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Herringbone ordering and lattice distortions in a planar-molecule model
for Langmuir monolayers

C. Buzano, A. Pelizzola, and M. Pretti
Istituto Nazionale di Fisica della Materia and Dipartimento di Fisica del Politecnico di Torino, I-10129 Torino, Italy

~Received 22 December 1999; revised manuscript received 23 May 2000!

A model of planar molecules, made up of ‘‘atoms’’ interacting by Lennard-Jones potentials and arranged to
mimic the cross section of alkyl chains, is used to study the problem of backbone plane ordering in Langmuir
monolayers. It is shown that two minima of the interaction energy are reached if molecules lie on the sites of
a centered rectangular lattice in a herringbone configuration with two different dihedral angles. These orien-
tationally ordered phases can be related to the so-called herringbone and pseudoherringbone structures, whose
lattice distortions qualitatively agree with those determined by means of grazing incidence x-ray diffraction
experiments on Langmuir monolayers. A third energy minimum is obtained for a configuration of parallel
molecules on an oblique lattice, which has also been observed in some experiments. The competition between
the three phases is investigated, upon varying geometric parameters of the model molecules and surface
pressure. The effect of temperature is analyzed in a mean field approximation, by taking into account the
orientational entropy contribution on a lattice system with variable unit cell parameters. In this framework the
transition to an orientationally disordered phase is also pointed out.

PACS number~s!: 68.10.2m, 68.15.1e
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I. INTRODUCTION

Monolayers of amphiphiles adsorbed at a water-air in
face ~Langmuir monolayers! have attracted considerable in
terest, for instance, in biology, where they have been use
simple models of living cell membranes@1#, and for their
possible future applications, such as the construction of
lecular electronic devices based on Langmuir-Blodgett fil
@2#. The physics of Langmuir monolayers is interesti
mainly because they are quasi-two-dimensional syste
which can be used to investigate ordering phenomena
phase transitions in two dimensions. In addition Langm
monolayers are the only example of two-dimensional s
tems on which it is possible to perform a direct mechani
compression, which gives rise to peculiar phase transiti
@3,4#. The thermodynamic behavior, which is thus controll
by both temperature and surface pressure, turns out to
very rich and displays several condensed phases@5# charac-
terized by different degrees of translational and orientatio
order. A considerable amount of work has been devote
recent years to the investigation of phase transitions
structural properties in Langmuir monolayers@6#. Particular
attention has been addressed to monolayers composed o
simplest amphiphiles, that is, fatty acids, allowing a detai
determination of the phase diagram@7#. Low temperature
phases turn out to be crystalline phases, displaying tran
tional long range order~in one or two directions! with mol-
ecules packed in a regular~centered rectangular or distorte
hexagonal! lattice, whereas higher temperature phases
mesophases, possessing partial orientational and translat
disorder ~hexatic phases@8#!. Moreover, surface pressur
drives tilting of molecule long axes, which can take place
different directions~mainly toward nearest neighbors an
next nearest neighbors! but usually preserving the symmetr
of the rectangular unit cell. Apart from fatty acids, a lar
number of amphiphiles have also been investigated at
water-air interface@9#, even if the phase diagram is not a
ways perfectly known.
PRE 621063-651X/2000/62~4!/5230~12!/$15.00
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In any case an important feature of lower temperat
phases is ordering of molecule backbone planes, which u
ally gives rise, at least in the case of nonchiral~racemic!
monolayers, to a herringbonelike structure. If a tw
dimensional crystalline phase is considered~namely, CS or
L29 phases for fatty acids!, molecules with opposite backbon
orientations are placed on two simple rectangular sublatti
into which the centered rectangular lattice can be split. T
ordering of backbone planes can be inferred from knowle
of unit cell parameters, which are usually measured
means of grazing incidence x-ray diffraction~GIXD! experi-
ments@10–12# ~see Ref.@6# for a review! and must be ana
lyzed after a projection along the~average! long axes of the
molecules, in order to exclude distortions caused by tilt. R
cently Kuzmenko, Kaganer, and Leiserowitz@13# have com-
pared projected unit cell parameters extracted from GI
data on a large variety of amphiphiles~not only fatty acids!
in different thermodynamic conditions, showing that in lo
temperature phases molecules pack with two possible
cell distortions~toward nearest neighbors and next near
neighbors!, whereas in mesophases the unit cell parame
approach those of a hexagonal lattice with a higher area
molecule. The two different distortions can easily be rela
to two different packing modes of alkyl chains, which we
already characterized several years ago for bulk crystals
Kitaigorodskii @14#, on the basis of a simple close packin
theory, and can be defined respectively as herringbone~HB!
and pseudoherringbone~PHB!. Both close packing theory
and lattice energy calculations performed by Kuzmen
et al. @13# predict that the two packing modes display tw
different dihedral angles between backbone planes, nam
about 90° for the HB case and about 40° for the PHB ca
Obviously neither of these two theories is suitable to rep
duce higher temperature~mesophase! behavior, where mol-
ecule cross sections are averaged to a circle because of
mal fluctuations, giving rise to a hexagonal unit cell. In t
case of chiral monolayers, in which enantiomer separa
5230 ©2000 The American Physical Society
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PRE 62 5231HERRINGBONE ORDERING AND LATTICE . . .
takes place, a third packing mode, with molecules arran
on an oblique lattice with parallel backbone planes, has b
observed experimentally@15#. The above cited lattice energ
calculations@13# partially account for the stability of this
configuration and a third energy minimum is actually d
played for zero dihedral angle, even if the rectangular sy
metry is imposed and hence no oblique lattice can be
served.

Several models have been proposed in the literatur
describe the finite temperature phase behavior of Langm
monolayers~see Ref.@6#!, sometimes reproducing backbon
plane ordering, too, and the transition to an orientationa
disordered phase. Nevertheless, different packings of
backbones and their relationship with different possible u
cell distortions were usually not taken into account. For
ample, some molecular dynamics simulations on ato
models@16# have displayed herringbone ordering but ha
been performed with periodic boundary conditions and
fixed size of the simulation box, thus not allowing distortio
to be reproduced. Another approach, particularly devote
the problem of backbone plane ordering, considers pu
two-dimensional models of noncircular particles, represe
ing the projection of amphiphilic molecules in the plane o
thogonal to their long axes, and neglects all other degree
freedom. In this way it has been possible to reproduce,
instance, by means of Monte Carlo simulations@17,18#, a
phase transition between rotationally ordered and disord
phases, but the fourfold symmetry of the model poten
employed did not allow a parallel alignment to be dist
guished from a real herringbone ordering, which actua
needs a twofold symmetry. A model with such a symme
consisting of an effective quadrupole-quadrupole poten
which depends on orientation variables, was developed q
a long time ago by Meyer@19#, and subsequently studied b
various statistical mechanical techniques@20–27#. For this
model the herringbone structure turns out to minimize
energy, if molecules are fixed on a hexagonal lattice, but
effective potential is independent of distance and hence
not possible to take into account lattice distortions occurr
in Langmuir monolayers. More recently Schofield and R
have considered the problem of backbone ordering by me
of a lattice density functional theory@28#, whereas Swanson
Luty, and Eckhardt have employed an atomic model of m
ecules, calculating the energy of the uniformly strained
tice ~which allows them to take into account backbone pa
ings! and hence evaluating the partition function
integrating over the strains@29#.

In this paper we shall approach the problem of unit c
distortions on the basis of a planar-molecule model, whic
intended to exclude tilt effects and describe the monolaye
the plane orthogonal to the tilt direction, as in Refs.@17,18#.
Unlike that case, a particular~rotationally twofold symmet-
ric! shape of model molecules is chosen, which tries
mimic the cross section of alkyl chains and turns out to be
important ingredient in reproducing backbone plane order
with the different packing modes. The molecules have c
tinuous rotational degrees of freedom and the possibility
unit cell distortions is taken into account in the followin
way. Unit cell parameters are calculated by finding the pa
ing mode that minimizes the free energy, which is evalua
in a mean field approximation, introducing the orientation
d
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entropy contribution. The paper is organized as follows.
Sec. II we give a description of the proposed model, start
from molecule features, which are justified on the basis
qualitative arguments about the structure of alkyl chains.
suming a Lennard-Jones potential to describe interaction
tween the elementary constituents of the model molecu
the total interaction energy of the model is derived. In S
III we show that a stationary point of the energy is reache
molecules are arranged on a generic two-dimensional B
vais lattice split into four sublattices on which molecul
must have the same orientations, to be determined by m
of a variational procedure~the detailed proof, together with
method to verify that the stationary point is actually a min
mum, is presented in an Appendix!. A ground state analysis
is then performed, upon varying a geometrical parameter
characterizes model molecules, by carrying out a~numerical!
variational procedure, which also returns the optimal latt
parameters. These calculations actually show three diffe
minima, two of them corresponding to two herringbone co
figurations on the centered rectangular lattice with differ
dihedral angles, and the third one corresponding to a par
configuration on an oblique lattice. The molecule geome
cal parameter turns out to discriminate the lowest ene
configuration. In Sec. IV a finite temperature analysis is c
ried out by minimizing a variational mean field free ener
evaluated for molecules constrained to lie on a Bravais
tice. The optimization is carried out with respect to latti
parameters and to the orientational probability distributio
The model is studied upon varying temperature and the
sults of this investigation, namely, the temperature–surfa
pressure phase diagram, unit cell parameters, and orie
tional probability densities, are then presented and discus
in Sec. V. Finally Sec. VI is devoted to some concludi
remarks.

II. THE MODEL

The basic objects of our model are planar molecul
made up of four interaction centers, or ‘‘atoms,’’ placed
the vertices of a rectangle, as shown in Fig. 1. We sh
assume that each atom of a molecule interacts with the at
of all other molecules by means of a Lennard-Jones poten

V~r !5
1

r 12
2

2

r 6
, ~2.1!

where r is the distance between interaction centers. Let
note that Eq.~2.1! has been normalized in such a way th
both depth and distance of the potential energy minim
turn out to be equal to 1, thus defining length and ene
units. The circles in Fig. 1 have a conventional radius eq
to half the distance of the potential minimum (1/2 with o
normalization!. For calculations we shall actually cut o
V(r ) at some distancer 0, and use as a potential energyV̄(r ),
defined as follows:

V̄~r !5V~r !2V~r 0!, r<r 0 ,

V̄~r !50, r .r 0 . ~2.2!
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The particular shape chosen for the model molecules
be motivated by the fact that, in a conformationally order
~all trans! alkyl chain, hydrogen atoms are placed in pa
alternately on two opposite sides with respect to carbon
oms. Hence, on projecting the chain in a plane orthogona
its axis, the positions of hydrogen atoms qualitatively cor
spond to the interaction centers of the model molecule. O
can object that this model is extremely rough, because,
sides the hypothesis of conformational order, the contri
tion of carbon atoms is completely neglected and hydro
atoms are ‘‘squeezed’’ on a single plane. Nevertheless,
believe that two main features are needed to make herr
bone packing possible: rotational symmetry breaking of m
ecules and the existence of small lateral ‘‘cavities,’’ acco
ing to the picture provided by close packing theory. Bo
these characteristics are present in our planar model m
ecules.

Assuming now that molecules can move freely~translate
and rotate! in a plane, we calculate the interaction ener
between two of them as a function of their~relative! position
and their orientations with respect to a fixed axis, which
identify with thex axis. We can see~Fig. 1! that the positions
of the vertices of the rectangle~with respect to the origin of
axes! can be written in vector form as

d5s1d1û11s2d2û2 , s1 ,s2561, ~2.3!

whered1 and d2 are geometrical parameters~half sides of
the rectangle! and unit vectorsû1 and û2 define a frame of
reference attached to the molecule. Expressingû1 ,û2 as a
function of unit vectorsx̂,ŷ defining the fixed frame, and o
the anglec, we can also write

d5~s1d1 cosc2s2d2 sinc!x̂1~s1d1 sinc1s2d2 cosc!ŷ

8d s1s2
~c!, s1 ,s2561, ~2.4!

FIG. 1. Model molecule and its degrees of freedom. Vertices
the rectangle are interaction centers~circles represent hard cores!;
d1 andd2 are shape parameters. The degree of freedom is the a
c, denoting a~counterclockwise! rotation in thex,y plane. Unit
vectorsû1 and û2 define a frame of reference attached to the m
ecule.
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where the dependence on the characteristic lengthsd1 andd2
is not explicitly denoted. The interaction energyE of two
molecules, whose centers are placed at certain positions
resented by vectorsr , r 8, and whose orientations are respe
tively c,c8, can be easily calculated by summing all inte
actions between pairs of ‘‘atoms’’ in opposite molecule
i.e.,

E5 (
s1 ,s2 ,s18 ,s28

V̄~ ur 82r 1ds
18s

28
~c8!2ds1s2

~c!u!

8E~r 82r ;c,c8!, ~2.5!

where summations are understood to run overs1 ,s2 ,s18 ,s28
561. As a direct consequence of molecule symmetries,
pair interaction energy has the following properties: it is
variant under exchange of positions and orientations of
two interacting molecules,

E~2r ;c,c8!5E~r ;c,c8!, ~2.6!

E~r ;c8,c!5E~r ;c,c8!, ~2.7!

whereas a change of sign in both orientations turns out to
equivalent to a mirror symmetry with respect to thex or y
axis,

E~r ;2c,2c8!5E„~ x̂x̂2 ŷŷ!•r ;c,c8… ~2.8!

5E„~2 x̂x̂1 ŷŷ!•r ;c,c8… ~2.9!

@notice that Eq.~2.9! can be derived by Eq.~2.8! and~2.6!#.
Equations~2.6!, ~2.7!, ~2.8!, and ~2.9! will be used later in
order to simplify calculations.

Considering many interacting molecules the total inter
tion energyU can be simply written as the sum of pair in
teraction energies in the following way:

U5
1

2 (
m,m8

d̄mm8E~r m82r m ;cm ,cm8!, ~2.10!

wherem,m8 label molecules,dmm8 is a Kronecker delta, and
the overbar denotes a Boolean inversion (15̄0 and 0̄51);
r m andcm (r m8 andcm8) denote the position and orientatio
of moleculem (m8).

III. GROUND STATE ANALYSIS

In this section we shall perform a ground state analy
but, in order to do so, we shall introduce two important si
plifying hypotheses, supported by experimental observati
and justified by analytical arguments~see the Appendix for
details!. The two hypotheses reduce the energy minimizat
to a tractable problem with a few variational parameters a
consequently they do not consider the most general case
it is possible to prove~Appendix! that the solutions found in
this way are actually~local! minima of the total energy, with
respect toall its independent variables~namely, molecule
positions and orientations!. Let us now introduce and discus
the two assumptions.

First of all we shall assume thatmolecule centers are
placed on the sites of a generic two-dimensional Brav

f
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PRE 62 5233HERRINGBONE ORDERING AND LATTICE . . .
lattice ~condition I!. Notice, by the way, that this is a slightl
more general case than the centered rectangular~distorted
hexagonal! lattice, the common lattice structure of low tem
perature Langmuir monolayer condensed phases. Condit
can be written in the following way:

r m5R(m1 ,m2)8m1a11m2a2 , ~3.1!

where the molecule labelm is now understood as a two
dimensional indexm8(m1 ,m2) running over all integer
pairs, a1 ,a2 are basis vectors, andR(m1 ,m2) is the generic
vector of the Bravais lattice.

From a purely geometric point of view the lattice can
split into four ~Bravais! sublattices, defined, respectively, b
the parity of the two indicesm1 ,m2. There are just four
possibilities for (m1 ,m2), namely,~even,even!, ~even,odd!,
~odd,even!, or ~odd,odd!. We shall assume thatall molecules
in a sublattice have the same orientation~condition II!. In
order to display parity explicitly, from now on we sha
modify molecule ~or site! labels into m8g1n, where g
5(0,0),(0,1),(1,0),(1,1) is a parity index andn5(n1 ,n2)
another two-dimensional index wheren1 ,n2 are any even
integers. Condition II can then be written as

cg1n5Cg . ~3.2!

This hypothesis will be relaxed, at finite temperature, ass
ing that molecules in a sublattice have not the same orie
tions but only the same orientational probability density.

It is possible to show~see the Appendix! that the partial
derivatives]U/]r m of the total energy with respect to th
position of each molecule, evaluated in the conditions I a
II @Eqs.~3.1! and ~3.2!#, turn out to be zero. This is not ye
sufficient to guarantee that a stationary point of the to
energy is reached and an additional condition over orie
tions is needed. Nevertheless, this condition will be au
matically supplied by the minimization with respect to su
lattice orientationsCg , as discussed below.

Introducing assumptions~3.1! and~3.2! in the total energy
expression~2.10!, which we now rewrite in the new notatio

U5
1

2 (
g,g8

(
n,n8

dgg8dnn8E~r g81n82r g1n ;cg1n ,cg81n8!

~3.3!

@whereg andg8 can take the values (0,0),(0,1),(1,0),(1,1),
whereasn andn8 run over all pairs of even integers#, we can
write

UuRC5
1

2 (
g,g8

(
n,n8

dgg8dnn8E~Rg82g1n82n ;Cg ,Cg8!,

~3.4!

where the subscripts•uRC denote just that the two condition
~3.1! and ~3.2! have been applied. Moreover, the trans
tional invariance of Bravais lattices allows us to write t
inner sum~that overn8) in the following way:

(
n8

dgg8dnn8E~Rg82g1n82n ;Cg ,Cg8!8ygg8~Cg ,Cg8!,

~3.5!
n I

-
a-

d

l
a-
-

-

-

which denotes explicitly that it is independent ofn. Conse-
quently, we can write

(
n,n8

dgg8dnn8E~Rg82g1n82n ;Cg ,Cg8!5
N

4
ygg8~Cg ,Cg8!,

~3.6!

whereN is the total number of lattice sites, and hence

UuRC5
N

8 (
g,g8

ygg8~Cg ,Cg8!. ~3.7!

The ground state energy, which we shall now denote
UuRC , turns out to be a function only of the lattice bas
vectors a1 and a2 and of the four anglesCg @g
5(0,0),(0,1),(1,0),(1,1)#, each one representing a who
sublattice. It is possible to show~see the Appendix again!
that if the derivatives ofUuRC with respect to the sublattice
angles]UuRC /]Cg vanish, then]U/]cm , evaluated in the
two conditions~3.1! and~3.2! also vanish;m. This ensures
that a minimization ofUuRC , which we are going to perform
in the following, provides also a stationary point of the to
energyU with respect to all positions and orientations.
straightforward way to verify whether this is actually a min
mum is discussed in the Appendix.

Before going on with the ground state analysis let us n
introduce some symmetry properties of the previously
fined functionsygg8(C,C8), which will allow us to simplify
analytical and numerical calculations both here and in
finite temperature analysis, which will be carried out in t
next section. These properties come from the translation
variance of the Bravais lattice and from the symmetries
the pair interacion energyE, defined by Eqs.~2.7!, ~2.8!, and
~2.9!. First of all, using the translation invariance of E
~3.5!, we can show thatygg8 does not depend on both indice
g,g8 but only on (g82g)2, that is,

ygg8~C,C8!5y (0,0)(g82g)2
~C,C8!, ~3.8!

where (•)2 denotes that the argument in parentheses is to
considered modulo 2. This fact allows us to compute o
four out of 16 functions of two angular variables. Moreove
Eq. ~2.7!, together with Eq.~3.5!, allows us to show that

ygg8~C8,C!5ygg8~C,C8!, ~3.9!

whereas, due to Eqs.~2.8! and ~2.9! it can easily be proved
that, in the particular case of the rectangular lattice,

ygg8~2C,2C8!5ygg8~C,C8!. ~3.10!

In view of the ground state analysis we now have to mi
mize the energy~3.7! with respect to the anglesCg and the
lattice basis vectorsa1 anda2 ~actually we shall consider the
direction of a1 fixed along thex axis, so thata15bx̂ and
2a25cx̂1aŷ, as shown in Fig. 2, wherea,b,c are scalar
variational parameters!. We perform a numerical minimum
search, making use of standard optimization routin
~MATLAB !, using a large number of guess solutions, cho
to cover as uniformly as possible the set of allowed values
the variational parameters@as far as angular parameters a
concerned the set can be conveniently reduced using
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symmetry property~3.9!#. We choose a cutoff distancer 0
510, which gives substantially correct results and avo
excessive computational effort, and the molecule geometr
parameters

1/d153, d2 /d1P@0,1#, ~3.11!

representing a significant case in the framework of
model. Remembering that the length unit is the distance
the Lennard-Jones potential minimum, we notice that
choice of d1 is in quite good agreement with alkyl cha
parameters commonly used in the literature@14#, whereas the
values of the parameterd2 /d1, which will be referred to as
the aspect ratiofrom now on, can also move away from
literature values. This is not so worrying because prec
values of this parameter are not extremely meaningfu
such a simplified model. As a result we obtain only thr
different minima, corresponding to states of the syst
sketched in Fig. 3 for the particular cased2 /d150.16. In two
of them molecules are packed on a centered rectangula
tice and display only two possible orientations, opposite w
respect to the sides of the~centered! rectangular unit cell.
With the choice of basis vectors displayed in Fig. 2 we ha

C (0,0)5C (1,0)52C (0,1)52C (1,1) , ~3.12!

that is, only two sublattices can be distinguished. Oppo
orientations characterize two different kinds of herringbo
ordering, the former with higher angles~about 118° between
backbone planes!, the latter with lower angles~about 35°
between backbone planes!. They can be naturally related t
HB and PHB packing modes, even if the angle values do
coincide with those predicted by more detailed mod
@13,14#. The numerical values of the lattice parametersa
andb5c) are also reported to allow a comparison with e
perimentally observed lattice distortions. Precise values
not quantitatively correct but we realize that the HB min
mum corresponds to a nearest neighbor distortionb
,aA3) and the PHB minimum to a next nearest neighb
distortion (b.aA3), according to experimental results.
the third minimum the lattice becomes oblique and m
ecules display equal orientations on the whole lattice, tha

FIG. 2. Two-dimensional Bravais lattice and a possible cho
of basis vectors (a1 ,a2). Solid circles denote sites and thin sol
lines denote two-site unit cells. Cell parameters area,b,c. If b5c a
centered rectangular lattice is obtained.
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C (0,0)5C (1,0)5C (0,1)5C (1,1) . ~3.13!

As already mentioned in the Introduction, this kind of co
figuration, which from now on will be referred to asparallel
~P!, is rarely observed in Langmuir monolayers, except
the case of chiral resolved amphiphiles, in which our resu
about lattice distortions again qualitatively agree with tho
obtained in experiments~see, for instance, Ref.@15#!. Actu-

e

FIG. 3. Herringbone~HB!, pseudoherringbone~PHB!, and par-
allel ~P! packing modes, corresponding to the ground state ene
minima in the case 1/d153.0 andd2 /d150.16. On the axes one
can read the lattice parameters corresponding to a nearest neig
distortion in the HB case, a next nearest neighbor distortion in
PHB case, and an intermediate distortion for the P case.
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PRE 62 5235HERRINGBONE ORDERING AND LATTICE . . .
ally our model does contain a single type of molecule
cause there is nothing in the model potential that can dis
guish molecules of different chirality. All these results a
quite interesting because they prove that the model, in s
of drastic simplifying assumptions, can actually predict d
ferent kinds of orientational ordering~herringbone,
pseudoherringbone, parallel! and also the corresponding la
tice distortions in a qualitatively correct way.

Taking into account values of energy and area per m
ecule for the different packing modes, we realize that
aspect ratiod2 /d1 is relevant to discriminate between th
modes. In Figs. 4~a! and 4~b! we report the differences be
tween the PHB and HB and between the P and HB minim
in terms of energy and area per molecule, respectively
functions ofd2 /d1. It turns out@see Fig. 4~a!# that for low
values of the aspect ratio~less than about 0.18) the PHB an
P packing modes are energetically favored and nearly de
erate, with a slight predominance for the P packing;
higher values ofd2 /d1 ~up to about 0.58) the HB minimum
takes on a lower energy; and finally, for still higher valu
~up to 1), the P packing is again favored. The lowest ene
phase is the stable one at zero~or low! surface pressure. O
the contrary, if the effect of pressure has to be taken i
account, the stable phase is determined by the lowest
thalpy (U/N1PA, P being the surface pressure itself, a
A5ab/2 the area per molecule!. In the high pressure limit
the pressure-area (PA) term becomes dominating and th
stable phase is simply determined as that with the low
area per molecule, which should be determined in princ
by repeating the above described variational procedure
searching for minima of the enthalpy, which we have ac
ally performed. Nevertheless, it has turned out that the s
tem behavior is well predicted~from a qualitative point of
view! simply by the zero pressure value of the area per m

FIG. 4. Energy~a! and area per molecule~b! differences be-
tween P and HB phases~solid lines!, and between PHB and HB
phases~dashed lines!, plotted vs molecule aspect ratiod2 /d1.
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ecule, reported in Fig. 4~b!. Generally the lowest energ
phase~at zero pressure! is also the one with the lowest are
per molecule, that is, the predominant phase at zero pres
is predominant at infinite pressure as well. A different beh
ior is observed only for a range of values of the aspect ra
aroundd2 /d150.16, in which the P packing mode~nearly
degenerate with PHB! has the lowest energy but a slight
larger area per molecule than the HB mode. This fact gi
rise to a phase transition between P and HB atP'53, as will
be pointed out more clearly in Sec. V, where t
temperature–surface-pressure phase diagram is present

IV. MEAN FIELD THEORY

In this section we shall perform a finite temperatu
analysis of the model by means of a mean field approxim
tion. We shall write an approximated Gibbs free energy fo
system of molecules constrained to lie on a generic tw
dimensional Bravais lattice and assumed to have only f
possible orientational probability distributions, depending
the sublattice, as mentioned in the previous section. The
energy is then a function of lattice parameters (a,b,c) and
probability densities on the four sublattices, which will b
used as variational parameters. Let us note that only orie
tions are assumed to be random variables and hence onl
orientational entropy contribution is taken into account.

The internal energy can be written as

U5^UuR&C

5
1

2 (
g,g8

(
n,n8

dgg8dnn8^E~Rg82g1n82n ;cg1n ,cg81n8!&,

~4.1!

where the energyUuR is given by Eq.~3.3! in the condition
~3.1!, which is denoted by the subscript•uR , and ^•&C de-
notes a thermal average over orientation variables. As m
tioned above, we assume that the probability density o
molecule orientation at siteg1n, which we may denote by
f g1n(c), actually depends on the sublattice only, i.e.,

f g1n~• !5Fg~• !, ;g,n. ~4.2!

Assuming that molecule orientations at different sites are
tistically independent variables~mean field approximation!,
the pair probability density can be factorized to give

U5
1

2 (
g,g8

(
n,n8

dgg8dnn8E
2p/2

p/2

dCFg~C!

3E
2p/2

p/2

dC8Fg8~C8!E~Rg82g1n82n ;C,C8!,

~4.3!

where, because of the twofold symmetry of the model m
ecules, integrals can be evaluated over@2p/2,p/2# ~instead
of @2p,p#). Probability densities must be normalized ov
@2p/2,p/2#, too. Making use of Eq.~3.6! with Cg5C and
Cg85C8, we obtain
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U5
N

8 (
g,g8

E
2p/2

p/2

dCFg~C!E
2p/2

p/2

dC8Fg8~C8!

3ygg8~C,C8!. ~4.4!

As far as the entropy is concerned, the mean field appr
mation gives

S52
NkB

4 (
g
E

2p/2

p/2

dCFg~C!ln Fg~C!, ~4.5!

wherekB is the Boltzmann constant and an additive const
has been neglected.

The Gibbs free energy functional is

G5U1NPA2TS2
N

4 (
g

lgS E
2p/2

p/2

dCFg~C!21D ,

~4.6!

whereU andS are internal energy and entropy, respective
defined by Eqs.~4.4! and~4.5!, T is the absolute temperature
P the surface pressure, andA5ab/2 the area per molecule
The last term, containing four unknown Lagrange multiplie
lg , is needed to ensure normalization of probability den
ties and multipliers must be determined by imposing norm
ization constraints. The free energy functional must be m
mized with respect to probability densities and unit c
parameters. Its first variation with respect to these quant
can be written as

dG5(
g
E

2p/2

p/2

dC
dG

dFg~C!
dFg~C!1 (

j5a,b,c

]G
]j

dj

~4.7!

wheredG/dFg(C) denotes a functional derivative.
Making use of the symmetry properties~3.8! and ~3.9!,

we have

dG
dFg~C!

5
N

4 (
g8

E
2p/2

p/2

dC8Fg8~C8!ygg8~C,C8!

1
N

4
kBT@ ln Fg~C!11#2

N

4
lg . ~4.8!

Moreover, as far as derivatives with respect to lattice para
eters are concerned, we have

]G
]j

5
N

4 (
g,g8

E
2p/2

p/2

dCFg~C!E
2p/2

p/2

dC8Fg8~C8!

3
]ygg8~C,C8!

]j
1NP

]A

]j
, ~4.9!

wherej5a,b,c and

]A

]a
5

b

2
,

]A

]b
5

a

2
,

]A

]c
50, ~4.10!

whereas]ygg8(C,C8)/]j can be evaluated from Eqs.~3.5!,
~2.5!, and~2.1!.
i-

t

,

s
i-
l-
i-
l
s

-

In order to find the stationary points~actually the minima!
of the free energy functional we set to zero the derivativ
~4.8! and ~4.9!. After some manipulation the first conditio
can be written as

Fg~C!5

expS 2(
g8

E
2p/2

p/2

dC8Fg8~C8!bygg8~C,C8!D
exp~12blg!

,

~4.11!

whereb51/kBT and, for normalization,

exp~12blg!5E
2p/2

p/2

dC expS 2(
g8

E
2p/2

p/2

dC8Fg8~C8!

3bygg8~C,C8!D . ~4.12!

This form naturally suggests an iterative numerical soluti
in which the right-hand side is the current iteration step a
the left-hand side represents the next one. Also, the equa
obtained by setting to zero Eq.~4.9! can be put in a fixed
point form. Among different possible forms we have chos
the following one:

j5j expS 2a
]G/N

]j D , ~4.13!

where a is a relaxation parameter, needed to stabilize
procedure. Equations~4.11! and~4.13! are coupled with each
other and hence they are to be solved by a single proced
which we have implemented in the following way.

~1! A guess solution is defined in terms of probabili
densitiesFg(C) and unit cell parametersa,b,c.

~2! Functionsygg8(C,C8) are evaluated for the assigne
values ofa,b,c and the iterative procedure defined by E
~4.11! is carried out, approximating integrals by means
common Gaussian quadrature formulas, until convergenc
reached for the probability densities.

~3! A new estimate ofa,b,c is computed using Eq.~4.13!
with the probability densities evaluated at the previous s
~a reasonable choice of the relaxation parameter has tu
out to bea'1023).

~4! Steps 2 and 3 are repeated until convergence
reached for both probability densities and lattice paramet

Using different guess solutions the above iterative pro
dure allows us to determine local minima of the Gibbs fr
energy and the stable phase is determined as that corresp
ing to the absolute minimum. Guess solutions are chose
the following way: probability densities with peaks center
around certain angle values~among which are those corre
sponding to ground state HB, PHB, and P packing mod!
for ordered phases and a uniform density over the wh
range@2p/2,p/2# for the orientationally disordered phase

V. FINITE TEMPERATURE BEHAVIOR

In this section we shall describe the phase diagram
some detail and we shall characterize each phase in term
angular probability densities and lattice parameters. As fa
molecule geometric parameters are concerned, we have
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sen 1/d153.0, as in ground state calculations, analyzing
detail the two significant casesd2 /d150,0.16, which will be
simply referred to as cases~a! and ~b! in the following. In
Figs. 5~a! and 5~b! the respective temperature–surfac
pressure phase diagrams are reported. Let us conside
low pressure region first. In both cases it turns out that
some temperature@kBT'4.9 in case~a! and kBT'0.7 in
case~b!# the P phase, which is stable in the ground sta
becomes metastable, because the HB phase takes on a
free energy value, and the phase transition is first order.
higher temperature@kBT'7.2 for ~a! andkBT'5.9 for ~b!#
the transition to an orientationally disordered phase, ag
first order, takes place. Case~a! is significantly different be-
cause a large~reentrant! stability region of the PHB phase i
observed in the P phase region, probably due to the fact
the energy and area per molecule of these two pack
modes are nearly equal for low values of the aspect ratio
similar behavior can be observed actually ford2 /d1 up to
about 0.05. Cases~a! and ~b! turn out to be significantly
different upon increasing surface pressure, too. As far as
order-disorder transition is concerned a simple~nearly linear!
increase of transition temperature is observed, which can
easily explained in the following way. Considering that t
disordered phase, which must have a higher entropy, has
a higher area per molecule, the transition pressure mus
crease with temperature, according to the Claus
Clapeyron equation. On the contrary, the transition betw
the ordered~P and HB! phases undergoes drastic chang
depending on the aspect ratiod2 /d1, because the area pe

FIG. 5. Phase diagram in the temperature–surface-pres
plane for the two values of the aspect ratiod2 /d150 ~a! and
d2 /d150.16~b! ~in both cases 1/d153.0). HB, PHB, and P denote
stability regions for herringbone, pseudoherringbone, and par
phases, respectively; D is the disordered phase. Solid lines de
first order transitions.
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the
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molecule required by the two packing modes strongly
pends on this geometric parameter. Two different behav
can be observed, namely, in case~a! the transition tempera
ture increases with increasing pressure, pointing out that
packing is less dense than P, whereas in case~b! the transi-
tion temperature decreases, due to the fact that HB packin
denser. In the latter case the transition temperature vani
at some pressure (P'53), according to ground state result
Moreover, the two transitions that delimit the PHB pha
region in case~a! display two different behaviors, namely
the lower temperature one is nearly vertical~meaning a
nearly equal packing density of P and PHB phases!, whereas
the higher temperature one has a positive slope which
creases with increasing pressure~meaning that the
high temperature/high pressure P phase has a far lower p
ing density!. Let us note finally that, if the aspect ratio
further increased~for instance, up tod2 /d150.2), the P~and
PHB! phase regions completely disappear, that is, these
packing modes are no longer convenient. Only one first or
transition to the disordered phase takes place and the tra
tion temperature is considerably lower than in previous ca
~for instance,kBT52.84 atP50 for the cased2 /d150.4).
For still higher values of the aspect ratio the P phase
comes stable again and even in this case it is the only
dered stable phase, with a still lower transition temperat
to the D phase~for instance,kBT51.66 atP50 for the case
d2 /d150.8).

In order to provide a more complete description of t
system behavior we now also report angular probability d
sities for the different phases~Fig. 6!, for some temperature
and surface pressure values in the vicinity of significant tr
sitions in cases~a! and ~b!. We can observe that, near th
PHB-P transition of case~a!, probability densities are cen
tered around mean values very close to ground state an
and quite strong peaks show that the system is still in a
temperature regime. Peak heights~and hence standard devia
tions! are almost the same for the two coexisting phas
Here herringbone ordering can be recognized by the fact
sublattice probability densitiesF (0,0)(C)5F (1,0)(C) and
F (0,1)(C)5F (1,1)(C) break the symmetry C→2C,
whereasF (g1,0)(C)5F (g1,1)(2C). On the contrary, paralle

ordering is characterized by F (0,0)(C)5F (1,0)(C)

re

el
ote

FIG. 6. Angular probability densitiesF (0,0)(C)5F (1,0)(C)
~solid lines! and F (0,1)(C)5F (1,1)(C) ~dashed lines! near two
phase transitions in the two casesd2 /d150,0.16, respectively,
(1/d153.0): ~a! kBT54.5, P530.0, d250 ~PHB phase!; ~b! kBT
54.5, P530.0, d250 ~P phase!; ~c! kBT58.0, P56.9, d2 /d1

50.16 ~HB phase!; ~d! kBT58.0, P56.8, d2 /d150.16 ~disor-
dered phase!. In ~b! and ~d! one has F (0,0)(C)5F (1,0)(C)
5F (0,1)(C)5F (1,1)(C) ~solid line!.
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5F (0,1)(C)5F (1,1)(C). Moreover, at the transition betwee
HB and disordered phases@in case~b!#, we see that densitie
for the HB phase are broader, whereas in the disorde
phase symmetry is restored andF (g1,0)(C)5F (g1,1)(C).

It is interesting to inspect also lattice parameters obtai
by finite temperature calculations, because they can be
rectly compared with experimental data. In Figs. 7~a1,a2!
and 7~b1,b2! we report a mapping of the boundaries of t
various phase regions displayed in Figs. 5~a! and 5~b!, re-
spectively, onto the lattice parameter planesa,b and (c
2b),b. We can observe that ordered phases~HB and PHB!
are placed on opposite sides of the lineb5aA3 ~which de-
notes an undistorted hexagonal lattice! and are characterize
by nearest neighbor and next nearest neighbor distorti
respectively. In thea,b plane the P phase turns out to b
completely superposed on HB and can be distinguished
in the (c2b),b plane, revealing the oblique lattice. Increa
ing pressure drives lattice parameters toward lower area
molecule values, whereas a higher temperature corresp
to higher areas. On the contrary, the disordered phase reg
are mapped exactly onto the lineb5aA3 and only a pressure
effect can be appreciated. In case~b! the system reache
higher area per molecule values, because molecules ha
larger intrinsic area.

Let us now discuss model results in comparison with

FIG. 7. Unit cell parameters (a,b,c) corresponding to the phas
diagrams displayed in Fig. 5:d250 ~a1,a2! and d2 /d150.16
~b1,b2!, with 1/d153.0 in both cases. In~a1,b1! and ~a2,b2! the
projections onto thea,b and (c2b),b planes are reported, respe
tively. Thick solid lines mark the boundaries of stability regions
each phase and the mapping of theT50 andP50 lines, as far as
the fictitious boundaryP560, kBT510 ~not illustrated!. HB, PHB,
P denote, respectively, herringbone, pseudoherringbone, pa
packing modes, and D is the disordered phase. Contour lines o
area per moleculeA5ab/2 are also reported~thin solid lines! as
well as the hexagonal unit cell condition~thin dash-dotted line!.
ed
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periments, beginning from unit cell parameters. As pre
ously mentioned, our two-dimensional model excludes
effects, projecting the monolayer in the plane orthogona
the molecule long axes, and hence it is natural to take a
term of comparison experimentally measured projected
rameters@13#. It turns out that calculated data well reprodu
~qualitatively! experimental findings: the two opposite un
cell distortions, corresponding to HB and PHB packi
modes, and also the transition to a rotationally disorde
phase with a hexagonal~undistorted! unit cell are observed
Actually, the model predicts a clear discontinuity betwe
lattice parameters of ordered and disordered phases, whe
this discontinuity does not seem to show in the experime
data of Ref.@13#. Nevertheless, it is known that the herrin
bone transition in Langmuir monolayers is weakly first ord
@7# and this may be a reason why the discontinuity does
emerge from measured parameters. Moreover, we note
the data reported in Ref.@13# come from the superposition o
measurements performed on different substances, w
might actually mask a weak discontinuity. Such a lar
quantity of measured parameters are not available for
lique lattice packings, which, however, have been obser
in experiments as well. The comparison with experime
can be performed with respect to the temperature–surf
pressure phase diagram, too, and upon varying the mole
aspect ratiod2 /d1. We state in advance that, if the transver
dimension (d2) is not negligible, the structure of the mod
molecules should be more similar to real cross sections
alkyl chains@14# and hence the model should better rep
duce a real system behavior. As we previously pointed o
the model predicts that for low values of the aspect ra
@case~a!# PHB and P packing modes turn out to be den
than HB. This is perhaps not the case in real systems, wh
for instance, a PHB phase can sometimes be observe
lower surface pressure (L2h phase for fatty acids! and a HB
packing at higher pressure~CS, L29 , S, and L28 phases!.
Moreover, no experimental evidence has been obtained
far about the existence of three different packing modes
the same monolayer in different thermodynamic conditio
A different condition, more consistent with experiments,
reached, for instance, in case~b! (d2 /d150.16), where the
PHB and P phases are less dense than the HB. A p
transition can be observed, in some temperature range
tween a lower pressure P phase and a higher pressure
phase, but the free energy of P is very similar to that of PH
which might be easily stabilized by a small perturbation
the interaction energy, such as a chiral head group, giv
rise to the experimentally observed low pressure PHB ph
Actually, the calculated temperature–surface-pressure p
diagram@Fig. 5~b!# would still display some qualitative dif-
ference with respect to the experimental one, even in
case. First of all the P-~PHB-! HB transition turns out to be
mainly driven by temperature, whereas in experiments
seems to be mainly driven by pressure and coincides with
swiveling (L2h-L28) transition, and secondly the P~PHB!
phase region is placed at low temperature, whereas in exp
ments a direct PHB-disordered transition (L2h-L2d) has been
observed@30#. Possible reasons for discrepancies, especi
in the low pressure regime, may be found in the simplifi
way in which the model takes into account effects of co
pression. The lattice can be strained but actually unit c
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parameters are not random variables and hence the only
tribution to entropy is the orientational one. Moreover, t
effects, which should have some importance especially in
low pressure behavior of the system, are neglected by c
struction by the model, as well as the existence of vacan
~empty sites! in the lattice, which is not allowed. In this wa
the monolayer turns out to be scarcely compressible, an
can be verified that the area per molecule undergoes
some percentage variation for pressure varying by an o
of magnitude. Another important issue is the stability of o
ordered phases with respect to fluctuations that might des
or weaken long range order. Since it is known@22–24# that
the mean field approximation performs poorly in describ
the herringbone transition in systems of molecules adsor
on graphite~wrong order of the transition, overestimate
transition temperature!, it would be of great interest to inves
tigate the present model using numerical simulations an
more accurate semianalytic tools like the Bethe approxim
tion and the cluster variation method, but this is beyond
scope of the present work.

VI. CONCLUSIONS

In this paper we have introduced a planar-molecule mo
to describe backbone plane ordering in amphiphilic mo
layers. The main characteristics of the model are the m
ecule shape~which has been chosen to mimic the cross s
tion of alkyl chains!, Lennard-Jones interactions betwe
‘‘atoms’’ ~interaction centers!, and the introduction of a
regular but deformable lattice, in order to analyze differe
~experimentally observed! unit cell distortions upon varying
external thermodynamic variables. The molecules posse
twofold rotational symmetry, which is needed to reprodu
herringbone ordering, and molecule orientations are
scribed as continuous degrees of freedom. A ground s
analysis was first performed, by minimizing the interacti
energy with respect to molecule positions and backb
angles. It was shown that an energy minimum is reache
molecules are placed on a generic two-dimensional Bra
lattice with regularly modulated orientations, and that t
minimum search problem can be reduced to an optimiza
with respect to a few variational parameters, namely, sub
tice orientations and unit cell parameters. It has been poin
out that the model predicts three different kinds of orien
tional ordering, two of them known in the literature as he
ringbone and pseudoherringbone, displaying finite dihed
angles between differently oriented molecules, and the t
one with all molecules aligned. The competition between
different minima has been investigated as a function of m
ecule aspect ratio, pointing out that a different packing mo
may be favored by a different molecule geometry. Latt
distortions are found to be in good qualitative agreem
with experimental observations. A finite temperature analy
has also been performed in the framework of a mean fi
approximation, maintaining the ground state lattice structu
but allowing lattice parameters to vary. The temperature e
lution of each ordered~herringbone, pseudoherringbone, a
parallel! phase has been analyzed, determining phase tra
tions between one another and a~first order! transition to the
orientationally disordered phase, which displays an un
torted hexagonal unit cell. Some discrepancies of model
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dictions with respect to experimental findings~especially in
the temperature behavior! have been found and discussed.
particular, the discontinuity in lattice parameters between
dered and disordered phases is not observed in experim
values, most likely because of a weak first order transiti
Moreover, the competition between P and PHB phase
probably unresolved, because they have a very similar
energy in a significant range of values of the molecule asp
ratio, and hence small perturbations of the model poten
might have important effects. In contrast, some differen
in the transition between ordered@HB and P~PHB!# phases
may be ascribed to the fact that only the orientational
tropy contribution has been taken into account.
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APPENDIX

In this Appendix we shall prove rigorously that the stat
obtained by the minimization of the energyURC @Eq. ~3.3!#,
performed with respect to the basis vectorsa1 ,a2 of the
Bravais lattice and to the sublattice orientationsCg as de-
scribed in the text, are actually~local! minima of the total
energyU @Eq. ~2.10!#, considered as a function of all pos
tions r m and orientationscm of moleculesm.

First of all we can see that the derivative~gradient! of the
energy U with respect to the position of a moleculer m ,
evaluated in the hypothesis~3.1!, that is, for molecules stay
ing on a generic Bravais lattice~which is denoted by the
symbol•uR), can be written as

]U

]r m
U

R

5
1

2 (
m8

dm8@E(r )~Rm8 ;cm ,cm2m8!

2E(r )~Rm8 ;cm ,cm1m8!#. ~A1!

To write Eq.~A1! we have employed the symmetry proper
~2.6! and the inversion symmetry of the Bravais lattice. W
have also definedE(r ) to be the derivative~gradient! of the
pair interaction energyE @Eq. ~2.5!# with respect to the po-
sitional argument, anddm51 if m5(0,0) and 0 otherwise
Equation~A1! tells us that a sufficient condition for the po
sitional derivatives to vanish~provided molecules are place
on a Bravais lattice! is cm1m85cm2m8 ;m,m8. Moreover,
it is easy to see that this condition is equivalent to the f
that cm depends only on the parity of the indexm @we re-
member that it is actually a two-dimensional indexm
5(m1 ,m2) and hence we have the four possibilities~even,
even!, ~even,odd!, ~odd,even!, ~odd,odd!#. The lattice is split
into four sublattices with double lattice constants, and m
ecules placed on the same sublattice must have the s
orientation. As already performed in the text, we th
introduce the new notation m5g1n, where g
5(0,0),(0,1),(1,0),(1,1) is the parity index andn
5(n1 ,n2) any pair of even integers. The above condition
thus expressed by Eq.~3.2!.
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We now write, in the new notation, the derivative of th
energy with respect to a generic molecule orientationcg1n ,
evaluated with the assumptions on positions@Eq. ~3.1!# and
orientations@Eq. ~3.2!# discussed above, which will be de
noted as a whole by the double subscript•uRC . Using the
translation invariance of a Bravais lattice, we obtain

]U

]cg1n
U

RC

5(
g8

(
n8

dgg8dn8E
(c1)~Rg82g1n8 ;Cg ,Cg8!,

~A2!

whereE(c1) is the derivative ofE with respect to the forme
angular argument. We also rewrite Eq.~3.4!, that is, the total
energy under the same conditions, using again the transla
invariance of the Bravais lattice. WithN as the total numbe
of lattice sites, we have

URC5
N

8 (
g,g8

(
n8

dgg8dn8E~Rg82g1n8 ;Cg ,Cg8!,

~A3!

which turns out to be a function only of the sublattice orie
tationsCg and of the basis vectorsa1 ,a2. From Eqs.~A3!
and ~A2! it is possible to show that the following identit
holds:

]

]Cg
URC5

N

4

]U

]cg1n
U

RC

. ~A4!

The left-hand side~the derivative of the conditioned energ
with respect to sublattice orientations! is imposed to be zero
by our numerical minimization procedure. This proves th
the derivative with respect to a generic molecule orientat
also vanishes, completing the first step of our proof. Let
only note that the two ingredients to prove Eq.~A4! are just
the two conditions~3.1! and ~3.2!.

Let us now consider the Hessian matrix, that is, the s
ond derivatives with respect to positions and orientations
any pair of molecules~indexed bym,m8), and the associate
eigenvalue equation

(
m8 F ]2U

]r m ]r m8

]2U

]r m ]cm8

]2U

]cm ]r m8

]2U

]cm ]cm8

G •F dr m8

dcm8
G5lF dr m

dcm
G .

~A5!

Let us note that, considering a fixed pair of molecules,
have a 333 matrix ~which is explicitly denoted by the
square brackets! but every element of this matrix must hav
actually the two indicesm,m8, giving rise to an infinite ma-
trix. This can also be regarded as composed of an infi
number (N3N, N being the number of molecules! of 333
blocks. We have to prove that the states found by our m
mization satisfyl.0. Imposing the usual conditions we ca
write ~in the new notation!
on
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F ]2U

]r g1n ]r g81n8

]2U

]r g1n ]cg81n8

]2U

]cg1n]r g81n8

]2U

]cg1n]cg81n8

G
RC

5dgg8dn82nE12~Rg82g1n82n ;Cg ,Cg8!

1dgg8dn82n(
g9

(
n9

dgg9dn9

3E11~Rg92g1n9 ;Cg ,Cg9!

8hgg8,n82n , ~A6!

where

E128F2E(r r )
2E(rc2)

E(c1r ) E(c1c2) G , ~A7!

E118F E(r r )
2E(rc1)

2E(c1r ) E(c1c1) G ~A8!

are 333 matrices containing second derivatives ofE ~the
double superscripts denote the two derivation variab
namely, r denotes the positional argument andc1 ,c2 the
first and second angular arguments, respectively!. Let us note
that under the conditions~3.1!,~3.2! the system is invarian
under a translation ofRn and hence the elements~blocks! of
the Hessian matrix depend~in addition to the sublattice in-
dicesg,g8) only on the differencen82n, so that they have
been defined ashgg8,n82n . Let us also observe that th
ground states found by the minimization procedure ne
display four different orientations but only two or one si
nificant sublattices. The former subcase~only two distin-
guishable sublattices! corresponds tog5(0,0),(0,1) andn
5(n1 ,n2) with n1 any integer andn2 even integer, wherea
the latter subcase~parallel molecules! corresponds tog
5(0,0) andn5(n1 ,n2) any pair of integers. In both case
the whole calculation is equivalent and in fact the Hess
matrix ~A6! takes exactly the same form. Defining

dg,n8F dr g1n

dcg1n
G , ~A9!

the eigenvalue equation for the Hessian matrix can then
written as

(
g8

(
n8

hgg8,n82n•dg8,n85ldg,n . ~A10!

Due to the dependence onn82n the left-hand side takes th
form of a discrete convolution, which can be reduced to
product by means of a Fourier transform. Defining

Dg~k!8(
n

exp~2 i k•Rn! dg,n , ~A11!
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Hgg8~k!8(
n

exp~2 i k•Rn! hgg8,n , ~A12!

we can easily write

(
g8

Hgg8~2k!•Dg8~k!5lDg~k!, ~A13!

which is the eigenvalue equation for a 3s33s matrix (s
-

s.

m

.

P

.

ir
being the number of sublattices in which orientations ha
been found to be really different! depending on the ‘‘wave
vector’’ k. It is then possible to compute the eigenvalues
this matrix numerically, fork in the Brillouin zone associ-
ated with the Bravais lattice defined byRn , with a sufficient
sampling density to verify the positivity of eigenvalues,
we have actually observed for the three phases describe
the text.
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