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Spin picture of the one-dimensional Hubbard model: Two-fluid structure and phase dynamics

Arianna Montorsi and Vittorio Penna
Dipartimento di Fisica and UnitdNFM, Politecnico di Torino, 1-10129 Torino, ltaly
(Received 12 May 1999

We propose a scheme for investigating the quantum dynamics of interacting electron models by means of a
time-dependent variational principle and spin coherent states of space lattice operators. We apply such a
scheme to the one-dimensional Hubbard model, and solve the resulting equations in different regimes. In
particular, we find that at low densities the dynamics is mapped into two coupled nonlineadiBghro
equations, whereas near half-filling the model is described by two coupled Josephson-junction arrays. Focusing
then to the case in which only the phases of the spin variables are dynamically active, we examine a number
of different solutions corresponding to the excitations of few macroscopic modes. Based on fixed-point equa-
tions of the simpler among them, we show that the standard one-band ground-state phase space is found.
[S0163-182699)01441-1

[. INTRODUCTION on the ambient lattice, whatever the model interaction actu-
ally is. Even though this approach is quite general, in the

Investigating quantum dynamics of strongly correlatedsequel we shall develop it for the Hubbard Hamiltonian.
many-body systems is a hard task since, even for extremely It is well known that the Hubbard Hamiltonian can be
simplified models, the interactions of the large number ofrewritten in terms of two coupleX X models of 1/2 spin
degrees of freedom are usually affected by a nonlinear chaoperators by means of the Jordan-Wigner transformation.
acter. At the operational level this entails the impossibility of Such a transformation can be performed in any dimension as
evaluating explicitly the action of the propagator knownwell as, in principle, for any electron Hamiltonian, and leads
from the Schrdinger equation, that is the evolutidd) quite naturally to a picture relying on spin coherent states
=exf —itH/%]|®y) of a state|®,) governed by the Hamil- (SCS.! When this is used explicitly within the TDVP frame-
tonian H. A standard way to reduce such a difficulty to a work, the resulting equations of motion are recognized to
more tractable form consists in recasting the purely quanturdescribe two coupled fluids, which dynamics we shall dis-
problem within an appropriate coherent states picture onceuss.
the algebraic structure characterizinighas been identified. A basic trait of the spin description is that its semiclassi-
This leads to represent the system evolution through theal version is more reliable the more the spins are large.
equations of motion issued from an effective classicalSince this feature is in general not realized when starting
Hamiltonian H expressed in terms of the coherent-statefrom quantum 1/2 spin operators, we shall look here, in par-
parameters. ticular, for solutions of the equations of motions correspond-

A systematic development of such an approach is proing to the macroscopic excitations of few system modes, in
vided by the time-dependent variational princiglEDVP)  which case we expect to describe actual regimes for the Hub-
proceduré. This amounts to constructing a trial macroscopicbard model itself. The problem of mode requantization, natu-
wave function|¥) that contains time-dependent parametersrally in order due to the expected quantum character of the
whose evolution is derived so as to optimize the approximalow-temperature regime, is left to a successive anafysis.
tion of the quantum propagator actidiOn this basis, using The choice of W) as a direct product of single-site Bloch
the generalized coherent states to construct the trial|Sk3te ~ states, representing the only assumption for our construction,
is quite advantageous in that the coherent-state parametatsserves some comments as to the expected reduction of the
naturally label| ') and make explicit its dependence on the number of states in the Hilbert space that are actually avail-
algebraic structure dfi, namely, on the operators describing able for the system dynamics. Such an effect usually occurs
the microscopic physical processes therein. By making thén a number of mean-field approximations like the standard
phase that appears ji) coincide with the effective action, Hartree-Fock(HF) in which the dominating features of the
the Schrdinger equation turns out to be automatically satis-system are accounted for in an explicit way thanks to an
fied when projected ontp¥). extreme reduction of the states accessible to the system.

In a recent papérsuch a scheme was specialized to the In this respect, using coherent states relative to the opera-
case of interacting electrons described by the Hubbartbrs ofH defined in the ambient lattice is by construction less
Hamiltonian. There the coherent states entelig were  restrictive than using a subset of states tailored for a specific
specific to the physical regimés.g., superconducting, anti- regime. The advantage coming from this choice is manifold.
ferromagnetic, etg, the latter selecting case by case the ap-irst, the structure of W) is however able to produce an
propriate approximate algebraic framework within theeffective Hamiltonian that inherits both the nonlocal and
Hamiltonian dynamical algebra. the nonlinear character df, contrary to the Hartree-Fock

The standpoint here adopted is instead to implement 8HF) scheme, in whichH reduces to a sum of single-site
unified TDVP treatment independent of the particular physidinear Hamiltonians. In passing, we notice that in many cases
cal regime and provide a coherent state picture of electron®l exhibits a form that is endowed with the same complexity
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of H. In fact, the nontrivial form of{ reflects the basic lated to the metal-insulator ohe which also the phases of

character of the TDVP method that singles ¢ty varia-  the two fluids become strongly locked. Tunneling phenom-

tionally as the best solution to the original Scflimger ena between the two fluids are also discussed. In Sec. IV we

equatiod, whereas within the HF approximation what is specialize to the study of solutions exhibiting a pure phase

solved is a different Schdinger equation, involving just the dynamics, and stress the aspect concerning the macroscopic-

linearized Hamiltonian. ity of the excited degrees of freedom. In Sec. V we show that
Second, as a consequence of the above feature, also ttlee ground-state phase space known from standard mean-

propagation of any initial state is sustained by the full Hamil-field treatments can be obtained within our scheme by ana-

tonian, rather than by its linearized HF version. Indeed, it idyzing the fixed points of a very simple collective phase so-

easily shown that the latter entails quantum states whostion, corresponding, in fact, to describe the whole lattice as

time evolution is periodic, while the TDVP dynamics is en- a sum of two-site clusters. Finally Sec. VI is devoted to give

dowed with a much richer structure. In particular, the dy-some conclusions.

namics of the expectation values of spin operators dy-

namical variablesis consistently reproduced, whereas, when Il. COHERENT-STATES PICTURE

turning to expectation values of products of spin operators, o , ) o )

the description obtained does not differ substantially from APProaching interacting spin systems within a semiclas-

the one that can be achieved within the random-phase al§_|cal limit has been deeply investigated. In particular, it is

proximation. well understood that a consistent description can be
The Jordan-Wigner transformation mentioned abovePbtained by projecting the Hamiltonian onto a basis of SCS.
amounts to rewriting the electron annihilation operatgrs, In this case, an exact result obtained by Pishows that the

with »=1,, in terms of Pauli spin matrices, ; , 7, ; , With projected Hamiltonian rgproduces the behavior of the_ori_gi—
a=1,2,3, which locally form two(commuting'su(Z’) alge- nal one the more the spins are large, and in any case it gives
bras. For the Hubbard model, it turns out that in dimensiort!PP€r and lower bounds to the ground-state energy of the
D>1 the possible transformed Hamiltonians differ from duantum Hamiltoniar{the exact value being recovered for
each other due to a certain exponential factor in front of thdnfinitely large sping One-half SCS are given by

hopping term, which form in fact depends on the orderin _

chggengfor labeling the lattice sites. Pl'his problem has begn |m)=Cme™|-1/2), ®
already investigated in the literatut@nd in the present pa- where the maximum weight vectpr 1/2) belongs to thels
per we shall limit our discussion to the one-dimensidd@l)  spectrum J;| = 1/2)=(+1/2)| £ 1/2)] and fulfills the condi-

case. Explicitly, ton J_|0)=0, J_ [J,=(J_)"] representing the lowering
- - (raising operator. Also, defining the normalization factor as
Cj1=Pj(o3)aj, ¢j | =PL(o3)Pi(73) 7j , (1) C(#)=1/Jy1+[7]? ensures the conditiofw| 7)=1. The ex-

whereP;(v3)=11,.; o3, v=0,7, from which the expres- pectation values of generatals,J..

sions forcj’r[r are straightforwardly derived. Here is the

2
number of lattice sitesy;” =vyj+iv,;, with v=0,7. Re- S;=(J3)= |77|—1 4
markably, this transformation maps fermions, which anti- 2(1+9l%)
commute on different sites, into spins, which commute on
different sites, i.efo,j,0p =0 for /#]. 7

Once Eqgs(1) are inserted into the Hubbard Hamiltonian, S.=(J-)= m ®)
the latter becomes 7
obtained by means of definitioi8) ((*)=(»|*|7n)), clearly
L . L exhibit their semiclassical character when considering the
szl [Uogj7sj—T(oj ojat 7y migtHC)], (2 fact that S;, S. satisfy the equation S3+S2+S2
: =1/4 [(S,=S,+1S,)], namely, the same sphere equation
when periodic boundary conditions are considered, and afulfiled by the classic counterpart of the spin
odd number of holesl*,‘? (7=1,]) on botho sublattices is  (J1,J2,J3) (J4+=J;+iJ,). In passing we notice that the
assumed, otherwise boundary termécorresponding toj spin variables, assuming limited values, keep track of the
=L) in the hopping contribution depending drhave to be  fermionic nature of the underlying system.
rewritten as e”(l‘N?)af(rl—wLe”(l‘NT)rf T +Hc). InEq. . The set-up just developed can be readily extended to the

(2) the extra terms that take advantage of conserved quan Interactmg SpIns OH. Assigning at gach site a pair of SCS
i) |,8j> relative to the abover-spin and7-spin, respec-

ties such as the total electron number and the magnetizatioff’ . .
have been ignored. tively, allows one to implement the TDVP procedure that is

In the next section, based on the spin-coherent-state Ioi%e_ssentially based on constructing a macroscopic trial wave

ture, we shall implement the TDVP procedure whereby on unction ac_counting fo_r the microspopic processes of the sys-
can derive from Eq(2) the effective Hamiltonian and the em. The simplest choice for a spin model is realized through
related motion equations. In Sec. lll, upon recognizing thethe state
two-fluid structure of the resulting model, we shall solve PY=elS )@ 6
explicitly the motion equations of each fluid within a phase- ) )®16), ®)
locking approximation, and evidenciate how the Coulombwhere|a)®|B8)=®;(|«;)®|B;)), that provides the expecta-
interaction drives the system to a transiti@pparently re- tion values A* =(W¥|o; |¥) (B*=(¥|r |¥)) and A

] J I J J
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tigating spin dynamics wheA;, B; are assumed to have

description of the microscopic dynamical activity in terms of fixed valuesv,,vg by inserting such information via the

such semiclassical variabléactually they correspond to an
ensemble of classical spinis achieved by showing that they

constraintsya,=0=xg .
The conservation, for each of the Casimir functions

obey a set of Hamiltonian equations standardly derived from[:AJ:Agj +|Aj|* and Cgj= ng +|Bj|? is preserved as well.

imposing| W) to obey the weaker version of the Sctirger
equation(V|(id,—H)|¥)=0, the latter requirement lead-

On the contrary, the total magnetization vectdd
=(My,My,M,)=3M; (where My+iM,=M" with M*

ing as well to interpreS in Eq. (6) as the effective action. =3, <xp|gj+ Tj_|\lf>:2jAJ?\' B;) is no longer conserved but

The explicit form of TDVP Hamiltonian generating such gnly

Hamiltonian equations turns out to be

(H)=(Ble(aH[x)o|B),

its z component M,=33(V¥|(o3;—73))|¥)
zézj(A3j—B3j). In addition, we also notice that the usual
particle-hole symmetry of the quantum Hamiltonian survives
at the semiclassical level, and it is implemented by the

while the Poisson brackets obeyed by the spin ensemble vaiparticle-hole transformatioAs;— — Az; andBsj— —Bs; .

ables implicitly follow from the equations of motion them-
selves.

Hubbard Hamiltonian(2) in one dimension, when pro-
jected onto the trial stater)®|B), becomes

u u
(H)=NsZ+E(A3+Bs)+U; AgBgi+Hr, (7)

where A;=3A3;, B3=ZB3; and the hopping terni{y,
which reads

Hr=—T2, (A*Aj.1+B}Bj.1+H.c),
J

is nothing but the sum of two classicXX models. The

Hamiltonian equations generated by the TDVP procedure ar

given by
iAj=(—SatUBg))Aj+2TAG (A 1 +A 1), (8
iBj=(—0s+UAqg))Bj+2TByj(Bj 1+Bj_;), (9)
iAgj=—TIAF (A] 1A )= A (Af +AT )],
(10
iB3j=—T[B} (B;,1+Bj_1)—B; (B} +B},)],
(11

where dp=ua—U/2, dg=uppg—U/2, once the Hamiltonian
(HY) is rewritten in the form

H=(H)+ ma xat e X (12

containing the constraintga=oa—A3, xg=o0g— B3 with
Lagrange multiplierges, ng. The Poisson brackets implic-
itly entailed by Eqs(8)—(11) are given by

with C=A,B, and exhibit the structure of @lassical angu-
lar momentum algebra. Also, they state that, Bs, related

Two remarks are now in order. First, due to the choice of
macroscopic wave functiof6), Hamiltonian(7), and Egs.
(8)—(11) mantain the same structure of Hamiltoni@) and
of the ensuing Heisenberg equations for the quantum spin
variables, respectively, which feature is nontrivial.

Moreover, we notice that, when moving from the lattice
description to the continuum linfit (C;—C(x)
=|C(x)|e'™, xe R, C=A,B), the resulting equations can
be interpreted as two nonlinear ScHirmger equations
(NLSE) for the order-parameter field&(x), B(x). A part
from the nonlinearity issued fros; = + 1/4—[C;[* that is
capable of producing the standard quartic te(l(ﬁﬂ“ for
|Cj|2< 1/4, a further contribution in this sense comes from
the Coulomb term&J A;B3; . The standard reduction of the

onlinear Schrdinger equation to the continuity and the

ernoulli equatiofl governing the dynamics of the density-
like field |C(x)|? and the phase fielé(x), respectively, sug-
gests that Eqg8)—(11) can be seen as describing the dynam-
ics of a coupled two-fluid lattice model.

IIl. TWO-FLUID DYNAMICS

The two-fluid structure of Eq98)—(9) has been recog-
nized by reducing them to the standard fofoubic NLSB
thanks to the assumptiofC;|?<1/4, namely, considering
low-density fluids. In this regime the usual hydrodynamic
picture is made far more complicated by the presende;pf
Bg; in front of the off-siteT terms in Eq.(8), and Eq.(9). In
fact such factors, in addition to the usual Laplacian-like
terms of the(lattice) Schralinger equation characterized by
Az, Bgj=—1/2, allow for the occurrence of configurations
where theT terms exhibit anomalous signg\{;, B;;>0)
through extended regions of the lattice. The investigations of
the corresponding dynamics is deferred to a future study.

A regime exhibiting, in a sense, an opposite character
(|Cj|*=1/4—C3;=0) will be examined in the present sec-
tion. The two-fluid structure still characterizes the motion
equations even if the dynamics mainly concerns the phase
variables, the densitylike variablé€;|? being now essen-
tially constant. It is worth noting as well how such a regime

to the total number of spin-up and spin-down electrons by(characterized by a Bernoulli-like dynamjds nothing but

the formulas

<2_ n”>=A3+NS/2, <E n”>:Bg+NS/2,
J ]

respectively, Whereljl,:c;:,cjo (0=1,]) are constants of
motion since{Az,H}=0={Bj,H}. It is thus natural inves-

that the quantum phase regime naturally emerging from the
XX model form ofHy for |C;|= const. In fact, by setting first
AJZRJ equa]), BJZSJ qul,BJ), (13)

where RP=1/4—A3;, S'=1/4—Bj;, consistently equipped
with the standard canonical commutation relations
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{a, ,A3}=06,;lih={B, ,Bs;}, and recasting then Eqi8)— d_ratic termA;;B;; that generates a cou_pled phase dynamics
(11) in the action-angle variable version contained in thevia Egs.(14) and(15), namely, a linearized system of two
Appendix, one is able to work out the two linear second-U-coupled arrays. Also, this suggests to define here a quan-

order equations, tity that describes the net local current between the two ar-
rays. If we letA; andB; play the role of the Josephson wave
'C'yj =4T2[W(ﬁj+1—2,3j +Bj_1) + (@1 2aj+ aj_1)], functions, andA3; , B3; as on-site charges, such current turns

(14) out to satisfy the equation

BJ—=4T2[W(a’j+l—2aj+aj71)+(:8j+1_2,8j+,8j71)(]i5) Ijz_;(‘PjJrl_z‘Pj_l"ijl)! (20)

with w=U/4T, under the assumptionfAsj[,[Bsj[<1/2,  \yhere |j=A3—Bs;. Hence the tunneling phenomenon
(@j+1—a))=~0~(Bj+1—Bj). Egs. (14 and (15 describe eeps track itself of the dependence wnvanishing in the
dynamics of first-order quantities and exhibit the Lagrangiansirong Coulomb repulsion regim& & 4T).

structure typical of two classical plan&iX models nontrivi-

ally phase coupled for any nonvanishibg# 0.
Remarkably Eqgs(14) and (15 can be decoupledand
solved upon definingd; = a;+ B, ¢;=a;— B;. In this case Apart from the case related to Eq4.8) and (19), in the

IV. PHASE DYNAMICS

they become present paper we shall investigate solutions of Egjs-(11)
i such that only the phases play a relevant dynamical fjg,
0,—=4T2(1+w)(0j+1—20j+Hj,l), and B3; being constant in time. If, on the one hand, the
dynamical situations in whiclAs;, Bg; are involved exhibit
@ =4TX1-W)(@j+1—20j+ ¢j_1), (16) acomplex behavior and their investigation goes beyond the

] ) ) _ purposes of the present paper, on the other hand, considering
whose solution can be easily worked out in terms of Fourieynly o, g, as dynamically active still entails situations that
modes. In particular, let us notice that the parametefays  gre far from being trivial and facilitates the recognition of the
arelevant role, in that it drives the dynamics of the system  {gpological features that possibly characterize the solutions.
from an oscillatory regime <1) to a damped onew( Hamiltonian (7) describes the dynamics of interacting
>1_),_ Where_a_s thed dynan_ncs_ remalns_purely oscnlatory. classical angular momenta. The latter exhibits solutions that
This is explicit when considering any single mode solutionconsistently match the semiclassical nature of the present
of the forme;(t;q) =cos@4t+ ;) and the ensuing dispersion approach the more, by appropriately changing the basis of
relation canonical coordinates, one identifies some new variables that

2 24 ir? could assume macroscopically _Iarge values and exha_lustively
Ag=16T*(1-w)sin(mq/L). (17 account for the system dynamitsin general, for a given
In terms of the original phases; and g; this implies a dynamical system, the. excitations_ corresponding to the
phase-locking phenomenon fov>1 (U>4T), which is  Proper dynamical mode@f any) provide bpth thg S|mplest
physically quite natural the more the on-site Coulomb repul-2nd natural way to construct macroscopic semiclassical so-
sion becomes large. Having in mind the metal-insulator tranlttions. Unfortunately, the identification of proper modes is
sition typical of the Hubbard model, which takes place attduivalent to making explicit solution of the Hamiltonian
analogous values dfi, we can argue that the change in the equations, which in our case are highly nonlinear. Neverthe-

dynamical behavior parametrized lymight bear memory less, based on the usual Fourier modes picture, where

of such transition. L
It is worth noting that, again to the first order, Eq$0) Y Y-
and(11) for Ag;, Bg; reduce to G=t kzl explik])Cr
A3j=—(T/Z)(aj+1—2aj+aj71), (18)  with k=2mk/L, C=A,B, one may wonder whether there
exists any integrable case corresponding to associate the
B3j:_(T/Z)(ﬁjJrl_sz_l',ijl) (19) macroscopically large number of spin degrees of freedom

with a finite number of excited Fourier modes. It turns out
which, despite the approximation introduced, still shows a&hat this is the case, at least for two classes of solutions.
nontrivial time dependence @&;, B3;. The comparison of
the above equations with those describing the tunneling phe-
nomena of Josephson junctidhds quite natural, coming ) o ) - )
from the fact the same equations can be obtained, in the First, it is easily verified that the case corresponding to
same linearized form, when considering the JosephsorfWo Single excited Fourier modgsandg, one for each fluid,
junction array Hamiltonian that can be represented in thé.e., A,;=L*?R,, A,=0, k#p, and B,=LY?Rg, B,=0,k
simplified form by H;,=3;C5,—g=; cosy1—¥).* This ~ #4, is solution of Eqs(8)—(11) with
is confirmed as well by Eq$A2) and(A4) of the Appendix _
which, within the present approximatiomR(,S;=1/2), re- Aj(t)=Raexpli[jp— wa(p)t+ @al}, (21)
produce exactly the equatid®y;={Cs;,H,,} for the on-site ~
chargesCs;. The special trait characteriziriy is the qua- Bj(t)=Rgexpi[jg— wg(q)t+ pgl}, (22

A. Vortex dynamics
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where Re=11—C2? with C=AB, and A=A,/L, B  andthereby reconstructing, |A;|, leaves the possibility to
=By/L, ¢, dg are arbitrary phases accounting for the satisfy the eigenvalue problem by exploiting just the phases

U(1) symmetry of dynamical equations and of Bj andA . o
For Az; andB3; constant in time, Eqg.10) and (11) are

conveniently rewritterisee the Appendjxin terms of action-

@A(P)=(= 4T UB) +4TAcosp, 23 angle-like variables defined in E(L3), as
wp(q)=(— 83+ UA)+4TBcosq. (24) Rj.1Sin(a@j+1—a;)+Rj_1sin(aj_1—a;)=0, (28)
The corresponding energy per site is straightforwardly ob- S 1SiNB 1~ B)+S_1SiNB_1—B)=0. (29

tained as

The general solution is not known. Of course a simple solv-

Ep.q=U(A+ H(B+3)— 2T[R,§ cosf)+ Ré COSEI]- able case is obtained by assuming bBhand S; constant
(25) and independent gf This leads to the vortex case discussed

in the previous subsection. A further solution exhibiting an
cal character encoded by the winding numhgemndg. No- R, can be factored out from the above conditions upon
tice that we have assumed periodic boundary conditions prosssuming thaRy,=Rg and Ry, 1=Rg, VI, with Re, Ro
viding our 1D lattice with the topology of the circle, aAd,  fixed constants. The same assumptions can be implemented
B; can be regarded as order parameters covering $wWo op Si+1, Sj_1, S0 that when they are inserted in E¢8)

configuration spaces. Within this picture the indigeandq  gng (29), tﬁese turn out to depend only on the difference

account for the numbe.r'of time%; andB; cover their con- Yj+1— 7}, With y=a, . The latter has two possible values
figurations spaces whilg goes from O toL. Indeed such gatisfying the equationsy, or w—y, for eachj, with 7y,
configurations are nothing but 1D vortex excitations once th‘?ime-dependent function. Then E@8) and(9) can be solved
phases of the order parameters are identified with the poterplicitly, when rewriting them in the action-angle form of
tial functions of two coupled fluids. Here the coupling is the Appendix. In fact, it turns out that a consistent solution is

fully conta_ined ir_1 t_he freq_uenciasA(p) and wB(_q)_. achieved providedysj,1— 5 =7,, and vy, — vy 1=7
Interestingly, it is possible to evaluate explicitly correla- _ y, , for eachj, which entails

tion functions for solutiong21) and (22). Their physical

mga}ning is 'bet_ter understood. when Writing them for_the Yoje1=im+ 1, voi=(i—1) 7+ y,. (30)
original fermionic system. In this case, two-site correlations _ _ .
within a single fluid(the one with up spins read v1 and vy, are time-dependent functions responsible for the
system’s phase dynamics as solutions of the corresponding
<Cfr ¢ +H'C'>:2(2A)||fj|71RA co{f)(j —D], 1#] equations given in EqgA1) and (A3). For instance in the
T (26) casey=a they read
whereas for sites belonging to the two different fluids are a1=(0po—UBg3o)t+ a4(0),
(cfici +H.c)=2(2A)-71(2B)' "'RsRg az=(Sp— UBgp)t+ a(0), (31)
X cogjp—1q+[ws(q) — wa(p)]t while the analogue foB;, B, is easily derived. Interest-
ingly, the time-dependent part of the phases keeps track of
+(¢a— ¢8)}- (27)  the coupling between the two fluids for any nonvanishing

value of the Coulomb repulsiol. Again, such a feature
Zhould be viable for experimental observation.

Apart from the initial conditionsy;(0), y,(0), the solu-

tion (30), (31) clearly exhibits a staggering in the phases both
on the even and on the odd sublattices. Making such a solu-

ond. but more important. the two-fluid correlation function tion consistent with periodic boundary conditions constrains
» DU Imp ' Ul ! unction e length of the latticd. to be L=4p, pe N. Once more

a]so exhibits a tme-dependent be.hawor, whenever.the de@ﬁis feature can be related to the macroscopic excitation of
sity of the two fluids or the topological charges are dlfferent.some Fourier modeéwo for each fluid. Explicitly for C
This last feature should be viable to experimental observa:-_ A ' y

tion.

with j#1. As expected, in both cases long-range order doe
not emerge since |2|, 2|B| are smaller than one in any
nontrivial case. However, two remarkable features emerge;
First, they manifestly keep track of the topological characte
of the solution through the winding numbepsand g. Sec-

1 jay(0) 1 ip _aai(0)
B. Staggered dynamics AL/AZE\/E[REeI 20 +iRge 1],

The general class of solutions characterized by the phase
dynamics is obtained wheBg; , A;; are assumed to be as- 1 ey (0)_ i1(0)
signed. In this case Eq&)—(11) reduce to a linear system of A3L/4:§\/E[ Ree “2% —iRoe “1™], (32
equations for the variabled;’s, and B;’s where proper
modes coincide with the eigenvalues of a certain seculaand A,=0 for k#p,3p, the analogue holding as well for
equation. In fact, one should recall that assigniyg, Ag; C=B, ¢=p.
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The minimum energy per sites of the above staggered As the number of first integrals of motions is B ( Az, and
solution—to be compared with successive results for differB;), whereas the equations are now 8, this case is noninte-
ent phases—is found to d&,=U(v+|v|)/4. It is important ~ grable. However, being interested in phase dynamics in
to observe how the independencefaffrom T (to be inter-  which caseA;; andBg; are constants for eaghthe solution
preted as the absence of a net global cujrésitows from  to Egs.(35—(38) can be worked out explicitly. The latter is
the fact that the contributions to the hopping term comingcharacterized by collective frequencieg, Ag for the A;’s
from subsequent lattice bonds, let us sgyjt1) and ( andBy’s of the formC;=C;(0)exp{rct) (C=AB, j=1,2),
+1,j +2), cancel each other. At the microscopic level, how-which are independent from each other.
ever, the hopping terms actually contribute in terms of local It is important to notice how the case presently studied
currents (these are essentially given byy,j,q1— vy differs from the staggered solutions described above since

=Yes Y2j~ Y2j—1= T~ ¥x) With opposite sign. Cj+,=C; is not contained in Eqs(28)—(29), namely,
Im[Cr(Cj+l+Cj_l)]=0. WhenC;(t) are inserted in Egs.
C. Many-sublattices solution (35—(38) one is able to recast them in the form
Further solutions to Eqg8)—(11) that correspond to the A, A,
excitation of a finite number of Fourier modésndowed U(B3;—B3p)=4T Az~ Aaip |, (40)
with a macroscopic characjeran be recovered by partition- 2 !
ing first the latticeA into n=L/q sublattices\ , of g sites @ B, B,
divisor of L), and introducing then the collective variables U(Az1— A32):4T( BszB— - Bng—), 41
2 1
q-1 q-1
Aa= ZO An+a Aaa—zo Asn+a) (33) 28p—Aa=Uvg+4T A32A—:+A31A—j), (42)
with 1 € (0,0—1), ae(1,n). HereA,, A}, andAg, still ful- B B
fill the commutation relations of é&lassical algebrasu(2). 26— Ng=Uwpp+4T Bng—l + 8318_2) , (43
2 1

It turns out that Eq98)—(11) can be rewritten in terms of the
above collective variables provided further assumptions argshereC; (Cg;) stay for initial conditionsC;(0) [C3;(0)],
stated. These amgl- =A3,/q, AJ— =A,/qwithje A,. When  and the constant of motion

this is the case, dynamical equations reduce to a seL.btf 4

equations now written in terms @,, A,, Bs,, B, exhib- va=Ag 1+ Az, 1g=B3;+ B3, (44)

iting the same structure. I_n the Fourier _transformed SPaCgre input data, whereas, , g, Asj, Bs; (consistently with
this amounts to the excitations nfmodes, i.e., v, vg=const) are the unknown parameters to be fixed.
N It is worth noticing that Eqs(40) and(41) turn out to be
= :i 2 okap R —Q (34) completely independent from,, Ag while in Egs.(42) and
NN =1 ar ST (43) N, and g can be incorporated insid8, and 8z by
redefining them afd\-=6-—A\c/2, C=A,B. At the opera-
(k=2mkIN) for k=mg, 1#mq (0<m=n), respectively. tive level this fact allows one to reconstruct the solution of
Solutions within this class are now obtained by solving theEgs.(40)—(43) for A\¢#0 from the case =0, which by the
remaining 4 equations, which preserve the same complexway identifies the fixed points of Eq&35)—(38). The inves-
structure of the original ones. tigation of such points is deepened in the next section.
For the simplest case=2 (n=1 being a subclass of
vortexlike solutiongthe dynamical equations are represented V. FIXED POINTS OF TWO-SUBLATTICE SOLUTION

b
y The present approach is able to givesamplified de-

scription of the system dynamics, with a number of interest-

1A= (= 0at UB3)Ar +4TAgA,, (39 ing features, as we have seen in the previous section. Nev-
. ertheless, as a secondary effect, it also gives the system
iBy=(— g+ UA3)B1+4TB3B,, (36 equilibrium states, which coincide in fact with fixed points of
the equations of motion. Many othémean-field-like ap-
iA,=(—p+UB3) A, +4TAA,, (37)  proaches are focused on the study of equilibrium and espe-
cially ground states of Hamiltoniav). For instance, from
B,=(— 85+ UAs)B,+ 4TByB, . (39) the Hartee-Fock approximatibhit is known that theT=0

phase space contains an antiferromagnetic, a ferromagnetic,
together with those foA* andB? . Correspondingly Hamil- and a paramagnetic phase @¢-0. In this section we shall
tonian (7) takes the form see that a S|r_n|Iar descrlptlpn of the grqund—state p_hase can be
already obtained by studying fixed points of the simple two-
N sublattice solution, the latter being given by E¢0)—(43)
Hy=—| U2~ > [8c(Cayt+Cay) — ve]+U(Ag By for A\c=0.
C=AB In particular, as Eqs(42) and (43) just fix 85, dg, we
search for the solutions of Eq&t0) and (41), in which the
+A3,B3) —2T(AAS +B.B5 +c.c)t. (39 unknowns are two. It is convenient to introduce the pair of
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new variablea=A3;Az,, b=B3;B3,, in terms of which the
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eters physically allowed, never provides real solutions. On

above equations reduce to the pair of fourth order, couplethe contrary, the vanishing of the second-order facta, iim

equations
(42— b)= 2(1+4a)2(u,§—4a) 9
BT T i aay a2
1+4b)%(v:i—4b
(vi—4a>=gz( e 4h) (46)

(1+4b)2— 413

with g=4T/U. The two equation$45) and (46) can be re-
cast into a single eight-degree equation for the variable

[ZX(1-g*) —4val[(1+v3)(Z2—4vR) —g*ZA(va+1
(47)

whereZ=1+4a, and the factows — 4a, which provides an
independent solution, has been factored [eee(i) below].
The variableb is then easily worked out from E@45).
First, let us notice that the independent solutign-4a
=0 implies v3—4b=0 leading toa= v4/4, b=1v3/4. As v
=vp+vg=2(s\/a+s,\b) with s,= =1, s,= =1, this so-
lution Imp|IeS A31: A32: VA/2, Bg]_: B32: VB/2 (tWO'

—2) 1= 4v}(Z2—-4v})°,

fact, leads to an antiferromagnetic solution. This can be seen
by first realizing that an analogous equation holds alsdfor
so that finally Eqs(45) and(46) reduce to two second order
ones

_ gX(1+4a)? 51)
 (1+4a)>— 413

2 b 2

g°(1+4b) 52

(1+4b)2-413’

which in order to consistently match,=vg imply a=b,

with
1/ 2|v
b:a:_(l_l)_

QN

Notice that, away from half-filling(which corresponds to
va=rg=0), the conditiong<<1 follows from Eqgs.(51) and
(52). Moreover, when calculating explicithAz; (Agy=va
—As,) and Bj; (Bs,=vg—Bsy) through formula (24),

(53

sublattice solutions with ferromagneticlike order on eachWwhich reads

sublattice. It has energy

H U
2—=—

Ng 2 ' “8)

1+v+1mVB+g(vi+Vé—2)

which matches the one of vortex solutién , [see Eq(25)]
in the untwisted casp=q=0. For fixed filling v= v+ vg
its minimum value depends on the actual valugpotWhen
g<1 (i.e., U>4, this is reached either far,=v,vg=0 or
for vg=v,v,=0, in which case the energy becomes

_Y 9 2
Epi=5|1tv—g+ 3507, (49

the solution describing ferromagnetism away from half- _

(54)

_l + 2 |VA|
A3l=§ Vp= VA+1_2\/1_—92 y

(59

_l + 2 |VB|
B31=§ vg= VB+1_2\/1_—92 y

one singles out the further restrictionva|=|vg|
<V(1—9g)/(1+g). The apparent freedom in choosing the
sign in Egs.(54) and (55) just corresponds to exchange the
role of A;; and Az, (B3, and Bgy). In fact, the physical
solutions turn out to be just two, in that the conditiar b
can be implemented in two different ways, namely;
Bs1, As=Bs, (paramagnetic and Az;=Bsy, Aszy=Bs;

filling within a single cluster, in that the average magnetiza‘(antiferromagnetm The energies corresponding to such so-
tion on the clusteM = (v5— vg)/2 coincides witht v/4. The | tions

subindexp in E; is to remind us that the solution on the
lattice, due to the arbitrary choice of the signMfon each
cluster, doesiot exhibit ferromagnetic order.

On the contrary, fog>1 the minimum value of expres-
sion (48) is reached whemw,= vg= v/2. Physically, it corre-

E’=B(1+V)+U(A2 +A2)—8T\/E—A2 \/E—A2
() 31 32 4 31 4 32

sponds to a paramagnetic solution even within a single clus- Eaf=2(1+ )+ 2UA3As,— 8T \/} —~A2, \/E —~A%,
ter, and has energy 2 4 4
U 2 2 differ only due to theU term, which is manifestly lower in
Ep=7|| 1+ i —gl1- V_) ) (500 the antiferromagnetic case. It turns out that the antiferromag-
2 2 4 netic cluster energy

Having in mind the phase diagram known from mean- U
field-like Hartree-Fock treatment of the Hubbard model, an Eaf=5(v+IVI V1-g?)
antiferromagnetic solution is also expected, where the energy
should be lower than both; andE, near half-filling and for  is always lower than paramagnetic case within the domain

(56)

large U. This can be worked out as a solution of E47)
when the magnetization is zero, namel{=vg. In this

specified byl va|=|vg|<V(1—g)/(1+9).

The successive comparison among E@), (49), and

case, it is easily realized that E@.7) can be rewritten as the (56) shows that the ground-state phase space for this two-

product of a second-order factogi—1)Z%+4v? (real for

sublattices solutioifFig. 1) exhibits a structure in qualitative

g<1) and a sixth-order factor which, in the range of param-agreement with many other theories, in particular, the one
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0 0.5 1 1.5 2 d

FIG. 1. The ground-state phase diagram of the one-band model for the two-site salutions the electron dopingd= 0 half-filling)
on the two-site cluster, anddl# U/4T. Its structure is in qualitative agreement with the diagram of Ref. 10, p. 256.

obtained in the low-density approximation for the one-bandnent with the expected insulating behavior of such regime,
model (Ref. 10. Moving from half-filling, in which case a and in practice on the single cluster the two solutions coin-
magnetic phase is found fdd>4T, the antiferromagnetic cide. However, the explicit solution of the equations of mo-
phase takes place at increasing valueblpand in any case, tion in the staggered case proves that at a dynamical level the
for filling greater than one quarter. Indeed, by requiring thatonly consistent way of moving from the fixed point is by
Ear<Eps, the transition line to the antiferromagnetic phasemeans of the staggered choice of phases.

is given by

VI. CONCLUSIONS

1 [ 2
V:§(9_1+ 1-g9>0. (57) The main object of this paper has been to develop an
approach to the Hubbard model quantum dynamics that is
For lower values of filling, the system is a nonmagneticnot based on the particular physical regime under investiga-
metal. Within such regime an extra transition emerges fotion, on the one hand, and is capable of reformulating the
g=1 from a paramagnetic solution with ferromagnetic struc-model dynamics in a form more tractable than that relying on
ture on each clustelenergyE), and a paramagnetic solu- the direct diagonalization of the model Hamiltonian, on the
tion with no order even within the clustefsnergyEy). Ap-  other. Such requirements have been achieved by combining
parently by increasingU the lattice begins to organize three ingredients, which are the representation of quantum
towards ferromagnetism. Let us notice that, consistently witilynamics within a coherent-state picture, the expression of
the 1D character of the model studied, both ferromagnetithe Hubbard Hamiltonian in terms of spin varialt® issued
and antiferromagnetic solutions exhibit only local order, infrom its fermionic standard form through the Jordan-Wigner
that the actual value of the magnetization on different two-+transformation(1), and the implementation of the TDVP
site clusters is uncorrelated. method. The choice of the trial stat®) has generated
In the previous section we explicitly gave the energiesHamiltonian (7) (that is H with the constraintsyc=0, C
corresponding to some simple solutions of the equation of=A, B) whose dynamics is governed by Eg@8) and (11),
motions exhibiting nontrivial dynamics. A natural question isand accounts for the evolution of the spin operator expecta-
then whether some of these solutions survive down to théion values.
ground state, or not. Interestingly, one can verify that, in fact, The resulting dynamical scenery has revealed both a rich
the staggered solution, with ener@y, at half-filling turns  structure—that corresponding to a pair ofX models
out to be degenerate with the two-site antiferromagnetic soeoupled through the Coulomb term—and interesting links
lution described above, with enerdy,:. Indeed, both of with other models.
them in this case have a vanishing hopping term, in agree- For |A,—|2, |Bj|2z0, one obtains a model of two coupled
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fluids at low density. In particular, in this limit, the dynamics argue that the general solution of fixed-point equations, if
has been recognized to have the form of two coupled latticavaliable on finite lattices by means of numerical analysis,
NLSE. A feature that is unusual for the standard NLSEshould exhibit a richer structure than the one obtained within
comes from the dependence of the off-site terms in Eg)s. standard mean-field schemes even for what concerns the

and(9) on the signs ofC;;, which allows for the fragmen- zero-temperature phase space. )
tation of the planar lattice in regions where eitt@g;~ Further developments of the present work can be envis-
+1/2 (sites occupied by electrons of typ@), or Cai= gggd along the follpwmg Im_es. As to the transfornjatﬂm)*ut
—1/2 (local depletion of electrons of typ@). The latter case s important to notice how its use has been possible because
suggests the occurrence of solitonlike behavior in corresporff the 1D character of the system. In higher dimensions, in
dence to the negative sign of the off-site terms. fact, this transformation depends explicitly on the 1D path
The opposite regiméAj|2, |Bj|221/4 has been studied in e_mpl(_)yed to cover and thus enumerate exhaustively_the lat-
Sec. Ill, where the equations of motion have revealed that thiice sites. Such a dependence introduces in the hopping term
model actually describes two coupled Josephson-junction agf the Hamiltonian a site-dependent exponential phase fac-
rays. In particular the conditiofC;|?=1/4 makes emerge a tor, which does not prevent the implementation of the ap-
dynamics concerning essentially the phasgs g; that can proa_ch devel_oped here. Hence, in spite of_the increased com-
be solved exactly after reducing the equations of the AppenPlexity thus introduced, a natural extension of the present
dix to the linear system described by E¢s4) and(15). Its ~ Work is in the analysis of the 2D case dynamics.
main feature is certainly the macroscopic effect of phase AS a matter of fact, due to the large number of degrees of
locking [ (@;— ;) —0] which is enacted when going from freedom mvoIveQ, th_e 1D case itself is allready not fully trac-
U<4T to U>4T, and might be related to the metal- table via numerical investigations. In this respect, focusing
insulator transition exhibited by the Hubbard model. on zero-dimensional systems is almost expected in order to
Pursuing the investigation of dynamical situations innave a dependable numerical description. On the other hand,
which phases are active ahdj|2,|Bj|2=const has led us to it is well known that the physics of such mesoscopic systems
recognize two other interesting results. First, a set of topol€-g- quantum dots and Josephson juncienproperly de-
logical solutions has been obtained by considering unifornPicted in many cases by Hubbard-like Hamiltoniahs?Fur-
configurationsCsj=Cs/L, C=A,B, which are nontrivial ther investigation of such systems within the scheme pro-
when one excludes the half-filling case. The phaspand ~ Posed here seems promising. o
B; are allowed to change gss varied so as to give rise toa A final point still deserves to be deepened, which is the
pair of vortexlike configurations labeled by two integers €duantization of the spin variables. Despite the obvious dif-

andq for A; andB; (the fluid order parametergespectively. ficulty of such a task in generélthe dynamical situations
Also, the time behavior exhibits a dependence on the eledi€re investigated, involving the mac_roscoplc_excnatlon of
tronic fillings as well as on the topological characters/€W System modes, seems quite feasible to this end.
through the frequencies o(p) and wg(q).
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APPENDIX

reduced to a set of four data, namely the value$Gsf for = (1/4— Agj)m, Sj=(1/4— 351)1/2 with the Poisson brackets
the sublattices of both even and odd sites. i;al Agit=8;liti, {8 ,Bg} =3 /it, it is found
Based on the polygonal symmetry of the spin equations o R
motion their number has been reduced by introducing the C e _ _ i o
collective variables(33) in Sec. IlIC. The first nontrivial %= On UB3'+2TA3JiE§(:j) R codai—ey), (AL

case(but also the only one directly tractable in an analytic

way) has been shown to correspond to the two-sublattice . .

solutions C;=C,, C3;=Cgy, |=j+2, Vj). The analysis of Ag=2TR iez(j) Risina;—a;), (A2)

the fixed points of Eqs(35)—(38) allows one to reconstruct

the set of configurations in which those corresponding to the :

minimum energy are implicitly contained as a consequence Bi= 5B_UA3J+2TB3ji2(. 5 CogBi— By,
. - () 9

of the absence of dynamics. In Sec. V we specialized to the

latter in order to obtain a zero-temperature phase space. No- . )

ticeably, we have seen that already such a simple two- B3j=2TS 2, Ssin(B;—B), (A4)

sublattice solution contains all the qualitative features of e

similar diagrams obtained in many other theories. Hence, wavhere(j) indicates the set of the nearest-neighbor sites.

(A3)
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