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Coulomb correlation effects in semiconductor quantum dots: The role of dimensionality

Massimo Rontani, Fausto Rossi, Franca Manghi, and Elisa Molinari
Istituto Nazionale per la Fisica della Materia (INFM), and Dipartimento di Fisica, UniversitdModena, via Campi 213/A,
I-41100 Modena, ltaly
(Received 27 August 1998

We study the energy spectra of small three-dimensi¢8B) and two-dimensiona(2D) semiconductor
guantum dots through different theoretical approachieg)le-site Hubbard and Hartree-Fock Hamiltonjains
the smallest dots we also compare with exact results. We find that purely 2D models often lead to an inad-
equate description of the Coulomb interaction existing in realistic structures, as a consequence of the overes-
timated carrier localization. We show that the dimensionality of the dots has a crucial impdit the
accuracy of the predicted addition spectra, &ndthe range of validity of approximate theoretical schemes.
When applied to realistic 3D geometries, the latter are found to be much more accurate than in the correspond-
ing 2D cases for a large class of quantum dots; the single-site Hubbard Hamiltonian is shown to provide a very
effective and accurate scheme to describe quantum dot spectra, leading to good agreement with experiments.
[S0163-182699)10211-X

[. INTRODUCTION strength of the Coulomb interaction is also the key parameter
determining the accuracy and range of validity of the ap-
Addmg an electron into a semiconductor quantum dotproximations which must be introduced for dots with many
(QD) produces a variation in the energy of the system thaglectrons. , ) ) N
depends on single-particle quantum confinement as well as !N this paper we investigate theoretically the addition

on the Coulomb interaction between carriténderstanding spectra of realistic QD structures, with_special emphasis on
such addition-energyis a key step toward controlling the the effects of electron-electron repulsion and their depen-

physics of single-electron devices. At the same time, the add€nce on the geometry and dimensionality of the confining
dition spectra of quantum dots offer a unique probe of fewotential. In Sec. Il, we compare different approximate solu-

particle interactions in regimes that are not experimentallyions of the general Hamiltonian fdd interacting electrons
accessible in atomic physics. The experimental effort in thi€onfined in a QD structure; in particular we consider the
direction developed very rapidly after the recent fabricationSi"9/€-Site HubbardSSH scheme introduced in Ref. 5, and
of controlled small-QD devices based on gated verticafn® Standard Hartree-Fo¢kiF) method.

heterostructurésor self-assembled dofsThe resulting addi- In Sec. lll, we focus on the simplest case, i.e., a two-

tion spectra show a clear shell structure, corresponding to tH&/€Ctron system within a parabolic confining potential, and

symmetries of the confining potential, with a filling sequencec@lculate the exact energy eigenvalues and pair-correlation
analogous to Hund's rule in atomic physics. functions for the 2D and 3D cases. As in Ref. 7, we use this

From the theoretical point of view, a general interpreta-Prototypical system—called artificial or QD helium—as a
tion of these features was obtained by calculating the energifférence to evaluate the accuracy of the different approxi-
spectrum for a strictly two-dimensioné2D) quantum dot, ! ation schemes: We find that both the |mportance of correc-
and using either exact metho@er very few electrons or tions beyond the HF scheme, and the differences betvv_ee_n
approximate—usually Hartree-Fock—meth4dsThe as- HF and SSH schemes, are drastically reduced for a realistic
sumption of a purely 2D model was initially motivated by 3D_descr|pt|on of the dot with respect to its 2D model_lzat|on,
the typical disklike shape of the QD potential, whose extenM&inly as a consequence of the reduced Coulomb integrals.
sion alongz is (slightly) smaller than the lateral extension of 1NiS suggests the reliability of a fully 3D mean-field treat-
the carrier ground state in they plane. If one adopts a Ment of semiconductor QD’s.

separable picture for the QD confining potentik=V(2) Sectionh I\é is then dev(;)ted to the appl(ijcation_(;]f HFI and
+V(x,y), the relevant(i.e., lowes} single-electron states S>> methods to 3D and 2D quantum dots with a larger

can be all associated to the ground staté/(f). From the number of electrons. We compare both methods for QD

point of view of single-particle states the 2D assumption is_structures of different .ggometries, and demp n_strate that .SSH
therefore justified is an accurate and efficient scheme for realistic, i.e., 3D-like,

In view of the three-dimension#8D) nature of the Cou- ShOtS: 't:'na"yt’ ;/_ve dISfCUSS trt'e |mpI|_cat|otns| 3f tour results fotf
lomb interaction, however, the 2D model introduces addi- € Interpretation of recent experimental data vs magnetic

tional approximations in the calculation of the Coulomb in- field in QD structures, and draw some conclusions.
tegrals, which are sen;itive to the spa}tial extension—2D V$| THEORETICAL APPROACH: EXACT FORMULATION
3D—of the single-particle wave function$. In turn, Cou- AND APPROXIMATION SCHEMES

lomb integrals control electron-electron correlation, and in-

fluence the quantitative determination of addition spectra and Our aim is to describeN electrons, confined in a QD
their dependence on magnetic field. At the same time, thetructure (with harmonic in-plane confining potentjaind
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interacting via Coulomb law, possibly in the presence of an * (0 b* (1! r r
external magnetic field perpendicular to the plane. The gen- Jaﬁzezf Pa(DPp(1) Pl ) 4l )dr
eral N-particle Hamiltonian is

dr’. (5
Klr—r’|

) In this way, Eq.(2) becomes

N
F=2 Ho(i)+3 2 ——— D o et A
= = «lr—rjl H=H3 2" 2 Voo poriyor50ChoCherCrorCon’
. . . . - . Byo !
where the single-particle Hamiltonian, within the effective- e e 6)

mass approximation, is . . L :
where the prime on the first summation is to omit the terms

2 with = 6,8=vy anda=vy,8= 45 and

L 1 /. e. 1 2 2. .2
Ho(i)= P+ ZA(r) | +5m*wg(X+y7)+V(z).
2m*\" ¢ 2 FSSS ¢ f
) & Salla

Here A is the vector potentialx andm* are the scalar di- 13 A oa A oa
electric constant and the effective electron mass in the semi- + EQBU [(Vap=Jap)Nacpot UapNaoNp-—ol-
conductor,w is the characteristic oscillator frequency of the
in-plane confining potential, and(z) is the confining poten- @)

tial alongz, V(2) can be chosen either as a harmonic poten-The relevance of this formal partition is twofold) it natu-
tial [V(z) = 3m* w§z?], a square well, or a zero-width infi- rally leads to a perturbation expansion in the off-diagonal
nite barrier to describe spherical, cylindrical, or disk-shapednteractions which are in general smaller than the semidiago-
QD structures, respectively. Here Zeeman coupling betweeRy| ones;(ii) moreover, theunperturbedterm 75" is one-
spin and magnetic field has been neglected. body-like, with single Slater determinants asact eigen-

This general Hamiltonian can be written in second quansiates. The SSH approach defined in Ref. 5 consists of

tl_zed form.on the complete and orthonormalized basis Ofemssuming thatiy=#SSH which amounts to neglecting the
single particle states

second- and higher-order contributions in the off-diagonal
interactions, the first-order one being exactly zero.
=D Saelaeaa The assumption that the off-diagond}, 4., 5 are negli-
ac gible with respect to the semidiagonal ones is implicit in all
the methods which describe electron correlation in terms of
+3 2 2 Vaoporiyer 506206; C,oCsy. (3)  the Hubbard model, either in its original foffincluding
aBys o' e 7 only on-site interaction between opposite spin electrons, pro-
. . . . portional toU 5, or adding the interaction between parallel
Here £, are the eigenenergies of the one-particle Ham"'spin electrons as well, proportional tt(;—J,). The im-
tonian Ho;cf, andc,, the creation and destruction opera- portant point here is that when the Hubbard model is applied
tors for an electron with orbital index and spino; and  to an isolated QD, i.e., to a single site, the Hubbard Hamil-
Veo.go':ye' 50 are the two-body matrix elements of the tonian turns out to be one-particle-like: this is so because the

electron-electron interaction intersite hopping of the traditional Hubbard Hamiltonian is
absent in this case and the commutdta®Sn, ] is zero.
Vo oty 0= D J' &% (1,5) ¢>20r(r’ s') As a consgquence, t_he SIatAer determinants, glgenstates of the
ss’ single-particle HamiltonianH,, are exact eigenstates of
& F3%H as well.
X——h (1", ) psq(r,5)dr dr’ Within the SSH approach the total energyMglectrons
[r—r’| in a QD structure is given by
where ¢,,(r,s) = ¢,(r) x,(S) are the single-particle eigen- ESSHN) = (DN HSSHN)
functions.
It is useful to isolate, among the Coulomb matrix ele- _ - 1 -
ments, the “semidiagonal” ones, namely, _az,, #alNag) T 2%, [Vap(Np-—o)
Vao’,ﬁ(}';ﬁ(r,au'Zer,,B—(r;B—a',aUEUaﬁ! +(Uaﬁ_‘]aﬁ)<ﬁﬁv>]<ﬁau’>! (8)
Vv -3 where|®N) is a Slater determinant eigenvectorﬁfbg, and
ao,foiac,fo Y af () denotes the average over the many-particle eigenstate,

These are the usual direct and exchange integrals which cd¥ich in our case simply reduces to the orbital occupation

be written more explicitly as number. _ _
The proposed SSH approach shares in common with

(1|2 b a(r)]2 Hartree-Fock methods the form of the total energy, which in
Uaﬂ:eZJ j @ A drdr’, (4)  both schemes is expressed as the average of the exact Hamil-
Klr=r'| tonian over a single Slater determinant; the variational
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prescription—allowing for the construction of optimal Solutions and notations for the 2D and 3D cases are summa-
single-particle orbitals through the self-consistent solution ofized in Appendix A for bott ¢y and A,y .

a single-particle eigenvalue problem—is not present in the By denoting the CM and rm quantum numbers with capi-
SSH approach. We notice, however, that the importance of| and small letters, respectively, the eigenvalues for the
Se|f-ConSiStency iS Strongly related to the relative W8|ght Oftwo_partic|e System can be written as

Coulomb matrix elements: the HF potential entering the self-

consistent HF one-particle Hamiltonian is in fact related to Enmam=f@(2N+|M|+1)+ enpn (13

the direct and exchange Coulomb integrals; similarly, the
SSH approximation is exact—without any need of self-"" the 2D case, and
consistency—whenever the higher-order contributions from 3
the off-diagonal Coulomb matrix elements are negligible. ENL’n|=ﬁw(2N+L+—
For this reason we expect that a lower localization of the 2

confined single-particle states in three dimensions with rein the 3D spherical case, the cylindrical 3D helium QD re-
spect to two dimensions, giving rise to smaller nondiagonaljucing to an effective 2D onésee Appendix A Here e,
Coulomb integrals, will reduce the difference between HFand €n are the rm eigenva|ues in two and three dimensionS,
and SSH results. To check this pOint in detail, we have eXTespective|y_ Note that degeneracy is Strong|y reduced by
plicitly performed HF calculations; we have used in particu-Coulomb interaction with respect to the noninteracting case.

lar the matrix form of the unrestricted HF equatibn. The corresponding two-particle total eigenfunctions are
Whenever possible, it is obviously useful to compare the

outcomes of different approximate schemes with exact re- WNM,nm;SSz(rl,sl;r2,SZ)ZQJNM(R)gpnm(r)X(S,SZ)
sults. This is done in Sec. Ill, where we consider the exactly (15)
solvable two-electron QMartificial helium) in different con- )

finement regimes; we will show that the differences betweeror 2D and 3D cylinders, and

HF and SSH results will be always comparable with those i _

between HF and exact results, and that they scale with the? NLM, nim, :5§(1:51:72,52) = Priwm, (R) @nim, (NX(S,S,)

+ €n| (14)

dimensionality of the confining potential. (16)
for a 3D sphere. Her®(R) and¢(r) are the spatial CM and
Ill. TWO-ELECTRON PROBLEM rm eigenfunctions, respectively, ang(S,S,) is the spin

i i i i function of a state with total spih?S(S+ 1) andz projection
_In this section we will study the motion of two electrons g ~Note that the parity of the rm spatial eigenfunction is
within a QD structure in two and three dimensions. In thisyefined (total orbital angular momentum and spin are con-
case, the exact Hamiltoniag) reduces to served and connected with the value of total spin by the
2 antisymmetry of the two-particle total wave function
_ (9) W(ry,s1;r2,S). For both the disk and the cylinder, this im-
K[r =1 plies that ifmis even, the state is a singled€0), and, ifm
is odd, the state is a tripleS&1). Similarly for the sphere
case, ifl is even, the state is a single&d€0), and ifl is odd,
the state is a triplet=1).
To solve this equation, we perform the standard In the above e_igenva_llues and eigenfunctions of t_he two-
10 X . electron dot, the ingredients related to the CM Hamiltonian
transformatloﬁ t? cgnter of masgCM) coordinates,R are known analyticallfsee Appendix A while the rm en-
=(ry+r2)/2, P=py+p,, and relative-motion(rm) coordi-  ergies and wave functions must be determined numerically.
natesr=r;—r,, p=(p;—pP2)/2. The two-body Hamiltonian This is done by exact diagonalization of the rm eigenvalue

F=Ho(1)+Hy(2)+

Herer; is the position of the electrom;=(x;,y;) in two
dimensions or;=(x;,Y;,z) in three dimensions, ang the
corresponding momentum.

thus splits into CM and rm parts: problem(Appendix A), thereby yielding the full 2D and 3D
spectrum of the QD helium.
H=Hcy+Hm, (10) Before comparing these exact results with the SSH ap-
proach, we point out that Hamiltonig®) can be translated
where into a second-quantized form; this is done in terms of the
same quantum numbers using CM and rm variables. The
. P21 - two-particle Hilbert space is the Kronecker product of the
HcmszriMw R%, 11 CM and rm single-particle spaces, generated, respectively,
by the basig{|N)}y (with eigenvaluesEy and creation op-
A o1 o2 eratorséL) and {|n)}, (with eigenvaluese, and creation
Hrm=m+ §#w2f2+ o (120 operatorsa'). Here, for simplicity,N andn label the whole

set of CM and rm quantum numbers, respectively. The
with M=2m*, and u=m*/2. The CM HamiltonianFICM second-quantized form of the two-particle Hamiltonfdnin
has the form of a simple harmonic oscillator. For the rmthis variable, is then given by
HamiltonianH,,,, it is easy to separate variables and obtain
a radial differential equation, which gives solutions with the ﬂ:}N: ENéLéN+§n: endtan+ >, Vopalay . (17)

same set of quantum numbers as for the harmonic oscillator. nn’
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FIG. 2. (a) Ground-state energy of the artificial He QD as a
function of the confinement enerdyw,, calculated within different

FIG. 1. Ground-state spatial pair-correlation functigfx) for approachegexact, SSH, and HE The range offiwg is 4.5-10
3D (spherical and 2D two-electron QD’s: exact and SSH results meV. The two panels correspond to 2D and @®lindrical) geom-
are reported. Here= (2m* wor?/%)*?is the dimensionless relative etries. The ground-state configuration is always a spin singigt.
radial coordinate andy(x) is normalized in such a way that Spin-singlet(spin-triple} energies vs confinement energiks,.
J59(x)dx=1. The in-plane confinement energyfism,=5 meV. The range ofiwg is 1-4.5 meV. The two panels are relative to 2D

and 3D(cylindrical) geometries. The exact ground state is always a

This formulation allows us to obtain the result of the previ- singlet, while a singlet-triplet crossover occurs for both approxi-
ously discussed Hubbard model, by simply neglecting alimated schemes in the low-energy region.
off-diagonal matrix elements in E@17):

1
dimensionless radius X

ences between exact and SSH results are significantly re-
duced assuming a 3D confining potential. This result is
coherent with what is found for other ground-state proper-
ties: Fig. 2a) shows the ground-state energies calculated for
i.e., manifestly the noninteracting Hamiltonian “renormal- dots with different confinement energiésy,, in the range
ized” by Coulomb interaction. between 4.5 and 10 meV. We compare the exact results with
In order to check the reliability of the approximations andthe outcomes of HF and SSH calculations assuming 2D and
the role of dimensionality of the confining potential, we have3D confinement potentials. Notice that the differences be-
calculated ground-state properties for QD’s with differenttween HF and SSH are always smaller—by approximately
confinement energies, i.e., different valuesiafy, assuming 50%—than the corresponding differences with respect to the
either a 2D or 3D confining potential. The quality of the exact results; moreover the 3D confinement reduces the over-
ground-state eigenfunctions can be probed by the spatial padl deviation of both HF and SSH by about 60%.
correlation functionf (r): Since the SSH scheme is exact at the first perturbative
order in the off-diagonal matrix elements of thee interac-
> tion, it is interesting to check the importance of the next

ﬂSSH:% ENéLéNJr; (€ntVinama,, (18

(19 perturbative corrections. Details of how the perturbative ex-
pansion is actually performed for the helium QD are reported
Because of the circular symmetrf(r) depends only on the in Appendix B. Figure 3 reports exact and SSH ground-state
modulus of the relative distance Here, the factoK is cho-  energies compared with the results of second-order perturba-
sen in such a way that, if we define the dimensionless relaton theory, showing that second-order corrections become
tive distancex=r y2m* wy/#, the quantityg(x) =xf(x) for ~ much smaller if a 3D confinement is assumed.
the 2D and 3D cylinder cases, ag@x) =x>f(x) for a 3D The situation becomes more complicated when consider-
sphere is normalized: ing dots with smaller confinement energies: in this case the
HF and SSH differ from the exact result not only quantita-
tively but also qualitatively, predicting the two-particle
ground state to be a triplet instead of a singlet, as it should
be. This is shown in Fig.(®), where again the exact HF and
We have calculated this quantity both exactly and accordingSH results are shown for dots of different confinement en-
to the SSH scheme for an in-plane confining enefigy, ergies. The difference between triplet- and singlet-state ener-
=5 meV (throughout the paper we usg =0.065n, inside  gies decreases with increasing confinement energy both for
the dot andn* =0.079m, outside;x=12.98, as in the QD of SSH and HF approximations until a crossover occurs; as-
Ref. 2; andm, is the electronic magsthe results are shown suming a 3D confining potential, the confinement energy of
in Fig. 1. The deviations between SSH and exact resultthis crossover is reduced, and this again is true both for SSH
clearly depend on the dimensionality of the confining poten-and HF approximations.
tial: in disk-shaped 2D QD’s the SSH approximation is We may summarize this analysis on helium QD by con-
found to overestimate the probability of finding the two elec-cluding that the assumed 3D confinement potential reduces
trons close together, in analogy with HF res{jlthe differ-  the differences between approximé&SH and HFF solutions

f(r)=K< 2 o(r—ri+rj)

1#]

f:g(x)dx=1.
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Electron number N

FIG. 3. Ground-state energy of the artificial He QD as a func- . )
tion of the confinement energyw,, as obtained via exact diago- ~ F!G. 4. Calculated SSH addition-energy incremeé as a
nalization, SSH approximation scheme, and Rayleigh-&tihger function of the total numng of electrons for_ two dlfft_arept QD
perturbation theory at the second order in the off-diagonal Coulomigtructures, both characterized by a parabolic potential inxne
matrix elements. Both 3Dspherical and 2D cases are shown. plane(confining energyi wy) and by a finite-barrier quantum-well

potential along the direction (3D cylindrical mode).

with respect to the exact ones, both in terms of ground-state
eigenfunctions and eigenenergies. for N=16 we find a ground state with total sp+ 0. Simi-
lar deviations from Hund's rule have been found for large
electron numbersN>20) and associated with spin-density-
wave instabilities; for smaller numberbl&16 and 18) the

The key quantity that characterizes single-electron transsameS=0 spin-density-wave state has been found to be a
port into a QD is the addition energy, i.e., the eneAg\N) low-energy “spin isomer,” slightly higher in energy than the
required to place an extra electron into a dot that is initiallyground-state configuratior.
occupied byN—1 electrons. Such a quantity, analogous to  From our calculations we may say that the 0 configu-
electron affinity in atomic physics, can be measured experiration in dots with largeN may be favored by the reduced
mentally as a function oN. It has been shownthat the repulsion between electrons in high shells: in the fourth
measured voltage incremeA® between successive single- shell, for instance, the Coulomb integrdls,; relative to
electron tunneling processes—i.e., between two successiv@bitals with higher values of the orbital momentum may be
maxima in the conductance—peaks at “magic” valueNof smaller than the corresponding terms relating two levels with
corresponding to the filing of complete shellsN (  smaller angular momentum; the double occupation of an or-
=2, 6, and 12), as well as to half-shell fillinge.g., N bital with high orbital momentunm (i.e., the level withn
=4). The existence of these half-shell filling features is=0, m=3; see Appendix A for the notatipnwith
reminiscent of Hund’s rule in atomic physiest*?and is  antiparallel-spin electrons may therefore cost less than hav-
intimately related to electron-electron interaction. ing parallel-spin electrons on different degenerate orbitals,

The results of SSH theory for the addition-energy varia-but with smallerm (i.e., the levelsn=1 andm=1). The
tions,AA(N)=A(N+1)—A(N), are displayed in Fig. 4 as a same interplay also explains the peaksAW(N) for N
function of the electron numbe\ for two different 3D cy- =14 and 18#
lindrical quantum dots. HerA(N) is obtained a€SSH{(N) We want to stress that also in the case of many electrons
—ESSHN-1), whereESSH{(N) is the ground-state energy in the reliability of the results of SSH approach is comparable
Eq. (8). As we can seed A(N) exhibits peaks corresponding with HF ones. The explicit comparison between the addition
both to complete and half-shell filling, thus well reproducingenergy variation calculated according to SSH and HF
the experimental evidence in Ref. 2. This behavior is theschemes and for 2D and 3D confinements is reported in Fig.
result of the interplay between single-particle contributions5, showing tha\ A always peaks at the same electron num-
and electron-electron repulsion: the single-particle term fabers, and that the agreement between SSH and HF results
vors complete shell filling, while the repulsion among improves on going from the 2D to the 3D confinement
parallel-spin electrons, smaller than the repulsion amongnodel.
opposite-spin ones, makes the configurations with maximum Ground-state configurations and filling rules change when
total spin energetically favore@Hund'’s rulg. This is the a magnetic field is applied. It affects both single-particle en-
physical origin of the half-shell-filling structure: indeed, add- ergies and Coulomb and exchange integrals through the in-
ing an electron to a half-filled shell forces the double occu-duced changes in the wave-function localization. Figure 6
pancy of a level; consequentlfA is raised by the dominant shows theJ andJ integrals vsB for the first states, obtained
Coulomb repulsiorJ ,, between opposite-spin electrons on for Awg=7.5 meV. For comparison, we also show the cor-
the same level. responding quantities calculated within a strictly 2D confine-

For some nonclosed shell configurations the total spirment model. We can see thdtintegrals describing the in-
turns out to be not determined by Hund’s rule: in particular,teraction between opposite-spin electrons are a few meV

IV. MANY-ELECTRON PROBLEM
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" o——e SSH theory
=—=a H-F
7 L
S
Hw,=7.5 meV <
g a3 2D v 3
= E
Z
g 10 )
]
c
o
6 L
D
2 ) : N=4
0 5 1 10 84 |
electron number N 0 ] 1 2
FIG. 5. Comparison between SSH and HF addition-energy in- B (M)

crementAA as a function of the total numbét of electrons in the
dot. Here the upper panel corresponds to the 2D geometry, while FIG. 7. Total energye>>"as a function of the applied magnetic
the lower one corresponds to the 3D cylindrical model. The in-field B corresponding taN electrons in a dot with confinement
plane confinement energy #swy=7.5 meV. energyfwo=7.5 meV. For any given value o{, all the possible
configurations, denoted by the usual atomic physics tefsL,
smaller in the case of 3D confinement, while the differenced'ave been considered.
in the interaction between parallel-spin ones are much
smaller. This is going to affect dramatically the energy bal- Figure 7 shows the total ener@?*"as a function of the
ance which determines ground-state configurations, thugpplied magnetic field for different values of the electron
clearly showing the failure of a pure 2D description of state-number N in a dot with confinement energyiwg
of-the-art QD structures. =7.5 meV. It appears that for sufficiently large valuesBof
As already mentioned, according to the SSH approach ththe Hamiltonian term linear in the magnetic field becomes
off-diagonal matrix elements of the electron-electron interacdominant, making configurations with higher total angular
tion are assumed to be negligible. In Fig. 6 the values of twajuantum number energetically favorable. This is also the
of them are reported as functions of the applied magnetiphysical origin of the wiggles in th&(N) vs B plot shown in
field. As expected, we clearly see that for ddiyalue they Fig. 8 and observed in the experiments reported in Ref. 2.
are negligible compared to all the other semidiagonal contri- Other authors have explicitly considered the question of
butions, and even more so in three dimensions with respecimensionality in theoretical modelization of semiconductor
to the 2D case. QD’s. Kumar, Laux, and Steth self-consistently computed
the one-particle confining potential in a square QD. Accord-

ho=7.5 meV

< 12 LT T T T
aE-) — ---- 2D 48 + N=6 SF 3 J
- U0 — 3D /\_/I\
"UE) 10 o \- 1S
N
QE, ————— 0 moooooomosmETTTTTTTTTTTOT . 44 1
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g apemens Vo % |

_7! """""""""""""""" \Y _ 3g N=4 D

2 ' —1 ' —
0 1 2 3 4 32 1
B(T) 1 2

B (T
FIG. 6. Coulomb U,.s) and exchangel,.s) integrals as well M
as off-diagonal Coulomb matrix elementg (4., 5), as functions FIG. 8. Addition energyA(N) as a function of the magnetic
of the magnetic fieldB for both 2D and 3D cases. Here and 8 field B calculated for a realisti¢3D) QD structure with confinement
denote the sets of radial and angular quantum numberm)(for energyhwy=7.5 meV and for different values df. The labels
the various single-particle states involved in the two-body interacindicate the electronic terms for the ground-state configurations,
tion process. The in-plane confinement energg dg=7.5 meV. that depend oiB.
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ing to their results, our assumption of an in-plane parabolidescription of correlation effects in the macroatoms made
confining potential plus a well in the perpendicular directionavailable by present semiconductor technology.

is seen to be quite reliable and general, as well asitisatz

of considering only the ground-state motion alangt least ACKNOWLEDGMENTS
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enhances the interaction strength and is unable to predict

experimental Raman spectra. The necessity of a 3D model- APPENDIX A: CM AND RM SOLUTIONS

ization is then seen to emerge not only in the description of FOR THE TWO-ELECTRON DOT

ground-state and single-particle processes, like addition

spectra, but also in two-particle processes, like SDE's. The present appendix is organized as follows: In Sec. A1

we shall show how to reduce the 3D cylindrical helium prob-
lem to an effective two-dimensional one; in Sec. A 2 we shall
summarize the 2D and 3D solutions of the one-particle
V. SUMMARY AND CONCLUSIONS Schralinger equations for the center-of-mass and the

, , o relative-motion HamiltoniansH ¢y, and H,,, as defined in
We have presented a theoretical investigation Oqus.(ll) and(12).

Coulomb-correlation effects in semiconductor quantum dots.
In particular, we have performed a detailed analysis of the
addition-spectrum problem for few-electron quantum-dot
structures (macroatomp pointing out possible analogies  If only the lowest single-particle statgy(z) of the quan-

with more conventional Coulomb-correlation effects intum well is relevant to the two-electron motion, we can write

1. 3D eigenvalue equation for the cylindrical QD

atomic physics. the spatial-part¥'(ry;r,) of our helium wave function as
Our primary goal was to understand to which extent the
various approximation schemes, such as Hartree-Fock or W(ry;r2)=¢(X1,Y1:X2,Y2) po(21) do(z2).  (Al)

Hubbard models, are able to properly describe Coulomb CoFrhis approximation is well justified for most cases of inter-
relation in realistic, state-of-the-art QD's. To this end, Weeg; |ndeed, for the typical QD structure used in the experi-
have first compared approximate results to the exact solutiop,antal investigation of addition spectréthe quantum-well

for the prototypical case of a two-electron system, the SOwidth L=12 nm, the barrier height,=200 meV), and the
called quantum-dot helium; we have repeated such analysig,erqy separation between the ground and first-excited states
for different dimensionalities, considering 3Bpherical and alongzis 56 meV, about one order of magnitude larger than
cylindrical geometry and pure 2D structures. The main re- typical in-plane single-particle confinement energies.

sult is that the degree of accuracy of any approximation™ | ot us now consider the global Schiinger equation cor-

scheme depends strongly on the dimensionality of the pmbr'esponding to the exact helium Hamiltonian of E8):
lem. More specifically, the pure 2D model—often used for a

description of quantum dots—is found to give approximate r ey — R
results which differ significantly from the exact solution. We HP(rir) =BV (rairo); (A2)
have demonstrated that this is not a general failure of théy substituting Egq. (A1), multiplying both sides by
approximation scheme, but that it rather reflects a pathologie§ (z,) ¢§(z,), and integrating ovez,, andz,, we obtain
cal behavior originating from the unphysical nature of the
pure 2D model. Indeed, for the case of a 3D cylindrical , 2 e
model—which provides a much better description of realistic 280+_21 Ho(i)+ ?C(|F1— ro) |4(ry;r2) =Eg(ry;ra).
QD structures—the difference between an exact solution and o (A3)
approximate results is found to be much smaller, thus con-
firming the validity of the various approximation schemesThe eigenvalue equation is then reduced to a 2D one, since
considered. ri=(x,y;) andc(r)=c(|r;—r,|) is an effective Coulomb
The same analysis has been then extended to mangpotential, accounting for the geometry of the system:

electron systems for which addition-spectra measurements
are available. Using different approximation schemes, we +o0 +o | g (z0)|?| BE (20)|?
find that the deviations between the full 3D model and the C(r):J dzlj dz, > —

L o —o —o Nre+(z1—25)
simplified 2D quantum-dot model are very significant. The
full 3D model is found to reproduce the experimental dataFrom now on we will drop the constant ground-state energy
for a large class of QD structures where simplified 2D mod-alongz (£§). As a first step, we evaluatgr) by solving the
els fail. We conclude that this is due to the unphysical charquantum well eigenvalue problertallowing for different
acter of the pure 2D confinement, for which the various apvalues of the effective mass in the well and in the bayrier
proximation schemes often yield unreliable results. A propemhen we numerically integrate E¢A4). It is easy to show
description of the QD structure in terms of fully 3D single- analytically some important properties ofr), namely, that
particle wave functions is therefore required; we have shown
that in this case approximate approaches can give an accurate O<rc(r)<1, Vr, (A5)

(A4)
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lim rc(r)=0, (AB) M-

=0 e et e T

lim rc(r)=1. (A7)

P oo

| ) — 2D

These properties tell us that for large distancegr) tends ; -—== L=6nm
to the bare Coulomb potential, and that it is strongly reduced / — L=12nm
in the neighborhood of the origin, i.e., the more relevant e T L=24 nm
space region in the computation of Coulomb and exchange [ 77 L=48 nm
integrals. Figure 9 shows such an effective Coulomb poten-
tial C multiplied by the dimensionless variabtgintroduced
below) as a function ok for different values of the quantum- 0.0 , . .
well width: A monotonic behavior is apparent, going from 0 1 2 3 4
the bare Coulomb-potential value in the zero-width littfite dimensionless coordinate x

function is constant and equal to),linto progressively

s . FIG. 9. Plot of the effective Coulomb potenti@(x) multiplied
smaller values, toward the infinite-width case. P ) b

by the dimensionless coordinat¢ =x C(x)] as a function ok for
different values of the quantum well widthand for a confinement
2. Exact solutions energyfiwo=5 meV. Notice that in the limitL—0 (2D case

: . . . C(x)— 1/x and, thereforex C(x)— 1.
Let us first consider the CM equation, which has the form (0= ¥ C0—

of a standard harmonic oscillator and can thus be solved
analytically. For the 2D cas@D cylindrical, its eigenvalues N=0,12..., M=0,+x1*2,...,
are

0 and the corresponding orthonormalized eigenfuncti@he
enm=nhwo(2N+[M[+1), (A8)  so called “Fock-Darwin” states!’) are

N! . PN
d)ﬁ,?,,a(r,s)=(s,r|NMa>=)\(|M|+1)’2\/—W(N+|M|)!e MerMlg=(rr2) IMI(\r2)y (s). (A9)

In the 3D spherical casé the eigenvalues are

3
el =t 2N+L+3|, N=012..., L=012..., (A10)
and the orthonormalized eigenfunctiohg? ,(r,s) are
2)\L+3 2N|

_ 2
DR o(1,8)=(S,[INLM,0) = rte” OCRLETYANIZ) Yy (9,0) Xo(S). (A11)

r

N+L+§

Here,A=m* wy/#%,Ly are generalized Laguerre polynomi&ld; is the usual gamma functiol,, denotes the spin function,
and Y'-Mz are the spherical harmonics. We have used polar coordinates througguiy) in the 2D (3D cylindrical) case

andr=(r,dJ,¢) in the 3D spherical case. For the ZBD cylindrica) case the quantum numbers aM §1,0): N is the radial
quantum numbenM the angular momentum quantum numier this case the total angular momentum coincides with the
component along, L,=—#%M), ando the spin component alorgy In the 3D spherical case, on the other hand, the quantum
numbers are given byN,L,M,,a): hereL is the total angular momentum quantum number, ids the magnetic quantum
numberM,=—L,—L+1,... L.

Let us now come to the single-particle Scflimger equation for the rm Hamiltonian of E(L2). In this equation the
variables are easily separable, and the problem is reduced to the solution of a radial differential equation. Fot3the 2D
cylindrical) case, the rm eigenfunction in coordinate space is

e—im<p

‘an(r)anm(r)T\/—a (A12)

a

whereR,,(r) is the solution of the radial Schdmger equation
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PRom(1) 1 IR ~ m?
ol 2 D X (1) = | Run(r) =0 (AL3

we have employed the notations= wwo/h,a=2ue? kh?, andk2,=2ue,m/%?, where e, is the rm eigenvalue. The
effective Coulomb potentiad(r) is simply 1f in the 2D case, and it is defined in Sec. A1 for the 3D cylindrical case.
For the 3D spherical case, the rm eigenfunction in coordinate space is

‘Pnlmz(r):Rnl(r)YImz(ﬁ#’)r (A14)

with R, (r) satisfying the radial eigenvalue equation

s ~p, @ l0+1)

nl r r2

PRulr) 2 Ro(r)

w2 ar Rui(r)=0; (A15)

where, again, we ptkﬁlzz,uemlhz, ande,, is the rm eigenvalue.
In order to obtain an exact solution for the rm eigenvalue problems, we rewrite(&t8) and (A15) in terms of the
dimensionless variable=X"?%r. For the 2D(3D cylindrica) case, Eq(A13) becomes

2
+| = S~ ax CO) +kpx—x°

d ( dﬁnm<x>) B (=0

dx dx

ﬁnm(x): Ram(r), (Al6)

C(x)=X""2c(A V%)

[for the 2D case it is simpl{(x) = 1/x], while for the 3D case EqA15) transforms into

I(1+1) a -~
+| - (x2 —;+kﬁ|—x2

dz}nl(x)

12 Xn(X)=0,

(A17)

~ R (r

Xni(X)=xni(r),  xn(r)= n:‘( )

The dimensionless parameters ate=\ *2a=2\R*/fiw, and kK2=k2/X=2¢,/fo;R* =e*m*/2«?#? is the effective
Rydberg energy. Actually, exact analytic solutions exist, but they are limited to 2D and 3D spherical ca$&%:ahlys we

have chosen to solve Eq#16) and(A17) by standard numerical methods. We stress that the numerical accuracy depends on
the accurate specification of the boundary conditions that we impose through analytical asymptotic formulas for eigenfunctions
near to the singular points 0 ando, following the general methods of Ref. 22. In this way the numerical solution is very
stable and efficient, thus overcoming possible difficulties related to the singlet grourl¢listater calculations energy values

are obtained with a nominal relative error of the order of 40

APPENDIX B: HELIUM PERTURBATION THEORY

We employ the standard Rayleigh-Sattirger perturbation theory to correct the SSH eigenvalues ir{8)at the second
order in the off-diagonal Coulomb matrix elements entering the total Hamiltdaignin the remaining part of this section we
shall consider the 2D and 3D spherical cases, by neglecting the center-of-mass maotion.

For the 2D case, the rm SSH eigenvalugs™ are given by®

enSt=tiwo(2n+|m|+ 1)+ VR* hwy S?P(n,m), (B1)
F(|m|+§ o ni(—1)ST(2s+ 1)1 %!
$?P(n.m)= , (B2)
m! $6 (n—s—1)1 2257 2[(s+ 1)1 14(|m| +s+1)!
while for the 3D case we have
3
eﬁls”=ﬁw0(2n+|+ 5| VR hwo SP(n))), (B3)
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1 1
|!r(§)(2l+1)!! n-1 n!(—1)5+11“(§)[(23+1)!!]2(2I+1)!!
SBO(n,l)= 1+ 20 3 (B4)
21+12 |+§) oSt s 1)IT s+l+ 5| [(s+ 1)
|
The first-order correction due to nondiagonal CoulombFor the 3D case one obtains
matrix elements is equal to zero. The second-order correction
A& to the ground-state energy is given by the well-known ) 1
expression I¥n+3
VnO: \ R*ﬁ&)o 3 3 y
Vonl? r Zirl 2
@ [Von #T(n+1)T| n+ r( )
Aeg _En: & SSH_ o SSH (BS) 2 2
n
[see the notation in Eq17)]. The idea now is to look for 1 1
analytic expressions for the off-diagonal integr&lg, and ViocVR*hwog———= —, n—o. (B7)
then to perform a numerical summation. However, expres- 3\ n¥#
sions like those obtained in Eq82)—(B4) (Ref. 23 are not mI| —
useful, since each integral is given by an alternated-sign 2

summation, and numerical errors become rapidly critical ag\g already pointed out, now the generic ter(86) and (B7)

the q“af‘t“m numbennpreaseg. In c_ontrast, the sol.ut|on canin the sum(B5) have the same sign and the summation can
be obtained using an integration trick suggested in Ref. 24, easily performed. The result for the 2D case is
so that all the terms in the summation are obtained with the '

same sign. For the 2D case one obtains A852>: _R* (0.691), (B8)
T n+ 1 and for the 3D case it is
2
Vo= VR* hwo oy AeP=—R* (0.156. (BY)

1 Note that the 3D term is significantly smaller than the corre-
Voo~ VR¥fhiog—s, n—so. (86)  sponding 2D one, and that in the 3D case the series con-
112 verges more quickly.
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