spectrum, we now consider quasi-o
dimensional~1D! nanostructures~quantum wires!, subject to
a local EM excitation propagating parallel to the free axis
the structurez. For simplicity, we describe the narrow ligh
beam by a Gaussian EM field profile,j(r )5exp@2(x2

1y2)/2s2#.20 The explicit expressions for quasi-1D system
are derived in the Appendix.

As a prototype system, we have chosen to investigate
tems composed of GaAs/AlAs T-shaped QWR’s, which ra
among the best available samples from the point of view
optical properties, and allow for a strong quantu
confinement.21,22

In Fig. 1~a! we show the ground-state effective wav
function @Eq. ~A3!# for a single QWR, including the
electron-hole interaction; the exciton is strongly localized
the intersection of the parent QW’s, the localization bei

FIG. 1. ~a! Effective wave function@Eq. ~A3!# for the ground-
state exciton of a single T-shaped GaAs/AlAs quantum wire
tained at the intersection between two quantum wells of width
nm. The electron-hole interaction is taken into account~12 sub-
bands included in the calculation of the polarization!. Only the real
part is plotted; the imaginary part is negligible.~b! Contribution of
the same ground-state exciton to the local absorption,aj(X,Y,vl)
@see Eq.~A1!#, calculated for an EM fieldj with Gaussian distri-
bution ands510 nm. The T-wire confinement profile is shown a
a reference in both panels.
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dominated by that of the hole state which has a heavier
fective mass.21 When the effect of a locally inhomogeneou
EM field with a Gaussian shape (s510 nm! is simulated
@Fig. 1~b!#, we find that the signal exibits a maximum at th
location of the exitonic wave function, but the details of t
shape of the wave function are lost as, for this particu
sample, they take place on a scale shorter thans.

The above situation for a single QWR can be contras
with the situation for two coupled QWR’s. In the latter ca
the exitonic states of the two QWR’s are coupled by Co
lomb interaction if their mutual distance is;aB ; therefore,
in this case the nonlocal character of the Coulomb interac
can be exposed by a local probe withs;aB . To exemplify
this, we show in Fig. 2 the effective wave function of~a! the
ground and~b! the first excited excitonic states for tw
coupled, symmetric QWR’s, including electron-hole Co
lomb interaction. It should be noted that~1! the two excitonic
states confined in the two QWR’s are strongly coupled
effect of the Coulomb interaction and~2! the effective wave
function is not positive definite but is even or odd for t
ground and first excited state, respectively; as a conseque
in a homogenous EM field only the ground state appear
the spectrum, while the first excited state is prohibited b
selection rule arising from the cancellation between posi
and negative regions@see Eq.~29!#. This selection rule is
relaxed in a local optical spectroscopy experiment, if var
tions of the EM field takes place on a scale comparable to
modulations of the effective wave function. In fact, when t
center of mass of the beam does not coincide with a sym
try point of the structure, the symmetry of the whole syst
is broken; consequently, cancellations do not take place
actly; moreover, they are a function of the position and
tension of the beam.

It should be stressed that the spatial dependence of

FIG. 2. Effective wave function@Eq. ~A3!# for ~a! the ground
state and~b! the first excited state in structure composed of t
symmetric T-shaped quantum wires, each obtained at the inte
tion of two GaAs/AlAs wells. The real part is plotted in~a! while
the imaginary part is negligible; the opposite applies to~b!. Both the
parent QW’s and the barrier between the vertical stems are 5.4
wide. Coulomb interaction is taken into account~two subbands in-
cluded in the calculation of the polarization!. The confinement pro-
file is shown in both panels for reference.
f-

r

d
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n
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y

ce,
in
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e

e-
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-

he

absorption in the coupled QWR structure is dominated
Coulomb interaction, thus making very high resolution loc
optical spectroscopy a very powerful tool. To demonstr
this aspect, we have simulated a local optical spectrosc
experiment by calculating the local absorption spectra wh
sweeping the tip of the probe across a double-QWR str
ture; the influence of interwire Coulomb interaction is de
onstrated in Fig. 3, where full calculations includin
electron-hole interaction~center panels! are compared with
calculations where the correlation is switched off~left pan-
els!. For this example we have chosen a set of asymme
structures composed of two sligthly different QWR’s, wi
various distances between the stems of the wires. In the
correlated spectra we can only distinguish two peaks aris
from single-particle transitions localized in either wires; t
two peaks shift in energy as a function of the interwire d
tance, decreasing from top to bottom, as a result of the
creasing overlap between the single-particle states local
in the two QWR’s, and are accompained by a high-ene
tail which is due to the single-particle joint density of state
Note that there is no sign of spatially indirect transitio
connecting an electron and a hole localized in differe
wires.

The situation is very different when Coulomb correlatio
is taken into account. First, we note that for the larger w
separation~top row! ~i! the two main peaks, arising from
direct transitions located in either wires, are red-shifted
the exciton binding energy, and~ii ! the high-energy continua
are suppressed, as expected from previous studies of
absorption in quasi-1D structures.14 When the interwire dis-
tance is decreased, new peaks appear in the spectra w
energy, intensity, and location is strongly dependent up
the coupling between the two wires, which increases fr
top to bottom in Fig. 3. These peaks result from interferen
between positive and negative regions of the effective w
functions, whose square modulus is shown in the right c
umn for comparison. Figure 4 compares the local spe
obtained with a tip position located in the center of the rig
and left wire with the total absorption for the same set
coupled QWR’s as in Fig. 3.23

CONCLUSIONS

In summary, we have developed a general formulation
the theory of local optical absorption in semiconductor na
structures, taking into account quantum confinement of e
tron and hole states and the electron-hole Coulomb inte
tion. We have proved that absorption is strongly influenc
by the spatial interference in the exciton wave functio
which depends on the profile of the light beam. When
extension of the beam becomes comparable with the exc
Bohr radius, local spectra are expected to display differ
features with respect to integrated spectra, resulting from
breaking of selection rules. Calculations performed for a
of coupled quantum wires show that the interpretation
near-field experiments will require a quantitative treatm
of these effects as their spatial resolution increases.
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FIG. 3. ~Color! Calculated local absorptiona(X,Y,\v) as a function of photon energy and beam position for a set of asymm
T-shaped quantum wires whose coupling is decreasing from the top to the bottom row. Left column: the spectra are calculat
single-particle approximation. Central column: full calculation including electron-hole Coulomb interaction. Right column: square m
of the effective wave function. Two subbands were included in the calculations. The three panels in each row refer to the same
obtained at the intersection between an horizontal QW~5.4 nm wide!, and two vertical QW’s~the left QW is 5.4 nm wide and the right QW
is 6.0 nm wide!. The vertical QW’s are separated by a distanced equal to~from top to bottom! 10.8, 9.6, 8.0, 6.8, 5.4, and 4.4 nm. Th
tip positionX is swept across the structure along a line positioned in the middle of the horizontal QW; the EM field distribution is Ga
with s510 nm, and a broadeningG52 meV is included in the calculation.
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APPENDIX: CALCULATION OF THE LOCAL
ABSORPTION IN THE LINEAR REGIME

FOR QUASI-1D SYSTEMS

For a QWR the single-particle electron and hole envelo
functions, appearing in Eq.~25!, can be written asce(r )

5fne

e (x,y)eikz
ez and ch(r )5fnh

h (x,y)eikz
hz, respectively,

wherene/h and kz
e/h are subband indices and wave vecto

along the free axis. The envelope functionsfn
e/h(x,y) are

solutions of a Schro¨dinger equation with effective masse
and band parameters appropriate for electron and he
holes in the two-dimensional~2D! confinement potential o
the QWR.

In the linear regime the local absorption can be written
@Eq. 29#

aj~X,Y,v!}(
l

U E Fl~x,y!j~x2X,y2Y!dx dyU2

3h~v2vl!, ~A1!

FIG. 4. Global~solid line! and local absorption spectra~includ-
ing electron-hole correlation!, calculated with the beam centered o
the right wire~dashed line! and on the left wire~dotted line! for the
same set of nanostructures as in Fig. 3~same order from top to
bottom!. Heres510 nm and an artificial inhomogeneous broade
ing (G52 meV) is included.
e

y-

s

where vl is the resonance frequency,h(v) describes the
line broadening, and

Fl~x,y![E Cl~r ,r ! dz. ~A2!

We shall refer toFl(x,y) as theeffective exciton wave func
tion; according to Eq.~A1!, when convoluted with the spatia
distribution of the EM field,j(x2X,y2Y), Fl(x,y) yields
the contribution of thelth excitonic state to the local absorp
tion aj(X,Y,v).

Taking advantage of the translational invariance alonz
we have

Fl~x,y!5 (
nenh

Pnenh

l fne

e ~x,y!fnh

h ~x,y!, ~A3!

where we have definedPnn8
l

5(kz
cnkzn82kz

l . Note that only

Fourier components of the polarization withkz
e52kz

h con-
tribute to the absorption.

In our calculations we use a plane-wave basis set to
resent the (x,y) dependence of the single-particle wave fun
tions,

fn
e/h~x,y!5

1

ALxLy
(
nxny

cnxny

e/h,nei (kxx1kyy), ~A4!

whereka52pna /La anda5x,y. From Eqs.~A3! and~A4!
we get

Fl~x,y!

5 (
nenh

Pnenh

l (
nx

eny
e

c
n

x
en

y
e

e,ne ei (kx
ex1ky

ey) (
nx

hny
h

c
n

x
hn

y
h

h,nh ei (kx
hx1ky

hy).

~A5!

Therefore, we can write

Fl~x,y!5 (
nxny

Cnxny

l ei (kxx1kyy), ~A6!

where the Fourier coefficientsCnxny

l are given by

Cnxny

l 5 (
nenh

Pnenh

l S ( 8
nx

eny
enx

hny
h

c
n

x
en

y
e

e,ne c
n

x
hn

y
h

h,nh D , ~A7!

and the primed summation is subjected to the conditionsnx
e

1nx
h5nx ,ny

e1ny
h5ny .

Finally, if j can be factorized asj(x,y)5jx(x)jy(y), as
is the case of a Gaussian, then the integral in Eq.~A1! is
given by

E Fl~x,y!j~x2X,y2Y! dx dy

5 (
nxny

Cnxny

l ĵx~kx!ĵy~ky!ei (kxX1kyY), ~A8!

where

ĵa~ka!5
1

2pE ja~a!e2 ikaa da. ~A9!
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