
02 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A High-level EDA Environment for the Automatic Insertion of HD-BIST Structures / Benso, Alfredo; Cataldo, Silvia;
Chiusano, SILVIA ANNA; Prinetto, Paolo Ernesto; Zorian, Y.. - In: JOURNAL OF ELECTRONIC TESTING. - ISSN 0923-
8174. - STAMPA. - 16:3(2000), pp. 179-184. [10.1023/A:1008326928340]

Original

A High-level EDA Environment for the Automatic Insertion of HD-BIST Structures

Publisher:

Published
DOI:10.1023/A:1008326928340

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1404460 since:

Springer Netherlands

A High-level EDA Environment for
the Automatic Insertion of HD-
BIST Structures

Authors: Benso A., Cataldo S., Chiusano S., Prinetto P., Zorian Y.

Author’s version of the manuscript published in the Journal of Electronic Testing, Vol. 16, No. 3, 2000

pp. 179-184.

The final publication is available at www.springerlink.com:

URL: http://www.springerlink.com/content/n7xjg114r3750603/fulltext.pdf

DOI: 10.1023/A:1008326928340

!Politecnico di Torino

1

A High-level EDA Environment for the
Automatic Insertion of HD-BIST Structures

Alfredo BENSO, Silvia CATALDO, Silvia CHIUSANO, Paolo PRINETTO

Politecnico di Torino
Dip. Automatica e Informatica
Corso Duca degli Abruzzi 24

I-10129 Torino TO, Italy
{benso, cataldo, chiusano, prinetto}@polito.it

http://www.testgroup.polito.it

Yervant ZORIAN

Logic Vision
San Jose CA, USA

zorian@lvision.com

Keywords: built-in self-test, embedded cores, EDA tools

Abstract

This paper presents a High-Level EDA environment based on the Hierarchical

Distributed BIST (HD-BIST), a flexible and reusable approach to solve BIST schedul-

ing issues in System-on-Chip applications. HD-BIST allows activating and controlling

different BISTed blocks at different levels of hierarchy, with a minimum overhead in

terms of area and test time. Besides the hardware layer, the authors presented the

HD-BIST application layer, where a simple modeling language, and a prototypical

EDA tool demonstrate the effectiveness of the automation of the HD-BIST insertion in

the test strategy definition of a complex System-on-Chip.

1. Introduction

Today's complexity of digital systems is significantly increasing. The availability

of a big variety of cores provides designers the possibility of integrating a large num-

ber of different functional blocks in a single IC. Due to their own complexity and the

high integration density, embedded cores are mostly tested resorting to BIST capabili-

ties only.

2

In such complex Systems-on-Chip, the definition of a global and efficient test

strategy faces two main issues. From one hand, the designer has to organize the acti-

vation of the BIST session of a very large number of different blocks taking into ac-

count attributes as at-speed testing capabilities, power consumption, area and routing

minimization. On the other hand, very tight cost and time-to-market constraints ask

for the maximization of the reuse and the automation of the BISTing process.

The key of the problem is to define a global test strategy approach with the follow-

ing characteristics:

• Flexibility, in terms of:

− Test structure: the hardware structure inserted to activate the different BISTed

blocks has to be optimized and customizable, allowing a trade-off among rout-

ing, area, and test time overhead.

− Scheduling: the scheduling definition must allow the designer to activate the

BISTed blocks in any order via complex scheduling instructions as wait and

conditional operations.

− BIST protocol: the approach must define a unified approach to access BISTed

blocks with different BIST access protocols.

• Reusability: the test structure must be reusable during different phases of the

product test cycle (horizontal reuse), and at different levels of integration (vertical

reuse) (e.g., System-On-Chip level, board level, etc…).

• High-level description: besides the detailed definition of the actual hardware im-

plementation (hardware layer), the designer should be provided with an applica-

tion layer, where a high-level scheduling definition language and an ad-hoc com-

piler allow him to easily define complex scheduling algorithms and automatically

derive the required hardware logic.

Most of the approaches proposed so far rely on a single controller to perform de-

vice level BIST scheduling. [1] and [2] present a centralized controller, implementing

the scheduling of the BIST sessions through the activation of one session a time. In

order to reduce the routing cost, [3] proposed a distributed architecture, where inter-

mediate blocks link the units under test to a centralized controller, and are used to

control and activate the test of a sub-set of BISTed blocks. Although the novelty of

3

the approach, both the modularity and the flexibility of the architecture are still lim-

ited.

In this paper the authors present a High-Level EDA environment based on the Hi-

erarchical Distributed BIST (HD-BIST), a flexible and reusable approach to solve

BIST scheduling issues in System-on-Chip applications. HD-BIST allows activating

and controlling different BISTed blocks at different levels of hierarchy, with a mini-

mum overhead in terms of area and test time. The hardware layer of the proposed ar-

chitecture, already introduced in [4] has been reanalyzed and significantly improved,

and is briefly summarized in Section 2.

Besides the hardware layer, the authors present the HD-BIST application layer,

where a simple modeling language and a prototypical EDA tool demonstrate the ef-

fectiveness of the automation of the HD-BIST insertion in the BIST planning of SoCs.

In particular, the high-level language allows describing the system topology, the

BISTed blocks access protocol, and the scheduling algorithm, whereas the compiler

derives the corresponding synthesizable VHDL RT-level code of the required hard-

ware layer. Whenever a change is made to the project, the designer must simply modi-

fy and recompile the code always obtaining a highly-integrated and optimized solu-

tion. Using the proposed EDA environment the HD-BIST architecture can be there-

fore fully customized according to each specific application, trading-off between test

scheduling flexibility and overhead in terms of both area and routing.

The proposed architecture is compatible with the on going activities of the Task

Force on Scaleable Architecture of the IEEE TTTC P1500 Working Group [5].

The paper is organized as follows: Section 2 summarizes the HD-BIST hardware

layer, whereas Section 3 introduces the main features of the prototypical environment

implementing the application layer. Eventually, Section 4 draws some conclusions.

2. HD-BIST architecture: basic principle

HD-BIST is a Hierarchical and Distributed BIST control approach, aiming at man-

aging in an extremely flexible way the BIST scheduling of complex SoCs. The units

composing the system are assumed to be already BISTed, and the HD-BIST structure

provides the additional logic needed to manage the test.

4

In particular, the test of the different blocks is controlled using the following three

types of modules (Figure 1):

• Test Blocks (TBlock): wrappers placed around the BISTed blocks, used to control

their BIST procedures through a standard interface. They guarantee the maximum

reusability at different levels of integration and the maximum flexibility in terms

of access protocol implemented in the target blocks.

• the Test Processor (TProcessor): a centralized controller in charge of:

− Activating the BIST procedures of each TBlock.

− Checking the status (finished/not finished) and the result (good/failed) of the

test.

− Locating a failed TBlock and detecting a structural fault of the HD-BIST

structure itself.

• the Test Chain Bus (TBus): a bus connecting the TProcessor and the TBlocks in a

ring connection. It is actually implemented as a bi-directional link where the

communications are carried on through a token-based self-checking protocol. The

TProcessor sends the TBlocks different types of tokens via the TBus to implement

both the required scheduling and the diagnosis sessions.

TestTest
ProcessorProcessor

Test Chain Bus TBlockTBlock TBlockTBlock

TBlockTBlock

BISTed
core

BISTed
core

BISTed
core

Figure 1: HD-BIST basic architecture

The basic architecture, composed of a TProcessor, a number of TBlocks, and a

TBus, can be replicated to implement a hierarchy of test chains, each controlled by a

dedicated TProcessor. In this case, besides managing the BIST scheduling of the

TBlocks included in the lower chain, the TProcessor is also in charge of correctly re-

5

sponding to the commands received through the upper chain. From the upper chain

point of view, the TProcessor is a TBlock, responding to the standard scheduling

commands sent on the TBus. In this way, an entire test chain can be managed as a

single test entity. This extension of the basic HD-BIST structure highlights its ap-

plicability to complex SoCs as well as to complex digital systems based on different

hierarchical levels (Figure 2).

Figure 2: HD-BIST implementation at different hierarchical levels

The internal functionality of a TBlock is based on a Test Status Register (TSR) and

a Test Control Register (TCR). All the command tokens sent to a TBlock require writ-

ing a single bit in the TCR or reading a single bit from the TSR. This solution allows

us to implement a more efficient protocol at both the TBlock and TBus level.

Moreover, to provide the maximum flexibility in test scheduling, each token con-

tains the address of the target TBlock. In particular, each TBlock responds to two ad-

dresses: a single-cast address that uniquely identifies the block in the chain, and a

broadcast address, used to address concurrently all the TBlocks of the chain.

To activate the BIST of a given TBlock, the TProcessor sends on the TBus a prop-

er token containing the address of target TBlock. Upon receiving the token, the

TBlock activates the BIST procedures of its target block. In the meanwhile, the TPro-

cessor starts polling the target TBlock, waiting for the end of the test. The same pro-

cedure is executed (not necessarily in a serial approach) for all the other TBlocks of

the chain. In multi-chain architectures, when a TProcessor receives a BIST activation

6

command from the upper chain, it starts executing the scheduling algorithm of its sub-

chain. When all the blocks finished their test, the TProcessor starts the diagnosis

phase and collects the addresses of the faulty TBlocks (if any) of the structure. The

detailed algorithm implemented to perform the scheduling and the diagnosis proce-

dures, as well as the complete description of the HD-BIST hardware layer, can be

found in [4].

3. The High-level EDA environment

The development of the high-level EDA environment aims at providing the de-

signer with a very easy-to-use tool, to fully automate the insertion of the HD-BIST

architecture. The tool allows strictly distinguishing between the application and the

hardware layer, covering, at the same time, all the steps of the design flow.

The HD-BIST Modeling Language (HDML), an ad-hoc defined high-level descrip-

tion language, allows the designer to describe the planned test strategy (application

layer), without taking into account any implementation details. An ad-hoc compiler

translates the HDML description of the HD-BIST architecture and scheduling, and

generates the corresponding RT-level VHDL code (hardware layer) of the required

hardware blocks, which can be finally synthesized using a standard commercial syn-

thesis tool (Figure 3).

HDML to VHDL
HD-BIST Modeling
Language

Chain Topology &
Scheduling

HD-BIST
RT- level VHDL

description

Test Processor
Test Processor

Test Processor

Test BlockTest Block
Test Block

Chain Topology &
SchedulingChain Topology &

Scheduling

Figure 3: HD-BIST design flow using the EDA tool

The language allows describing the system (i.e., the target BISTed blocks, the

structure of the planned HD-BIST architecture, and the required BIST scheduling) as

7

a sequence of chain declarations, each one containing its characterization in terms of

both topology and scheduling. Defining topology and scheduling, each TBus belong-

ing to the HD-BIST architecture can be fully customized, in terms of routing over-

head, number of blocks and scheduling. In the topology section, the designer lists the

BISTed blocks belonging to the chain. For each block he specifies the BIST access

protocol, consisting in the signals type and protocol required activating and collecting

the BIST results. Eventually, the designer specifies some structural parameter as the

width of the TBus itself.

The scheduling section contains the scheduling algorithm specified in terms of

scheduling instruction, each defining the scheduling primitive that the TProcessor

must send to each TBlock to manage its BIST procedures. The syntax of each sched-

uling instruction is:

<scheduling command> <block>...<block>,

 where <block>...<block> is the list of the target TBlocks addresses, whereas

the <scheduling command> can be one of the following scheduling primitives:

• Test: this primitive is used to activate the BIST of a set of TBlocks. If the

TBlock is also a TProcessor, this primitive starts the execution of the correspond-

ent sub-chain.

• Wait: this primitive forces the TProcessor to wait until the BIST procedure of a

set of TBlocks is finished. After the end of the BIST procedures, the TProcessor

checks their results and continues with the next scheduling instruction.

• Stop: as the wait primitive, the stop primitive waits for the end of the BIST ses-

sion of the target TBlocks, and then collects their results. At that point, differently

from the wait primitive, if one of the targets TBlock failed its test, the scheduling

algorithm is aborted.

• Diagnose: this primitive activates the diagnosis phase; the whole HD-BIST

structure is examined in order to collect the addresses of all the possibly faulty

TBlocks, at any level of hierarchy. Given the actual definition of the HD-BIST

approach, this primitive can be executed only from the top-level TProcessor, and

is therefore not allowed in the scheduling definition of lower level chains.

8

As shown later in the example, these four simple scheduling primitives allow de-

fining complex scheduling algorithms.

The compiler has been implemented in C++ and required about 4000 lines of code.

Ad-hoc classes allow mapping high-level specifications of each chain into the VHDL

code of the TBlocks and TProcessors required to implement it. In particular, for each

block specified in the topology section, the compiler provides the VHDL description

of the TBlock needed to interface the BISTed block with the TBus. The TBlock is

therefore fully customizable according to the characteristic of the chain (e.g., width of

the test chain bus), so as the characteristics of the block itself (e.g., communication

protocol for interfacing the BIST logic of the block). Moreover, each scheduling sec-

tion is compiled into a TProcessor described as a Finite State Machine. Each test in-

struction corresponds to a set of tokens sent by the TProcessor over the TBus. The

capability of the TProcessor of addressing a single or a group of blocks in the chain is

added according to the information about the topology of the chain.

As an example, Figure 4 reports a high-level description of a simple HD-BIST ar-

chitecture. The system consists of two nested chains. The former, controlled by the

top TProcessor (top), contains a BISTed RAM core (BISTedRAM), a legacy core

(BISTedCore1), and a TProcessor (TestProcessor1) that controls the second

chain. The latter links a BISTed ROM (BISTedROM) and a second legacy core

(BISTedCore2). For the sake of simplicity, in the example we omitted the specifi-

cation of the BIST access protocol of each block.

The scheduling algorithm of the first chain is implemented using the following

scheduling instructions:

• test BISTedRAM BISTedCore1: the top TProcessor activates the BIST of

both the RAM and the first legacy core.

• wait BISTedCore1: the top TProcessor waits until the specified block con-

cludes its test session. At the end the TProcessor collects the result of the BIST

procedure.

• stop BISTedRAM: the top TProcessor waits for the end of the BISTed Ram

test session and then collects its test results. In case the test fails, the execution of

the scheduling algorithm is aborted.

9

• test TestProcessor1: the top TProcessor activates the BIST of the

TestProcessor1. This operation results in the activation of the BIST schedul-

ing of the second chain.

• stop TestProcessor1: the top TProcessor waits until the second chain

concludes its scheduling and then checks the result. Since the top TProcessor

considers the TestProcessor1 TProcessor as a TBlock, if some BIST proce-

dure of the second chain failed, the check operation will result in a ‘faulty’

TestProcessor1.

• diagnose: at this point, since all the BIST sessions are completed, the top

TProcessor starts the diagnosis phase and collects the addresses of the possibly

faulty blocks. Although the top-level TProcessor is not able to directly address all

the blocks of the hierarchy, the diagnosis procedure is designed so that to collect

the address of the faulty blocks in any level of the hierarchy.

Similarly, the scheduling algorithm of the second chain is defined by the following

two instructions:

• test all: the TestProcessor1 activates the BIST of all the blocks of the

chains, the ROM and the legacy core.

• wait all: the TestProcessor1 waits until all the blocks conclude their test

session and then checks for their results.

Since TestProcessor1 is located on a secondary chain, it is not allowed to ac-

tivate a diagnosis phase, which can only be started by the top-level TProcessor.

10

Top Test
Processor

Test
Processor1 TBlock

(BISTedRam)

TBlock
(BISTedCore1)

TBlock
(BISTedRom)

TBlock
(BISTedCore2)Test Chain Bus

Test Chain Bus

Chain top
{
 BusWidth 1
Topology
{

 TestProcessor1
 BISTedRAM
 BISTedCore1
}
Scheduling
{

 test BISTedRAM BISTedCore1
 wait BISTedCore1
 stop BISTedRAM
 test TestProcessor1
 stop TestProcessor1
 diagnose
}

}

chain TestProcessor1
{
 BusWidth 1
 Topology
 {
 BISTedRom
 BISTedCore2
 }
 Scheduling
 {
 test all
 wait all
 }
}

Figure 4: High-Level HD-BIST architecture

4. Conclusions

In this paper the authors presented HD-BIST, a flexible and reusable approach to

solve BIST scheduling issues in System-on-Chip applications. Besides the hardware

layer briefly summarized, the authors presented the HD-BIST application layer, where

the HDML, a simple modeling language, and a prototypical EDA tool demonstrate the

effectiveness of the automation of the HD-BIST insertion in the test strategy defini-

tion of a complex System-on-Chip.

11

5. References

[1] F. Beenker, R. Dekker, and, R. Stans, “Implementing MACRO Test in
Silicon Compiler Design”, IEEE Design & Test of Computers, pp. 41-
51, April 1990

[2] O.F. Haberl, and T. Kropf, “HIST, A Methodology for the Automatic
Insertion of a Hierarchical Self test”, Proc. IEEE Int. Test Conference,
pp. 732-741, 1992

[3] Y. Zorian, “A distributed BIST Control Scheme for complex VLSI de-
vices”, Proc. IEEE VLSI Test Symposium, pp. 4-9, April 1993

[4] A. Benso, S. Chiusano, P. Prinetto, and Y. Zorian, “HD-BIST: a Hierar-
chical Framework for BIST Scheduling and Diagnosis in SoCs”, to ap-
per on Proc. IEEE Int. Test Conference, September 1999

[5] http://grouper.ieee.org/groups/1500/#TaskForces

