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Microscopic theory of vertical-transport phenomena in semiconductor heterostructures:
Interplay between two- and three-dimensional hot-carrier relaxation

Stefano Barbieri and Fabio Beltram
Scuola Normale Superiore and Istituto Nazionale per la Fisica della Materia (INFM), Piazza dei Cavalieri 7, 56126 Pisa, Ital

Fausto Rossi
INFM and Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

~Received 12 October 1998!

A theoretical analysis of vertical-transport phenomena in semiconductor heterostructures is presented. In
particular, the scattering coupling between two- and three-dimensional states in multiple quantum wells is
investigated. To this purpose, a fully three-dimensional approach for the description of both localized and
extended states in the heterostructure is proposed. Starting from such three-dimensional states, obtained from
a self-consistent Schro¨dinger-Poisson calculation, a Monte Carlo solution of the corresponding Boltzmann
transport equation is performed. In contrast to various phenomenological transport models, the present simu-
lation scheme allows a kinetic description, i.e., based on microscopic scattering rates, of vertical transport
across a generic heterostructure. Our results provide a rigorous description of hot-carrier relaxation between
extended and localized states. This simulation scheme has been applied to finite multiple quantum wells with
different geometries and doping profiles. A detailed analysis of the electron current as a function of tempera-
ture in quasiequilibrium conditions shows good agreement with experimental results. Moreover, in non-
equilibrium conditions~i.e., hot-carrier regime! the scattering coupling between three- and two-dimensional
states is found to play a significant role in modifying the carrier mobility as well as the fraction of conducting
electrons.@S0163-1829~99!00924-8#
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I. INTRODUCTION

Semiconductor heterostructures1 have been the subject o
an impressive research activity,2–4 owing to their great flex-
ibility as model systems for basic research as well as ef
tive ‘‘building blocks’’ in modern solid-state optoelectron
devices. For the case of periodic heterostructures in part
lar, among the most successful applications one must m
tion a variety of photodetectors, i.e., avalanc
photodetectors,5 far-infrared detectors,6,7 and, more recently
hot-carrier photodetectors operating in the microwa
range.8,9

The principle of operation for most of these solid-sta
devices involves nonequilibrium carrier dynamics betwe
propagating and localized states in the heterostructure,10–12

i.e., ionization vs capture processes. This dynamics
strongly influenced by phonon scattering as well as by car
concentration and temperature.

The most commonly used approach for the theoret
analysis of energy-relaxation3 and transport experiments4 is
the Monte Carlo method,13–15 both in bulk and in low-
dimensional structures. This has proven to be a very pow
ful technique, allowing the inclusion at a kinetic level of
large variety of scattering processes~carrier-phonon, carrier-
carrier, carrier-plasmon, inter-valence band, intervall
etc.!. The role of these scattering processes, in turn, is in
enced by the choice of the experimental conditions. For
stance, carrier-carrier scattering and hot-phonon effe
strongly depend on the density, and intervalley transitio
are suppressed if the excitation is below the threshold for
process. Thus the combination of direct measurements
‘‘simulated experiments’’ provides detailed information o
PRB 600163-1829/99/60~3!/1953~11!/$15.00
c-

u-
n-

e

n

is
r

l

r-

,
-
-
ts
s
is
nd

the relevant scattering rates and coupling constants.
The theoretical investigation of carrier transport in hete

structures proposed so far, however, was always limited
Monte Carlo simulations of systems with a well-defined
mensionality, i.e., no interplay between propagating and
calized states was treated at a fully microscopic level. Wh
the carrier dynamics within a given structure, e.g.,
quantum-well~QW! laser, is usually modeled in terms of th
corresponding Boltzmann equation, its coupling with t
three-dimensional continuum is typically described in ter
of purely phenomenological ionization/capture times.

In this paper, we present a microscopic theory of vertic
transport phenomena in semiconductor heterostructures.
aim is to investigate the scattering dynamics between t
and three-dimensional~2D and 3D! states in multiple quan-
tum wells~MQW’s!. To this end, a fully 3D approach for th
description of both localized and extended states in the
erostructure is proposed. Single-particle states are obta
from a self-consistent Schro¨dinger-Poisson calculation
within a plane-wave representation, and are exploited to
rive a set of Boltzmann-like kinetic equations describing v
tical transport across a generic heterostructure in the p
ence of carrier-phonon scattering. Our numerical approac
based on a Monte Carlo solution of this set of coupled eq
tions within a multiminiband scheme. It can be regarded a
generalization to heterostructures of the Monte Carlo sim
lation proposed in Ref. 16 for the analysis of Bloch oscil
tions in semiconductor superlattices~SL’s!.

Compared to various phenomenological transp
models,6,7,11,17–19the present simulation scheme allows a
netic description, i.e., based on microscopic scattering ra
of transport phenomena, thus providing a rigorous desc
1953 ©1999 The American Physical Society
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1954 PRB 60STEFANO BARBIERI, FABIO BELTRAM, AND FAUSTO ROSSI
tion of hot-carrier relaxation between extended~3D-like! and
localized~2D-like! states.

The above simulation scheme has been applied to fi
MQW’s with different geometries and doping profiles. A d
tailed investigation of the electron current as a function
temperature in quasiequilibrium conditions shows a go
agreement with experimental results. Moreover, for noneq
librium conditions, i.e., the hot-carrier regime, the phono
induced scattering between 3D and 2D states is found to
a significant role in modifying the carrier mobility as well a
the actual fraction of conducting electrons.

The paper is organized as follows: In Sec. II we introdu
the physical system, the theoretical approach, and
weighted Monte Carlo procedure used for the solution of
set of Boltzmann transport equations. In Sec. III the res
of our ‘‘simulated experiments’’ are presented and compa
with available transport measurements. Finally, in Sec.
we shall summarize and draw some conclusions.

II. THEORETICAL APPROACH

A. Physical system

The physical system under investigation is a gas of ca
ers confined in a quasi-2D semiconductor heterostructure
usual, the total Hamiltonian of the system can be regarde
the sum of two terms:

H5H01H8. ~1!

The first term describes single-particle properties, e.g.,
carriers and phonons plus heterostructure potential pro
plus applied field; the second term describes many-body
fects, e.g., carrier-phonon interaction.

Quantum confinement induced by the heterostructur
described in terms of a potential profileV0(z) (z being the
growth direction! whose value is dictated by the conductio
band discontinuities. Since the energy region of interes
relatively close to the semiconductor band gap, we desc
the bulk band structure in terms of the usual effective-m
approximation. Moreover, we describe the electronic sta
in the heterostructure within the well-known envelop
function picture. As a consequence, the full 3D carrier wa
function can be factorized in terms of a 2D plane wave tim
a one-dimensional envelope function along the growth dir
tion,

c~r !5eiki•r if~z!, ~2!

whereki is the in-plane component of the carrier wave ve
tor.

Moreover, in order to describe a large variety of hete
structures, i.e., ranging from single- or double-well structu
to infinite SL’s, we employ a periodic-boundary-conditio
scheme along the growth direction. This corresponds to w
ing the carrier wave functionf(z) as

fkz
~z!5eikzzukz

~z!, ~3!

where the periodic functionu ~over one period length,Lz)
has been introduced:ukz

(z)5ukz
(z1Lz).
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Since our interest is mainly devoted to unipolar vertic
transport, most of the relevant structures are characterize
relatively high doping concentrations. Thus the solution
the 1D Schro¨dinger equation forfkz

(z) has to be performed
self-consistently with that of the corresponding Poiss
equation. Our numerical approach to this self-consistent
lution is described in Appendix A; it is based on a plan
wave expansion of both equations with periodic bound
conditions. Compared to more conventional Schro¨dinger-
Poisson calculations in real-space coordinates, the use
full plane-wave description for the self-consistent solution
both equations is rather stable and efficient.

The single-particle Hamiltonian in Eq.~1! can be sche-
matically written as

H05Hc1HF1Hp . ~4!

More specifically,

Hc5(
kn
Eknakn

† akn ~5!

is the free-carrier Hamiltonian written in the usual secon
quantization picture. Herek5(ki ,kz) andn denote, respec-
tively, the 3D carrier wave vector and miniband index, wh
akn

† and akn are creation and destruction operators of el
trons with wave vectork in minibandn. Ekn is the 3D elec-
tron energy band:

Ekn5ekzn
1

\2ki
2

2mi
. ~6!

For each 1D miniband levelekzn
, we thus have a 2D para

bolic subband characterized by an effective massmi .
The term

HF5 (
kn,k8n8

akn,k8n8akn
† ak8n8 ~7!

describes the effect of a uniform applied electric fieldF; the
quantitiesakn,k8n8 denote the matrix elements of the corr
sponding scalar potential2eF•r in our kn representation.

The term

Hp5(
q

\vqbq
†bq ~8!

describes the free-phonon dynamics. As usual,bq
†(bq) denote

the creation~annihilation! operators of phonons with wav
vectorq, while vq is the phonon dispersion. For simplicity
we consider a single-phonon mode; the generalization
necessary, is obvious.

For what concerns the last contribution in Eq.~1!, in this
paper we shall consider exclusively the dominant contri
tion due to carrier-phonon interaction:



o-

in

rm
th

‘e

c
t

re
-
co
s-

t
er
nc
s:

iag
-
he
an
ing

tic

e

rt
ier
ied

all

ils
e
ion
us
w-
this
nsi-

r-

ty

n
t-

-
is

PRB 60 1955MICROSCOPIC THEORY OF VERTICAL-TRANSPORT . . .
H85 (
kn,k8n8;q

@gkn,k8n8;qakn
† bq

†ak8n81gkn,k8n8;q
* ak8n8

† bqakn#.

~9!

Here, the quantitiesg denote the matrix elements of the ph
non electrostatic potential in thekn representation. As we
shall see, the above Hamiltonian describes both intram
band (n5n8) and interminiband (nÞn8) carrier-phonon
scattering processes.

In this paper we shall describe the phonon system in te
of a single GaAs bulk LO-phonon mode. In this case,
matrix elementsg are given by

gkn,k8n8;q5g̃qE dr ck8n8
* ~r !eiq•rckn~r !, ~10!

where

g̃q5g0

1

q
5F2pe2\v0

V S 1

«`
2

1

«0
D G1/21

q
~11!

is the coupling constant for the Fro¨hlich interaction with dis-
persionless bulk LO phonons of energy\v0. Here«` and«0
denote the optical and static dielectric constants of the ‘
fective’’ medium, andV is the 3D normalization volume.

This simplifying approximation neglects any heterostru
ture effect on the phonon dispersion, such as confinemen
optical modes in the wells and in the barriers, and the p
ence of interface modes.20 However, while these modifica
tions have important consequences for phonon spectros
~e.g., Raman scattering!, they are far less decisive for tran
port phenomena. Indeed, by now it is well known20,21 that
the total scattering rates are sufficiently well reproduced
the phonon spectrum is assumed to be bulklike.

B. Kinetic description

Let us now introduce the set of kinetic variables used
describe the carrier system within our semiconductor het
structure. We choose the various carrier distribution fu
tions corresponding to the different conduction miniband

f kn5^akn
† akn&. ~12!

As usual these distribution functions correspond to the d
onal elements (kn5k8n8) of the single-particle density ma
trix. These are the only kinetic variables of interest in t
present work since we shall not consider coherent interb
phenomena which play a significant role only in determin
the ultrafast dynamics of photoexcited carriers.22,23

Let us now discuss the time evolution of these kine
variables in terms of their dynamic equations:
i-

s
e

f-

-
of
s-

py

if

o
o-
-

-

d

d

dt
f kn5

1

i\
^@akn

† akn ,H#&. ~13!

According to the separationH5H01H8 in Eq. ~1!, we can
identify two contributions in the equations of motion of th
distribution functions:

d

dt
f kn5

d

dt
f knU

H0

1
d

dt
f knU

cp

. ~14!

By neglecting interminiband terms in Eq.~7! the time evo-
lution induced by the HamiltonianH0 can be evaluated
exactly24:

d

dt
f knU

H0

52 k̇•¹k f kn52
eF

\
•¹k f kn . ~15!

This is the well-known drift term in the Boltzmann transpo
theory,15 which in the present context describes the carr
acceleration within each miniband induced by the appl
electric fieldF.

The second term on the right-hand side of Eq.~14!—
induced by the carrier-phonon Hamiltonian~9!—cannot be
treated exactly within our kinetic description. Here we sh
employ the standard semiclassical approximation~i.e., mean
field plus Markov limit!, and we shall not discuss the deta
of the derivation which is similar to that of Ref. 22 for th
case of a bulk semiconductor. Within such an approximat
scheme, a Markov limit is performed, and therefore vario
memory and intracollisional field effects are neglected. Ho
ever, the vertical-transport phenomena discussed in
paper—induced by moderate electric fields—are not se
tive to such effects.

Within this semiclassical approximation the carrie
phonon contribution in Eq.~14! is given by the rate equation

d

dt
f knU

cp

5 (
k8n8

@Pkn,k8n8 f k8n82Pk8n8,kn f kn#, ~16!

where Pkn,k8n8 is the carrier-phonon scattering probabili
for a transition from statekn to statek8n8. It is easy to
recognize the typical structure of the ‘‘Boltzmann collisio
term,’’ i.e., an in-scattering contribution plus an ou
scattering contribution.13,15 Within our semiclassical ap
proach, the explicit form of these scattering probabilities
given by
Pkn,k8n85(
6

2p

\ (
q

ugk8n8,kn;6qu2S Nq1
1

2
7

1

2D ~12 f k8n8!d~Ek8n82Ekn6\vq!, ~17!



pe

s
d
ou

u
th

in
ble

on

ft-

v
d

io

o-
bl
th
e

e
rs

d
s

te
nd

a
are

ing
nds.

-
e

na
the
ec-
-
ed
pa-

he
n-
to

ob-
ted

ny
of

a-
es,
ion
rest,
ses.
d

s’’
h
de-

due
nts
re-

rlo
ical

lly,
ex-
in

c-

-
the
gs.
ve
nt

1956 PRB 60STEFANO BARBIERI, FABIO BELTRAM, AND FAUSTO ROSSI
whereNq is the phonon occupation number and the up
~lower! sign refers to phonon absorption~emission!.

By inserting the explicit form of the various contribution
into Eq. ~14!, we can finally write down the set of couple
Boltzmann equations which govern carrier transport in
semiconductor heterostructure:

]

]t
f kn1

eF

\
•¹k f kn5 (

k8n8
@Pkn,k8n8 f k8n82Pk8n8,kn f kn#.

~18!

C. Weighted Monte Carlo procedure

As discussed in Sec. II B, the carrier dynamics in o
semiconductor heterostructure is described in terms of
coupled set of Boltzmann-like equations~18! for the various
distribution functionsf kn in the different minibands. It can
be schematically written as

]

]t
f kn1

eF

\
•¹k f kn5

d

dt
f knU

cp

. ~19!

Following the approach described in Ref. 15, we can
troduce a coordinate transformation to a new set of varia
called ‘‘path variables’’:

k̃5k2 k̇~ t2t0!, ~20!

with k̇5eF/\, and a corresponding transformed distributi
function f̃ defined by

f̃ k̃n5 f kn . ~21!

This transformation eliminates the drift term on the le
hand side of Eq.~19!, which can now be rewritten

d

dt
f̃ k̃n5

d

dt
f̃ k̃nU

cp

. ~22!

The acceleration induced by the applied electric field, pre
ously described by the drift term, is now implicitly containe
in k̃, i.e., k̃ is a function of time@see Eq.~20!#. In the absence
of carrier-phonon scattering, the transformed distribut
function f̃ is constant in time, and thus from Eq.~21! we
obtain:

f kn~ t !5 f k2 k̇(t2t0),n~ t0!. ~23!

Following the spirit of the number representation intr
duced in Ref. 22 for the bulk case, we employ a suita
k-space discretization similar to that used in Ref. 16 for
study of Bloch oscillations in SL’s. In particular, due to th
symmetry of our system, we define a cylindrical~two-
dimensional! grid, and for each cell of the grid we introduc
an integer numbernin which denotes the number of carrie
in the i-th cell and minibandn.

Due to the dependence of the scattering rates on the
tribution functions@see Eq.~17!#, the set of kinetic equation
~22! is nonlinear and, therefore, we are forced to perform
time-step solution. In particular, we employ a fixed time-s
Dt over which our kinetic equations are locally linear a
decoupled.22
r
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Schematically our total simulation time is divided into
sequence of time-steps. For each of them the following
true.

~i! A random sequence of free flights and scatter
events is generated for each carrier in the various miniba
The result is a random walk both overk and over the differ-
ent minibands.

~ii ! The carrier distributionsf kn ~i.e., the occupation num
bersnin over ourk-space grid! are updated at the end of th
time-step.

As we shall see, for most of the hot-carrier phenome
discussed in this paper the fraction of carriers involved in
transport process is very small. In fact the number of el
trons occupying the extended~3D-like! states is several or
ders of magnitude smaller than that relative to the localiz
~2D-like! ones. This is basically due to the large energy se
ration ~compared to the thermal energy! between localized
states and the 3D continuum. From the point of view of t
MC simulation, this implies that, in order to have a reaso
ably high number of transport electrons, one would need
simulate a huge number of particles. To overcome this pr
lem, we have modified the simulation scheme presen
above by implementing a weighted Monte Carlo~WMC!
technique along the lines of Ref. 15. The basic idea of a
weighted approach is to profit from the freedom of choice
the various probability distributions involved in the simul
tion process, e.g., initial carrier distribution, scattering rat
etc. This allows us to devote a large part of the simulat
resources to a specific phase-space region of inte
namely, the energy range involved in transport proces
The specific WMC technique employed in our ‘‘simulate
experiments’’ is summarized in Appendix B.

III. NUMERICAL RESULTS

In this section we present our ‘‘simulated experiment
of vertical transport for two different MQW’s. We start wit
a description of the computed band structures and then
scribe intraminiband and interminiband scattering rates
to LO phonons. The analysis of our simulated experime
starts with a discussion of the quasiequilibrium-response
gime. In this case the validity of the proposed Monte Ca
~MC! approach is demonstrated by comparing our numer
simulations with available experimental data.8 Finally, we
discuss the hot-carrier transport regime. More specifica
we show how the phonon-induced scattering between
tended and localized states can play a significant role
modifying the carrier mobility as well as the fraction of ele
trons involved in the vertical-transport process.

A. Carrier band structure

The single-particle Schro¨dinger equation—which may in
clude a self-consistent potential term—is solved using
plane-wave expansion presented in Appendix A. In Fi
1~a! and 1~b! we plot the calculated band structures relati
to two different potential profiles of interest for the prese
work.

~a! An Al0.34Ga0.66As/GaAs~Ref. 25! MQW heterostruc-
ture, with undoped barriers of widthLB5300 Å and wells
of width LW545 Å dopedn5131017 cm23;
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FIG. 1. Calculated band structures for~a! an
Al0.34Ga0.66As/GaAs multiple-quantum well~MQW! heterostruc-
ture, with LB5300 Å andLW545 Å ~barriers are undoped, an
wells are dopedn5131017 cm23); and~b! an Al0.2Ga0.8As/GaAs
MQW with LB5300 Å andLW573 Å ~GaAs layers are doped
n5131017 cm23).
~b! An Al0.2Ga0.8As/GaAs MQW withLB5300 Å, and
LW573 Å. GaAs layers are dopedn5131017 cm23.

In Fig. 1 the differentBrillouin-zone widths are due to
different real-space periodicities. These are equal toLz

5LW1LB5345 and 373 Å for MQW’s~a! and~b!, respec-
tively. To perform these band-structure calculations for ea
kz in the first Brillouin minizone a set of about 300 plan
waves@see Eq.~A4!# was used. This is by far sufficient t
describe accurately the energy range of interest.

B. Carrier-phonon scattering rates

One of the main objectives of our MC analysis is to o
tain a deeper insight in the interplay between delocaliz
~3D! and localized~2D! states mediated by electron-phono
interaction. These effects can be greatly amplified if
choose a band structure like the one reported in Fig. 1~b!,
where the interminiband transition 4̃2 is resonant with the
optical-phonon energy~i.e., 36 meV!. An electron initially at
the bottom of miniband 4 can be accelerated by the exte
electric field, and reach a region where the phonon emiss
rate is particularly strong owing to low momentum transf
Indeed, forki50 an abrupt change in the optical-phono
emission rate from miniband 4 to bound subband 2 is fou
as the threshold for emission is reached~at room temperature
we obtain a jump from 0 to;4 ps21).

Figure 2 shows~continuous line! the total calculated
emission and absorption room-temperature scattering r
from miniband 3@panel~a!# and subband 1@panel~b!# as a
function of in-plane energy~thekz wave vector is fixed at the
minizone center!. For comparison we also show the scatte
ing rates for transitions involving as final states bound s
bands 1 and 2 only~dashed lines!, i.e., transitions 3̃ 1,2
@panel ~a!# and 1̃ 1,2 @panel ~b!#. In Fig. 2~a! one can
nd

FIG. 2. Continuous line: total emission and absorption room-temperature scattering rates for the structure of Fig. 1~b! for kz50. All rates

are plotted as a function of the in-plane energy.~a! Rates from miniband 3 and~b! rates from subband 1. Dashed line: emission a
absorption room-temperature scattering rates from~a! miniband 3 and~b! from subband 1, to bound subbands 1 and 2 only.
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1958 PRB 60STEFANO BARBIERI, FABIO BELTRAM, AND FAUSTO ROSSI
clearly see the steep change of the scattering rate as th
plane energy reaches the threshold for transition into bo
state 2 by phonon emission.26

The effect of the envelope-function overlap@see Eq.~10!#
in determining transition probabilities is particularly evide
for 3˜1 and 1̃ 2 emission. In Fig. 2~a! at low energies the
emission rate is virtually zero owing to the fact thatfkz3

has
a strong antiresonance in the well region while the bou
state 1 is strongly confined. After the threshold for emiss
into bound state 2 is reached 1̃2 coupling @Fig. 2~b!#,
instead, produces a jump in the emission rate of;1 ps21

due to the strong overlap between wave functionsfkz2
and

fkz1
. Finally, it should be underlined that the sharp pea

visible in Fig. 2~a! occur every time the threshold for emi
sion ~or absorption! in a new miniband is reached.

C. Quasiequilibrium regime

Thermionic-emission current in MQW heterostructur
has been widely studied since the end of the 1980s owin
its role in determining the ‘‘dark current’’ in MQW infrared
photodetectors.6–8,17–19In this section we shall demonstra
that the present MC simulation approach can accurately
produce the experimental thermionic-current temperature
pendence. To this end, a comparison will be presented
tween simulations and experimental data available for
MQW heterostructure of Ref. 8.

In Fig. 3 we show a plot of the experimental current~I! vs
1/kBT ~squares! relative to the mentioned AlxGa12xAs/GaAs
MQW structure with anx50.3 nominal aluminum concen
tration ~see Ref. 8 for details!. Here data shown correspon

FIG. 3. Simulated current vs 1/kBT in the 77–300 K tempera
ture range for experimental and simulation data. Experimental
are taken from Ref. 8.
in-
d

d
n

s

to

e-
e-
e-
e

to an applied bias yielding a potential drop per period of 2
meV and an electric-field strengthF5800 V/cm. The data
exhibit a linear behavior with slopeSexp5280 meV~dashed
line in Fig. 3!. The slope value is particularly important be
cause it is often used to determine the confinement ba
height by comparison to some appropriate analytical mo

In the same figure we also report the values of the sim
lated current obtained for the AlxGa12xAs/GaAs MQW with
x50.34 @see Fig. 1~a!# corresponding to a conduction-ban
discontinuity of 285 meV~triangles!.25 We observe that the
experimental linear behavior is successfully reproduced
our simulation~the solid line in Fig. 3!. The given disconti-
nuity ~i.e., barrier composition! yields a slope Ssim
5280.5 meV in agreement with the experimental slo
value. The fact that, for a fixedT, the simulated current is
higher than the measured one can be linked to a differe
between the nominal doping of the QWs (n51
31017 cm23) and the effective one. Moreover, the effect
interface roughness~not considered here! could also lead to a
decrease of the electron mobility without changing sign
cantly its temperature dependence. Here, however, we w
to stress that our MC simulation reproduces the correct c
rent variation with temperature, yielding anall-numerical
determination of the slopeS as well as of the conduction
band discontinuity without the need of an approximate a
lytical model.

Indeed, this fact could be used to determine which a
lytical expression best reproduces the actual barrier value
this end it is useful to analyze the temperature dependenc
the electron mean velocity in the continuum. This is sho
in Fig. 4~a! for the sameF5800 V/cm applied field: in con-
trast to the large current change@about nine orders of mag
nitude; see Fig. 4~b!#, here we find a variation of less tha
one order of magnitude. Furthermore, as expected, we
serve adecreaseof electron mean velocity as a function o
temperature due to enhanced scattering with optical phon
The temperature dependence for the calculated drift velo
^v& is well described by

^v&52.531072~6.93104!TS cm

s D . ~24!

From this we deduce that by restricting the thermion
analysis to a temperature span of few tens of K, the assu
tion of a drift velocity independent ofT is a good approxi-
mation ~within a few percent error!.

These results support the modeling of thermion
emission current by use of the simple expression7,18,27

I 5ene~T!v0@12e2eVp /kBT#, ~25!

where e is the electron charge,ne(T) the density of 3D
~propagating! electrons,v052.53107 cm/s the characteris
tic drift velocity, andVp the average potential drop per p
riod. The charge densityne(T) is proportional to
T3/2e[w2m(T)]/kBT, wherem(T) andw are the chemical poten
tial and the confining potential,~i.e., the energy difference
between the onset of the continuum and the bound-state
ergy!. From Eq.~25! we finally obtain

I}T3/2e2[w2m(T)]/kBT~12e2eVp /kBT!. ~26!

ta
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By using this expression to fit the calculated temperat
dependence of the thermionic current in Fig. 3, we obt
w5199 meV, in excellent agreement with the value actua
used in the MC simulations (w5197 meV).

A number of analytical models17–19have been used in th
literature to provide a simple fitting procedure for th
thermionic-emission data and to obtain the value for the c
fining potential. For low fields and low transmission barrie
Eq. ~26! is probably the most suitable for appropriately na
row temperature ranges; however, similar expressions h
been used in the past with different values for the exponena

in the firstTa factor (a51,3
2 ,2).17–19Starting from the same

MC data discussed above, we obtainedw5203, 199, and
187 meV for a51, 3

2 , and 2, respectively. Indeed, suc
discrepancies are in most cases within experimental erro

D. Hot-carrier regime

In this section we shall examine in some detail the pr
lem of carrier capture by QW’s in MQW heterostructures
the presence of an external static electric field applied al
the growth direction. Carrier-capture lifetimes are domina
by optical-phonon emission,3 and most theoretical studie
deal with this single scattering mechanism~capture mediated
by impurities and carrier-carrier scattering was a
considered28–30!. Numerical calculations predict capture life
times 0.5&tC&2 ps depending on carrier temperature a

FIG. 4. Al0.34Ga0.66As/GaAs heterostructure of Fig. 1~a!. ~a!
Simulated mean velocity and~b! simulated current as a function o
time in the 77–300-K temperature range forF5800 V/cm.
e
n
y

-

-
ve

.

-

g
d

d

QW thickness. These values, as well as an oscillatory dep
dence on QW thickness, are in substantial agreement
experimental results which are obtained from time-resolv
photoluminescence spectroscopy.31,32 Conversely, a study of
electron-capture processes in MQW’s in the presence o
static driving electric field still remains a controversial su
ject because of its great complexity.11,12This is an important
issue, however, and can have significant implications for
operation of MQW infrared detectors6 as well as intersub-
band QW lasers.33

As discussed in Sec. III B, in order to emphasize carri
phonon coupling between 3D and 2D states we have stu
the Al0.2Ga0.8As/GaAs heterostructure whose band struct
is reported in Fig. 1~b!. Figure 5 shows the time dependen
of the simulated currentI and mean velocitŷ v& at T
577 K for two driving electric fields, namely,F5500 and
3000 V/cm. These two quantities are calculated accordin

I 5eS(
kn

f ~Ekn!vn
g~kz! ~27!

and

^v&5

(
kn>3

f ~Ekn!vn
g~kz!

(
kn>3

f ~Ekn!

, ~28!

where

vn
g~kz!5

1

\

]en~kz!

]kz
~29!

is the carrier group velocity (vg is equal to zero for disper
sionless subbands 1 and 2). Here,S is the structure cross
section~perpendicular to the growth axis!, andf is the Fermi-
Dirac distribution function. Velocity and current overshoo
in Fig. 5 are linked to the fact that carriers accelerated by
electric field increase their energy in the continuum mi
bands, finally exceeding threshold for phonon emission
continuum̃ continuum and continuum̃ bound-subband 2
transitions. Note that Eqs.~27! and~28! clearly show that as
long as no carriers transfer between 3D and 2D states,
relative current variationDI /I will be equal toD^v&/^v&. For
both field intensities examined, however, we find that re
tive current overshoots are greater than the correspon
velocity ones. This suggests that carriers have transfe
from 3D to 2D bound states. ForF53000 V/cm the effect is
much more pronounced, denoting a marked field dep
dence. Carrier trapping can be directly seen by inspec
Fig. 6, where we report the relative population variatio
during the first several ps for the same field intensities~here
N3, N31, andN41 denote carrier populations of miniband
with indices n53, n>3, andn>4, respectively!. After a
small increase, population of the continuum (N31, solid line
in Fig. 6! indeed exhibits a strong decrease to less than
its initial value. The field dependence of this effect is sho
in Fig. 7, where relativeN31 andN41 variations at different
fields are displayed. For very low field intensities (F
&10 V/cm), the fraction of carriers in the continuum
slightly increases: the carrier mean kinetic energy is not s
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FIG. 5. Heterostructure of Fig. 1~b!. Time dependence of simulated current~a! and mean velocity~b! at 77 K. Two different applied fields
are considered:F5500 and 3000 V/cm.
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ficiently high to reach the threshold for scattering into su
band 2. At higher fields we observe an increasing car
trapping in the QW, saturating in the regionF*800 V/cm.
The temperature dependence of this carrier-capture pro
is illustrated by Fig. 8 for the caseF5800 V/cm. Here,
relative N31 and N41 variations are monitored in the 77
300-K temperature range. They display a suppression
population variation at increasing temperatures. This is
pected since larger temperatures imply a larger numbe
-
r

ss

of
x-
of

populated minibands at equilibrium. One can give a con
tion for the onset of continuum depopulation effect
N41/N31!1 at timet50, i.e.,kBT!36 meV.

IV. CONCLUSIONS

In summary, we have proposed a microscopic appro
for the analysis of vertical-transport phenomena in semic
ductor heterostructures. By means of a fully thre
FIG. 6. Heterostructure of Fig. 1~b!. Time variation of the carrier population forF5500 V/cm~a! andF53000 V/cm~b!. N3, N31, and
N41 denote carrier population of minibands withn53, n>3, andn>4, respectively. Populations att50 are labeledN0 . T577 K.
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dimensional description of carrier wave functions and ene
bands, all relevant electron-phonon scattering rates for b
intraminiband and interminiband transitions have been c
sidered. This has allowed a quantitative evaluation
scattering-induced coupling between extended~3D-like! and
localized~2D-like! states in hot-carrier transport across a g
neric heterostructure.

FIG. 7. Heterostructure of Fig. 1~b!. Steady-state relative popu
lation variations for different electric-field intensities. HereN0

31

andN0
41 denote population at timet50.

FIG. 8. Temperature dependence of relative population va
tions for F5800 V/cm.
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The proposed MC simulation scheme has been applie
finite MQW’s with different geometries. A detailed analys
of the electron current as a function of temperature sho
good agreement with experiments. Moreover, our analysi
the electron current through the heterostructure shows
role played by phonon-induced transitions between exten
and localized states. In particular, in addition to a reduct
of the carrier mobility, a field-induced suppression of t
number of ‘‘conducting carriers’’ is found to take place. F
a better understanding of this phenomenon, anad hocquan-
tum structure—characterized by a strong scattering coup
between high-energy conduction states and locali
states—has been considered. Although we do not bel
that this depopulation effect could be easily probed exp
mentally, we nevertheless think that our simulations res
could be of help in optimizing the design of MQW infrare
detectors.
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APPENDIX A: SELF-CONSISTENT
SCHRÖDINGER-POISSON CALCULATION

OF SINGLE-PARTICLE STATES

In this section we shall discuss the numerical appro
used for the self-consistent calculation of the carrier wa
functions in a generic heterostructure. To this end, let
recall the explicit form of the 1D Schro¨dinger equation for
the envelope functionfkz

(z):

F2
]

]z S g~z!
]

]zD1V~z!Gfkzn
~z!5ekzn

fkzn
~z!, ~A1!

with g(z)5\2/2m(z). HereV(z)5V0(z)1DV(z) includes
both the heterostructure potential profileV0 and the internal
potentialDV, which in turn is obtained by solving the Pois
son equation

]2

]2z
DV~z!52

r~z!

«
. ~A2!

Here r(z)5r0(z)1Dr(z) is the sum of the fixed charg
densityr0 ~due to the particular doping profile! and of the
free charge

Dr~z!5e(
kn

f ~Ekn!ufkzn
~z!u2, ~A3!

wheref denotes the Fermi-Dirac distribution function.
Our aim is to perform a self-consistent solution of Eq

~A1! and ~A2!. Contrary to the conventional methods bas
on real-space finite-difference schemes, the proposed
proach is based on a plane-wave expansion of both e
tions.

Let us consider the following set of basis wave function
-
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xkz ,G~z!5
1

ALz

ei (G1kz)z, ~A4!

whereLz denotes the periodicity interval along thez direc-
tion, Gn52pn/Lz are the corresponding reciprocal-lattic
vectors (n50,61,62, . . . ), andkz is the quasimomentum
limited to the first Brillouin zone (2p/Lz<kz<p/Lz).

Since the above basis functionsx obey the same bound
ary conditions as the wave functionsf in Eq. ~3!, the latter
can be expanded over the reciprocal-lattice vectorsG accord-
ing to

fkz
~z!5(

G
ckz ,Gxkz ,G~z!. ~A5!

By inserting the above plane-wave expansion into Eqs.~A1!
and ~A2!, we obtain the following set of coupled equation

(
G8

~Hkz ,GG82ekz
dGG8!ckz ,G850,

G2DVG5
e

« (
kn

f ~Ekn!(
G8

ckz ,G8
* ckz ,G1G8 , ~A6!

with

Hkz ,GG85~kz1G!ḡG2G8~kz1G8!1V̄G2G8 . ~A7!

The bar indicates Fourier transforms with respect to
reciprocal-lattice vectors, i.e.,

ĀG5
1

ALz
E

2Lz /2

1Lz /2

e2 iGzA~z!. ~A8!

The system of coupled equations~A6! consists of an eigen
value problem~which provides carrier energies and wav
functions! plus an algebraic version of the Poisson equati
They are solved by means of the following iterative proc
dure. As an initial condition, we evaluate the carrier eige
states by solving the eigenvalue problem in the absenc
internal potential, i.e., we takeDV50˜V̄5V̄0. The result-
ing zero-order eigensolutions~i.e., energy bandsekz

and

wave-function coefficients$ckz ,G%) are then inserted into th
Poisson equation which, in turn, provides the first-order
ternal potentialDV. The above two-step procedure is r
peated until convergence is achieved.

For the typical heterostructures considered in this pa
we have used a set of about 300 plane waves with a perio
about 50 nm. This allows us to obtain with great accura
the wave functions and miniband dispersions correspond
to the confined~2D-like! states. However, for a detaile
analysis of continuum states~3D-like! convergence problem
may arise for two reasons: first, the number of plane wa
may be inadequate; and second, a fictitious coupling du
the finite dimensions of our periodicity box may play som
role. By increasing the number of plane waves and the
of the box, we have checked that this is definitely not
case for the ‘‘close-to-gap’’ energy region discussed in t
paper.
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APPENDIX B: WEIGHTED MONTE CARLO
„WMC … PROCEDURE

In this section we shall briefly discuss the specific WM
approach used in our simulated experiments. As anticipa
in Sec. II C, the aim of any weighted approach is to pro
from the freedom of choice of the various probability dist
butions involved in the simulation process, e.g., initial carr
distribution, scattering rates, etc. This allows us to devot
large part of the simulation resources to a specific pha
space region of interest, which in our case coincides with
energy range involved in the vertical-transport process
general discussion of the WMC method, including some
plications to semiclassical as well as quantum-transp
problems, can be found in Ref. 15 and will not be repea
here. Instead, we will briefly describe the specific nature
our weighted simulation scheme.

To this end, let us rewrite the set of Boltzmann-like equ
tions ~18! as

]

]t
f kn1

eF

\
•¹k f kn52Gkn f kn1 (

k8n8
Pkn,k8n8 f k8n8 ,

~B1!

where

Gkn5 (
k8n8

Pk8n8,kn ~B2!

is the total scattering rate for intraminiband and intermi
band processes. As described in Ref. 15, the MC met
provides a statistical sampling of the various distributi
functionsf kn through a random generation of free flights a
scattering events. More specifically, the total scattering r
Gkn ~which can be regarded as the semiclassical lifetime
statekn) determines the free-flight duration, while the pro
abilities Pkn,k8n8 determine the carrier state after scatterin

Let us now consider a generic probability distributionWn

as a function of the miniband indexn only: 0,Wn,1 and
(nWn51. Starting from such distribution we introduce
weighted carrier distribution functionf W according to

f kn
W 5Wn f kn . ~B3!

We can then rewrite the set of Boltzmann-like equations
Eq. ~B1! as

]

]t
f kn

W 1
eF

\
•¹k f kn

W 52Gkn
W f kn

W 1 (
k8n8

Pkn,k8n8
W f k8n8

W ,

~B4!

with

Gkn
W 5Gkn , Pkn,k8n8

W
5

Wn

Wn8

Pkn,k8n8 . ~B5!

As we can see, Eq.~B4! has exactly the same form of th
original Boltzmann-like equation~B1!; therefore it is still
suitable for a MC solution, provided we replace the origin
rates with the weighted ones@Eqs. ~B5!#. Such a weighted
approach can be regarded as a proper phase transform
over the miniband indexn, which leads to a fictitious modi-
fication of the carrier density of states.
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Since our aim was to devote a significant fraction of sim
lated carriers to the continuum~transport! energy region, we
have artificially reduced the statistical weight of the min
bands corresponding to bound states. More specifically,
have chosen the distribution probability

Wn5
eEn /kBT

(
n

eEn /kBT

, ~B6!

with

En5H e0n for bound-state minibands

0 for continuum-state minibands
~B7!
m
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@here e0n denotes the carrier energy in minibandn at the
center of the Brillouin zone (k50)#. The above probability
distribution allows us to increase the fraction of simulat
carriers in the continuum by several orders of magnitu
thus strongly reducing the statistical fluctuations in the s
chastic evaluation off kn

W . Given such fictitious carrier
distribution—obtained as a result of the above weighted M
approach—any single-particle physical quantityA, e.g.,
charge current, mean kinetic energy, etc., is evaluated
cording to

^A&5(
kn

Akn f kn5(
kn

Akn

f kn
W

Wn
. ~B8!
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