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Spin picture of the one-dimensional Hubbard model: Two-fluid structure and phase dynamics

Arianna Montorsi and Vittorio Penna
Dipartimento di Fisica and Unita` INFM, Politecnico di Torino, I-10129 Torino, Italy

~Received 12 May 1999!

We propose a scheme for investigating the quantum dynamics of interacting electron models by means of a
time-dependent variational principle and spin coherent states of space lattice operators. We apply such a
scheme to the one-dimensional Hubbard model, and solve the resulting equations in different regimes. In
particular, we find that at low densities the dynamics is mapped into two coupled nonlinear Schro¨dinger
equations, whereas near half-filling the model is described by two coupled Josephson-junction arrays. Focusing
then to the case in which only the phases of the spin variables are dynamically active, we examine a number
of different solutions corresponding to the excitations of few macroscopic modes. Based on fixed-point equa-
tions of the simpler among them, we show that the standard one-band ground-state phase space is found.
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I. INTRODUCTION

Investigating quantum dynamics of strongly correlat
many-body systems is a hard task since, even for extrem
simplified models, the interactions of the large number
degrees of freedom are usually affected by a nonlinear c
acter. At the operational level this entails the impossibility
evaluating explicitly the action of the propagator know
from the Schro¨dinger equation, that is the evolutionuF&
5exp@2itH/\#uF0& of a stateuF0& governed by the Hamil-
tonian H. A standard way to reduce such a difficulty to
more tractable form consists in recasting the purely quan
problem within an appropriate coherent states picture o
the algebraic structure characterizingH has been identified
This leads to represent the system evolution through
equations of motion issued from an effective classi
Hamiltonian H expressed in terms of the coherent-st
parameters.1

A systematic development of such an approach is p
vided by the time-dependent variational principle~TDVP!
procedure.2 This amounts to constructing a trial macroscop
wave functionuC& that contains time-dependent paramet
whose evolution is derived so as to optimize the approxim
tion of the quantum propagator action.3 On this basis, using
the generalized coherent states to construct the trial stateuC&
is quite advantageous in that the coherent-state param
naturally labeluC& and make explicit its dependence on t
algebraic structure ofH, namely, on the operators describin
the microscopic physical processes therein. By making
phase that appears inuC& coincide with the effective action
the Schro¨dinger equation turns out to be automatically sa
fied when projected ontouC&.

In a recent paper4 such a scheme was specialized to t
case of interacting electrons described by the Hubb
Hamiltonian. There the coherent states enteringuC& were
specific to the physical regimes~e.g., superconducting, ant
ferromagnetic, etc.!, the latter selecting case by case the a
propriate approximate algebraic framework within t
Hamiltonian dynamical algebra.

The standpoint here adopted is instead to implemen
unified TDVP treatment independent of the particular phy
cal regime and provide a coherent state picture of electr
PRB 600163-1829/99/60~17!/12069~10!/$15.00
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on the ambient lattice, whatever the model interaction ac
ally is. Even though this approach is quite general, in
sequel we shall develop it for the Hubbard Hamiltonian.

It is well known that the Hubbard Hamiltonian can b
rewritten in terms of two coupledXX models of 1/2 spin
operators by means of the Jordan-Wigner transformat
Such a transformation can be performed in any dimensio
well as, in principle, for any electron Hamiltonian, and lea
quite naturally to a picture relying on spin coherent sta
~SCS!.1 When this is used explicitly within the TDVP frame
work, the resulting equations of motion are recognized
describe two coupled fluids, which dynamics we shall d
cuss.

A basic trait of the spin description is that its semiclas
cal version is more reliable the more the spins are larg5

Since this feature is in general not realized when start
from quantum 1/2 spin operators, we shall look here, in p
ticular, for solutions of the equations of motions correspon
ing to the macroscopic excitations of few system modes
which case we expect to describe actual regimes for the H
bard model itself. The problem of mode requantization, na
rally in order due to the expected quantum character of
low-temperature regime, is left to a successive analysis.6

The choice ofuC& as a direct product of single-site Bloc
states, representing the only assumption for our construc
deserves some comments as to the expected reduction o
number of states in the Hilbert space that are actually av
able for the system dynamics. Such an effect usually occ
in a number of mean-field approximations like the stand
Hartree-Fock~HF! in which the dominating features of th
system are accounted for in an explicit way thanks to
extreme reduction of the states accessible to the system

In this respect, using coherent states relative to the op
tors ofH defined in the ambient lattice is by construction le
restrictive than using a subset of states tailored for a spe
regime. The advantage coming from this choice is manifo
First, the structure ofuC& is however able to produce a
effective HamiltonianH that inherits both the nonlocal an
the nonlinear character ofH, contrary to the Hartree-Fock
~HF! scheme, in whichH reduces to a sum of single-sit
linear Hamiltonians. In passing, we notice that in many ca
H exhibits a form that is endowed with the same complex
12 069 ©1999 The American Physical Society
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12 070 PRB 60ARIANNA MONTORSI AND VITTORIO PENNA
of H. In fact, the nontrivial form ofH reflects the basic
character of the TDVP method that singles outuC& varia-
tionally as the best solution to the original Schro¨dinger
equation3, whereas within the HF approximation what
solved is a different Schro¨dinger equation, involving just the
linearized Hamiltonian.

Second, as a consequence of the above feature, als
propagation of any initial state is sustained by the full Ham
tonian, rather than by its linearized HF version. Indeed, i
easily shown that the latter entails quantum states wh
time evolution is periodic, while the TDVP dynamics is e
dowed with a much richer structure. In particular, the d
namics of the expectation values of spin operators~our dy-
namical variables! is consistently reproduced, whereas, wh
turning to expectation values of products of spin operato
the description obtained does not differ substantially fr
the one that can be achieved within the random-phase
proximation.

The Jordan-Wigner transformation mentioned abo
amounts to rewriting the electron annihilation operatorscj ,h ,
with h5↑,↓, in terms of Pauli spin matricessa, j ,ta, j , with
a51,2,3, which locally form two~commuting! su(2) alge-
bras. For the Hubbard model, it turns out that in dimens
D.1 the possible transformed Hamiltonians differ fro
each other due to a certain exponential factor in front of
hopping term, which form in fact depends on the order
chosen for labeling the lattice sites. This problem has b
already investigated in the literature,6 and in the present pa
per we shall limit our discussion to the one-dimensional~1D!
case. Explicitly,

cj ,↑5Pj~s3!s j
2 , cj ,↓5PL~s3!Pj~t3! t j

2 , ~1!

wherePj (n3)8P l , j s3,l , n5s,t, from which the expres-
sions for cj ,s

† are straightforwardly derived. HereL is the
number of lattice sites,n j

18n1,j1 in2,j , with n5s,t. Re-
markably, this transformation maps fermions, which an
commute on different sites, into spins, which commute
different sites, i.e.,@sa, j ,sb,l #50 for l Þ j .

Once Eqs.~1! are inserted into the Hubbard Hamiltonia
the latter becomes

H5(
j 51

L

@Us3,j t3,j2T~s j
1s j 11

2 1t j
1t j 11

2 1H.c.!#, ~2!

when periodic boundary conditions are considered, and
odd number of holesNh

h (h5↑,↓) on boths sublattices is
assumed,7 otherwise boundary terms~corresponding toj
5L) in the hopping contribution depending onT have to be

rewritten as (ep(12N↑
h)sL

1s1
21ep(12N↓

h)tL
1t1

21H.c.). In Eq.
~2! the extra terms that take advantage of conserved qu
ties such as the total electron number and the magnetiza
have been ignored.

In the next section, based on the spin-coherent-state
ture, we shall implement the TDVP procedure whereby o
can derive from Eq.~2! the effective Hamiltonian and th
related motion equations. In Sec. III, upon recognizing
two-fluid structure of the resulting model, we shall sol
explicitly the motion equations of each fluid within a phas
locking approximation, and evidenciate how the Coulom
interaction drives the system to a transition~apparently re-
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lated to the metal-insulator one! in which also the phases o
the two fluids become strongly locked. Tunneling pheno
ena between the two fluids are also discussed. In Sec. IV
specialize to the study of solutions exhibiting a pure ph
dynamics, and stress the aspect concerning the macrosc
ity of the excited degrees of freedom. In Sec. V we show t
the ground-state phase space known from standard m
field treatments can be obtained within our scheme by a
lyzing the fixed points of a very simple collective phase s
lution, corresponding, in fact, to describe the whole lattice
a sum of two-site clusters. Finally Sec. VI is devoted to g
some conclusions.

II. COHERENT-STATES PICTURE

Approaching interacting spin systems within a semicl
sical limit has been deeply investigated. In particular, it
well understood that a consistent description can
obtained1 by projecting the Hamiltonian onto a basis of SC
In this case, an exact result obtained by Lieb5 shows that the
projected Hamiltonian reproduces the behavior of the or
nal one the more the spins are large, and in any case it g
upper and lower bounds to the ground-state energy of
quantum Hamiltonian~the exact value being recovered fo
infinitely large spins!. One-half SCS are given by

uh&[C~h!ehJ1u21/2&, ~3!

where the maximum weight vectoru21/2& belongs to theJ3
spectrum@J3u61/2&5(61/2)u61/2&] and fulfills the condi-
ton J2u0&50, J2 @J15(J2)1# representing the lowering
~raising! operator. Also, defining the normalization factor
C(h)51/A11uhu2 ensures the condition̂huh&51. The ex-
pectation values of generatorsJ3 ,J6 ,

S35^J3&5
uhu221

2~11uhu2!
~4!

S25^J2&5
h

~11uhu2!
, ~5!

obtained by means of definition~3! (^•&8^hu•uh&), clearly
exhibit their semiclassical character when considering
fact that S3 , S6 satisfy the equation S3

21S2
21S1

2

51/4 @(S18S11 iS2)#, namely, the same sphere equati
fulfilled by the classic counterpart of the sp
(J1 ,J2 ,J3) (J18J11 iJ2). In passing we notice that th
spin variables, assuming limited values, keep track of
fermionic nature of the underlying system.

The set-up just developed can be readily extended to
interacting spins ofH. Assigning at each site a pair of SC
ua j&, ub j& relative to the aboves-spin andt-spin, respec-
tively, allows one to implement the TDVP procedure that
essentially based on constructing a macroscopic trial w
function accounting for the microscopic processes of the s
tem. The simplest choice for a spin model is realized throu
the state

uC&[eiS/\ua& ^ ub&, ~6!

whereua& ^ ub&5 ^ j (ua j& ^ ub j&), that provides the expecta
tion values Aj* 5^Cus j

1uC& (Bj* 5^Cut j
1uC&) and A3 j
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PRB 60 12 071SPIN PICTURE OF THE ONE-DIMENSIONAL HUBBARD . . .
5^Cus3,j uC& (B3 j5^Cut3,j uC&) of s spins (t spins!. The
description of the microscopic dynamical activity in terms
such semiclassical variables~actually they correspond to a
ensemble of classical spins! is achieved by showing that the
obey a set of Hamiltonian equations standardly derived fr
imposinguC& to obey the weaker version of the Schro¨dinger
equation^Cu( i\] t2H)uC&50, the latter requirement lead
ing as well to interpretS in Eq. ~6! as the effective action
The explicit form of TDVP Hamiltonian generating suc
Hamiltonian equations turns out to be

^H&5^bu ^ ^auHua& ^ ub&,

while the Poisson brackets obeyed by the spin ensemble
ables implicitly follow from the equations of motion them
selves.

Hubbard Hamiltonian~2! in one dimension, when pro
jected onto the trial stateua& ^ ub&, becomes

^H&5Ns

U

4
1

U

2
~A31B3!1U(

j
A3 j B3 j1HT , ~7!

where A38( jA3 j , B38( jB3 j and the hopping termHT ,
which reads

HT82T(
j

~Aj* Aj 111Bj* Bj 111H.c.!,

is nothing but the sum of two classicalXX models. The
Hamiltonian equations generated by the TDVP procedure
given by

iȦ j5~2dA1UB3 j !Aj12TA3 j~Aj 111Aj 21!, ~8!

iḂ j5~2dB1UA3 j !Bj12TB3 j~Bj 111Bj 21!, ~9!

iȦ3 j52T@Aj* ~Aj 111Aj 21!2Aj ~Aj 11* 1Aj 21* !#,

~10!

iḂ3 j52T@Bj* ~Bj 111Bj 21!2Bj ~Bj 11* 1Bj 21* !#,

~11!

wheredA8mA2U/2, dB8mB2U/2, once the Hamiltonian
^H& is rewritten in the form

H8^H&1mA xA1mB xB ~12!

containing the constraintsxA8sA2A3 , xB8sB2B3 with
Lagrange multipliersmA , mB . The Poisson brackets implic
itly entailed by Eqs.~8!–~11! are given by

$Cj* ,Cj%52C3 j / i\, $C3 j ,Cj* %5Cj* / i\

with C5A,B, and exhibit the structure of a~classical! angu-
lar momentum algebra. Also, they state thatA3 , B3, related
to the total number of spin-up and spin-down electrons
the formulas

K (
j

nj↑L 5A31Ns/2, K (
j

nj↓L 5B31Ns/2,

respectively, wherenj s5cj s
1 cj s (s5↑,↓) are constants o

motion since$A3 ,H%505$B3 ,H%. It is thus natural inves-
f

ri-

re

y

tigating spin dynamics whenA3 , B3 are assumed to hav
fixed valuesnA ,nB by inserting such information via the
constraintsxA505xB .

The conservation, for eachj, of the Casimir functions
CA j5A3 j

2 1uAj u2 and CB j5B3 j
2 1uBj u2 is preserved as well

On the contrary, the total magnetization vectorM
5(Mx ,M y ,Mz)5( jM j ~where Mx1 iM y8M 1 with M 1

5( j ^Cus j
1t j

2uC&5( jAj* Bj ) is no longer conserved bu
only its z component Mz5

1
2 ( j^Cu(s3,j2t3,j )uC&

5 1
2 ( j (A3 j2B3 j ). In addition, we also notice that the usu

particle-hole symmetry of the quantum Hamiltonian surviv
at the semiclassical level, and it is implemented by
particle-hole transformationA3 j→2A3 j andB3 j→2B3 j .

Two remarks are now in order. First, due to the choice
macroscopic wave function~6!, Hamiltonian ~7!, and Eqs.
~8!–~11! mantain the same structure of Hamiltonian~2! and
of the ensuing Heisenberg equations for the quantum s
variables, respectively, which feature is nontrivial.4

Moreover, we notice that, when moving from the latti
description to the continuum limit8 (Cj→C(x)
5uC(x)ueiu(x), xPR, C5A,B), the resulting equations ca
be interpreted as two nonlinear Schro¨dinger equations
~NLSE! for the order-parameter fieldsA(x), B(x). A part
from the nonlinearity issued fromC3 j56A1/42uCj u2 that is
capable of producing the standard quartic termuCj u4 for
uCj u2!1/4, a further contribution in this sense comes fro
the Coulomb termsUA3 jB3 j . The standard reduction of th
nonlinear Schro¨dinger equation to the continuity and th
Bernoulli equation9 governing the dynamics of the density
like field uC(x)u2 and the phase fieldu(x), respectively, sug-
gests that Eqs.~8!–~11! can be seen as describing the dyna
ics of a coupled two-fluid lattice model.

III. TWO-FLUID DYNAMICS

The two-fluid structure of Eqs.~8!–~9! has been recog
nized by reducing them to the standard form~cubic NLSE!
thanks to the assumptionuCj u2!1/4, namely, considering
low-density fluids. In this regime the usual hydrodynam
picture is made far more complicated by the presence ofA3 j ,
B3 j in front of the off-siteT terms in Eq.~8!, and Eq.~9!. In
fact such factors, in addition to the usual Laplacian-li
terms of the~lattice! Schrödinger equation characterized b
A3 j , B3 j.21/2, allow for the occurrence of configuration
where theT terms exhibit anomalous signs (A3 j , B3 j.0)
through extended regions of the lattice. The investigations
the corresponding dynamics is deferred to a future study

A regime exhibiting, in a sense, an opposite charac
(uCj u2.1/4→C3 j.0) will be examined in the present se
tion. The two-fluid structure still characterizes the moti
equations even if the dynamics mainly concerns the ph
variables, the densitylike variablesuCj u2 being now essen-
tially constant. It is worth noting as well how such a regim
~characterized by a Bernoulli-like dynamics! is nothing but
that the quantum phase regime naturally emerging from
XX model form ofHT for uCj u5const. In fact, by setting firs

Aj5Rj exp~ ia j !, Bj5Sj exp~ ib j !, ~13!

where Rj
2[1/42A3 j

2 , Sj
2[1/42B3 j

2 , consistently equipped
with the standard canonical commutation relatio
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12 072 PRB 60ARIANNA MONTORSI AND VITTORIO PENNA
$a l ,A3 j%5d l , j / i\5$b l ,B3 j%, and recasting then Eqs.~8!–
~11! in the action-angle variable version contained in t
Appendix, one is able to work out the two linear secon
order equations,

ä j54T2@w~b j 1122b j1b j 21!1~a j 1122a j1a j 21!#,
~14!

b̈ j54T2@w~a j 1122a j1a j 21!1~b j 1122b j1b j 21!#,
~15!

with w5U/4T, under the assumptionsuA3 j u,uB3 j u!1/2,
(a j 112a j )'0'(b j 112b j ). Eqs. ~14! and ~15! describe
dynamics of first-order quantities and exhibit the Lagrang
structure typical of two classical planarXX models nontrivi-
ally phase coupled for any nonvanishingUÞ0.

Remarkably Eqs.~14! and ~15! can be decoupled~and
solved! upon definingu j5a j1b j , w j5a j2b j . In this case
they become

ü j54T2~11w!~u j 1122u j1u j 21!,

ẅ j54T2~12w!~w j 1122w j1w j 21!, ~16!

whose solution can be easily worked out in terms of Fou
modes. In particular, let us notice that the parameterw plays
a relevant role, in that it drives thew dynamics of the system
from an oscillatory regime (w,1) to a damped one (w
.1), whereas theu dynamics remains purely oscillatory
This is explicit when considering any single mode soluti
of the formw j (t;q)5cos(lqt1nj) and the ensuing dispersio
relation

lq
2516T2~12w!sin2~pq/L !. ~17!

In terms of the original phasesa j and b j this implies a
phase-locking phenomenon forw.1 (U.4T), which is
physically quite natural the more the on-site Coulomb rep
sion becomes large. Having in mind the metal-insulator tr
sition typical of the Hubbard model, which takes place
analogous values ofU, we can argue that the change in t
dynamical behavior parametrized byw might bear memory
of such transition.

It is worth noting that, again to the first order, Eqs.~10!
and ~11! for A3 j , B3 j reduce to

Ȧ3 j52~T/2!~a j 1122a j1a j 21!, ~18!

Ḃ3 j52~T/2!~b j 1122b j1b j 21!, ~19!

which, despite the approximation introduced, still shows
nontrivial time dependence ofA3 j , B3 j . The comparison of
the above equations with those describing the tunneling p
nomena of Josephson junctions11 is quite natural, coming
from the fact the same equations can be obtained, in
same linearized form, when considering the Josephs
junction array Hamiltonian that can be represented in
simplified form by HJJ5( jC3 j

2 2g( j cos(gj112gj).
12 This

is confirmed as well by Eqs.~A2! and~A4! of the Appendix
which, within the present approximation (Rj ,Sj.1/2), re-
produce exactly the equationĊ3 j5$C3 j ,HJJ% for the on-site
chargesC3 j . The special trait characterizingH is the qua-
-
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dratic termA3 jB3 j that generates a coupled phase dynam
via Eqs.~14! and ~15!, namely, a linearized system of tw
U-coupled arrays. Also, this suggests to define here a qu
tity that describes the net local current between the two
rays. If we letAj andBj play the role of the Josephson wav
functions, andA3 j , B3 j as on-site charges, such current tur
out to satisfy the equation

I j.2
T

2
~w j 1122w j1w j 21!, ~20!

where I j8Ȧ3 j2Ḃ3 j . Hence the tunneling phenomeno
keeps track itself of the dependence onw, vanishing in the
strong Coulomb repulsion regime (U.4T).

IV. PHASE DYNAMICS

Apart from the case related to Eqs.~18! and ~19!, in the
present paper we shall investigate solutions of Eqs.~8!–~11!
such that only the phases play a relevant dynamical role,A3 j
and B3 j being constant in time. If, on the one hand, t
dynamical situations in whichA3 j , B3 j are involved exhibit
a complex behavior and their investigation goes beyond
purposes of the present paper, on the other hand, consid
only a j , b j as dynamically active still entails situations th
are far from being trivial and facilitates the recognition of t
topological features that possibly characterize the solutio

Hamiltonian ~7! describes the dynamics of interactin
classical angular momenta. The latter exhibits solutions
consistently match the semiclassical nature of the pre
approach the more, by appropriately changing the basi
canonical coordinates, one identifies some new variables
could assume macroscopically large values and exhausti
account for the system dynamics.10 In general, for a given
dynamical system, the excitations corresponding to
proper dynamical modes~if any! provide both the simples
and natural way to construct macroscopic semiclassical
lutions. Unfortunately, the identification of proper modes
equivalent to making explicit solution of the Hamiltonia
equations, which in our case are highly nonlinear. Nevert
less, based on the usual Fourier modes picture, where

Cj5L21/2(
k51

L

exp~ i k̃ j !C̃k ,

with k̃52pk/L, C5A,B, one may wonder whether ther
exists any integrable case corresponding to associate
macroscopically large number of spin degrees of freed
with a finite number of excited Fourier modes. It turns o
that this is the case, at least for two classes of solutions

A. Vortex dynamics

First, it is easily verified that the case corresponding
two single excited Fourier modesp andq, one for each fluid,
i.e., Ãp8L1/2RA , Ãk50, kÞp, and B̃q8L1/2RB , B̃k50, k
Þq, is solution of Eqs.~8!–~11! with

Aj~ t !5RA exp$ i @ j p̃2vA~p!t1fA#%, ~21!

Bj~ t !5RB exp$ i @ j q̃2vB~q!t1fB#%, ~22!
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where RC[A 1
4 2C2 with C5A,B, and A5A3 /L, B

5B3 /L, fA , fB are arbitrary phases accounting for t
U(1) symmetry of dynamical equations and

vA~p!5~2dA1UB!14TA cosp̃, ~23!

vB~q!5~2dB1UA!14TB cosq̃. ~24!

The corresponding energy per site is straightforwardly
tained as

Ep,q5U~A1 1
2 !~B1 1

2 !22T@RA
2 cosp̃1RB

2 cosq̃#.
~25!

The main feature of solutions~21! and~22! is their topologi-
cal character encoded by the winding numbersp andq. No-
tice that we have assumed periodic boundary conditions
viding our 1D lattice with the topology of the circle, andAj ,
Bj can be regarded as order parameters covering twoS1

configuration spaces. Within this picture the indicesp andq
account for the number of timesAj andBj cover their con-
figurations spaces whilej goes from 0 toL. Indeed such
configurations are nothing but 1D vortex excitations once
phases of the order parameters are identified with the po
tial functions of two coupled fluids. Here the coupling
fully contained in the frequenciesvA(p) andvB(q).

Interestingly, it is possible to evaluate explicitly correl
tion functions for solutions~21! and ~22!. Their physical
meaning is better understood when writing them for
original fermionic system. In this case, two-site correlatio
within a single fluid~the one with up spins!, read

^cj↑
† cl↑1H.c.&52~2A! u l 2 j u21RA cos@ p̃~ j 2 l !#, lÞ j ,

~26!

whereas for sites belonging to the two different fluids are

^cj↑
† cl↓1H.c.&52~2A!L2 j~2B! l 21RARB

3cos$ j p̃2 l q̃1@vB~q!2vA~p!#t

1~fA2fB!%. ~27!

with j Þ l . As expected, in both cases long-range order d
not emerge since 2uAu, 2uBu are smaller than one in an
nontrivial case. However, two remarkable features eme
First, they manifestly keep track of the topological charac
of the solution through the winding numbersp and q. Sec-
ond, but more important, the two-fluid correlation functio
also exhibits a time-dependent behavior, whenever the d
sity of the two fluids or the topological charges are differe
This last feature should be viable to experimental obse
tion.

B. Staggered dynamics

The general class of solutions characterized by the ph
dynamics is obtained whenB3 j , A3 j are assumed to be as
signed. In this case Eqs.~8!–~11! reduce to a linear system o
equations for the variablesAj ’s, and Bj ’s where proper
modes coincide with the eigenvalues of a certain sec
equation. In fact, one should recall that assigningB3 j , A3 j
-

o-

e
n-

e
s

s

e.
r

n-
.
a-

se

ar

and thereby reconstructinguBj u, uAj u, leaves the possibility to
satisfy the eigenvalue problem by exploiting just the pha
of Bj andAj .

For A3 j andB3 j constant in time, Eqs.~10! and ~11! are
conveniently rewritten~see the Appendix! in terms of action-
angle-like variables defined in Eq.~13!, as

Rj 11 sin~a j 112a j !1Rj 21 sin~a j 212a j !50, ~28!

Sj 11 sin~b j 112b j !1Sj 21 sin~b j 212b j !50. ~29!

The general solution is not known. Of course a simple so
able case is obtained by assuming bothRj and Sj constant
and independent ofj. This leads to the vortex case discuss
in the previous subsection. A further solution exhibiting
interesting dynamics is obtained by noticing thatRj 11 ,
Rj 21, can be factored out from the above conditions up
assuming thatR2l5RE and R2l 115RO , ; l , with RE , RO
fixed constants. The same assumptions can be impleme
on Sj 11 , Sj 21, so that when they are inserted in Eqs.~28!
and ~29!, these turn out to depend only on the differen
g j 112g j , with g5a,b. The latter has two possible value
satisfying the equations,g* or p2g* for eachj, with g*
time-dependent function. Then Eqs.~8! and~9! can be solved
explicitly, when rewriting them in the action-angle form o
the Appendix. In fact, it turns out that a consistent solution
achieved providedg2 j 112g2 j[g* , and g2 j2g2 j 215p
2g* , for eachj, which entails

g2 j 115 j p1g1 , g2 j5~ j 21!p1g2 . ~30!

g1 and g2 are time-dependent functions responsible for
system’s phase dynamics as solutions of the correspon
equations given in Eqs.~A1! and ~A3!. For instance in the
caseg5a they read

a15~dA2UB3O!t1a1~0!,

a25~dA2UB3E!t1a2~0!, ~31!

while the analogue forb1 , b2 is easily derived. Interest
ingly, the time-dependent part of the phases keeps trac
the coupling between the two fluids for any nonvanishi
value of the Coulomb repulsionU. Again, such a feature
should be viable for experimental observation.

Apart from the initial conditionsg1(0), g2(0), thesolu-
tion ~30!, ~31! clearly exhibits a staggering in the phases bo
on the even and on the odd sublattices. Making such a s
tion consistent with periodic boundary conditions constra
the length of the latticeL to be L54p, pPN. Once more
this feature can be related to the macroscopic excitation
some Fourier modes~two for each fluid!. Explicitly for C
5A

AL/45
1

2
AL@REeia2(0)1 iROeia1(0)#,

A3L/45
1

2
AL@REeia2(0)2 iROeia1(0)#, ~32!

and Ak50 for kÞp,3p, the analogue holding as well fo
C5B, f5b.
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The minimum energy per siteEs of the above staggere
solution—to be compared with successive results for diff
ent phases—is found to beEs5U(n1unu)/4. It is important
to observe how the independence ofEs from T ~to be inter-
preted as the absence of a net global current! follows from
the fact that the contributions to the hopping term com
from subsequent lattice bonds, let us say (j , j 11) and (j
11,j 12), cancel each other. At the microscopic level, ho
ever, the hopping terms actually contribute in terms of lo
currents ~these are essentially given byg2 j 112g2 j
5g* , g2 j2g2 j 215p2g* ) with opposite sign.

C. Many-sublattices solution

Further solutions to Eqs.~8!–~11! that correspond to the
excitation of a finite number of Fourier modes~endowed
with a macroscopic character! can be recovered by partition
ing first the latticeL into n5L/q sublatticesLa of q sites (q
divisor of L), and introducing then the collective variable

Aa8 (
l 50

q21

Aln1a , A3a8 (
l 50

q21

A3(ln1a) , ~33!

with l P(0,q21), aP(1,n). HereAa , Aa* , andA3a still ful-
fill the commutation relations of a~classical! algebrasu(2).
It turns out that Eqs.~8!–~11! can be rewritten in terms of th
above collective variables provided further assumptions
stated. These areA3 j5A3a /q, Aj5Aa /q with j PLa . When
this is the case, dynamical equations reduce to a set of 4L/q
equations now written in terms ofA3a , Aa , B3a , Ba exhib-
iting the same structure. In the Fourier transformed sp
this amounts to the excitations ofn modes, i.e.,

Ãk5
1

AN
(
a51

n

eik̃aAa , Ãl50, ~34!

( k̃52pk/N) for k5mq, lÞmq (0,m<n), respectively.
Solutions within this class are now obtained by solving
remaining 4n equations, which preserve the same comp
structure of the original ones.

For the simplest casen52 (n51 being a subclass o
vortexlike solutions! the dynamical equations are represen
by

iȦ15~2dA1UB31!A114TA31A2 , ~35!

iḂ15~2dB1UA31!B114TB31B2 , ~36!

iȦ25~2dA1UB32!A214TA32A1 , ~37!

iḂ25~2dB1UA32!B214TB32B1 . ~38!

together with those forAj* andBj* . Correspondingly Hamil-
tonian ~7! takes the form

H25
Ns

2 H U/22 (
C5A,B

@dC~C311C32!2nC#1U~A31B31

1A32B32!22T~A1A2* 1B1B2* 1c.c.!J . ~39!
-

g

-
l

re

e

e
x

d

As the number of first integrals of motions is 3 (H, A3, and
B3), whereas the equations are now 8, this case is noni
grable. However, being interested in phase dynamics
which caseA3 j andB3 j are constants for eachj, the solution
to Eqs.~35!–~38! can be worked out explicitly. The latter i
characterized by collective frequencieslA , lB for the Aj ’s
andBj ’s of the formCj5Cj (0)exp(ilCt) (C5A,B, j 51,2),
which are independent from each other.

It is important to notice how the case presently stud
differs from the staggered solutions described above s
Cj 125Cj is not contained in Eqs.~28!–~29!, namely,
Im@Cj* (Cj 111Cj 21)#50. WhenCj (t) are inserted in Eqs
~35!–~38! one is able to recast them in the form

U~B312B32!54TS A32

A1

A2
2A31

A2

A1
D , ~40!

U~A312A32!54TS B32

B1

B2
2B31

B2

B1
D , ~41!

2dA2lA5UnB14TS A32

A1

A2
1A31

A2

A1
D , ~42!

2dB2lB5UnA14TS B32

B1

B2
1B31

B2

B1
D , ~43!

whereCj (C3 j ) stay for initial conditionsCj (0) @C3 j (0)#,
and the constant of motion

nA[A311A32, nB[B311B32 ~44!

are input data, whereasdA , dB , A3 j , B3 j ~consistently with
nA ,nB5const) are the unknown parameters to be fixed.

It is worth noticing that Eqs.~40! and~41! turn out to be
completely independent fromlA , lB while in Eqs.~42! and
~43! lA and lB can be incorporated insidedA and dB by
redefining them asDC5dC2lC/2, C5A,B. At the opera-
tive level this fact allows one to reconstruct the solution
Eqs.~40!–~43! for lCÞ0 from the caselC50, which by the
way identifies the fixed points of Eqs.~35!–~38!. The inves-
tigation of such points is deepened in the next section.

V. FIXED POINTS OF TWO-SUBLATTICE SOLUTION

The present approach is able to give a~simplified! de-
scription of the system dynamics, with a number of intere
ing features, as we have seen in the previous section. N
ertheless, as a secondary effect, it also gives the sys
equilibrium states, which coincide in fact with fixed points
the equations of motion. Many other~mean-field-like! ap-
proaches are focused on the study of equilibrium and es
cially ground states of Hamiltonian~7!. For instance, from
the Hartee-Fock approximation13 it is known that theT50
phase space contains an antiferromagnetic, a ferromagn
and a paramagnetic phase forU.0. In this section we shal
see that a similar description of the ground-state phase ca
already obtained by studying fixed points of the simple tw
sublattice solution, the latter being given by Eqs.~40!–~43!
for lC50.

In particular, as Eqs.~42! and ~43! just fix dA , dB , we
search for the solutions of Eqs.~40! and ~41!, in which the
unknowns are two. It is convenient to introduce the pair
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new variablesa5A31A32, b5B31B32, in terms of which the
above equations reduce to the pair of fourth order, coup
equations

~nB
224b!5g2

~114a!2~nA
224a!

~114a!224nA
2

, ~45!

~nA
224a!5g2

~114b!2~nB
224b!

~114b!224nB
2

, ~46!

with g54T/U. The two equations~45! and ~46! can be re-
cast into a single eight-degree equation for the variablea,

@Z2~12g4!24nA
2 #@~11nB

2 !~Z224nA
2 !2g2Z2~nA

211

2Z!#254nB
2~Z224nA

2 !3, ~47!

whereZ8114a, and the factornA
224a, which provides an

independent solution, has been factored out@see~i! below#.
The variableb is then easily worked out from Eq.~45!.

First, let us notice that the independent solutionnA
224a

50 impliesnB
224b50 leading toa5nA

2/4, b5nB
2/4. As n

5nA1nB52(saAa1sbAb) with sa561, sb561, this so-
lution implies A315A325nA/2, B315B325nB/2 ~two-
sublattice solutions with ferromagneticlike order on ea
sublattice!. It has energy

2
H

Ns
5

U

2 F11n1nAnB1
g

2
~nA

21nB
222!G , ~48!

which matches the one of vortex solutionEp,q @see Eq.~25!#
in the untwisted casep5q50. For fixed filling n5nA1nB
its minimum value depends on the actual value ofp. When
g,1 ~i.e., U.4, this is reached either fornA5n ,nB50 or
for nB5n ,nA50, in which case the energy becomes

Ep f5
U

2 S 11n2g1
g

2
n2D , ~49!

the solution describing ferromagnetism away from ha
filling within a single cluster, in that the average magnetiz
tion on the clusterM5(nA2nB)/2 coincides with6n/4. The
subindexp in Ep f is to remind us that the solution on th
lattice, due to the arbitrary choice of the sign ofM on each
cluster, doesnot exhibit ferromagnetic order.

On the contrary, forg.1 the minimum value of expres
sion ~48! is reached whennA5nB5n/2. Physically, it corre-
sponds to a paramagnetic solution even within a single c
ter, and has energy

Ep5
U

2 F S 11
n

2D 2

2gS 12
n2

4 D G . ~50!

Having in mind the phase diagram known from mea
field-like Hartree-Fock treatment of the Hubbard model,
antiferromagnetic solution is also expected, where the ene
should be lower than bothEf andEp near half-filling and for
large U. This can be worked out as a solution of Eq.~47!
when the magnetization is zero, namelynA5nB . In this
case, it is easily realized that Eq.~47! can be rewritten as the
product of a second-order factor (g221)Z214n2 ~real for
g,1) and a sixth-order factor which, in the range of para
d

h

-
-

s-

-
n
gy

-

eters physically allowed, never provides real solutions.
the contrary, the vanishing of the second-order factor ina, in
fact, leads to an antiferromagnetic solution. This can be s
by first realizing that an analogous equation holds also fob,
so that finally Eqs.~45! and~46! reduce to two second orde
ones

15
g2~114a!2

~114a!224nA
2

, ~51!

15
g2~114b!2

~114b!224nB
2

, ~52!

which in order to consistently matchnA[nB imply a5b,
with

b5a5
1

4 S 2unAu

A12g2
21D . ~53!

Notice that, away from half-filling~which corresponds to
nA5nB50), the conditiong,1 follows from Eqs.~51! and
~52!. Moreover, when calculating explicitlyA31 (A325nA
2A32) and B31 (B325nB2B32) through formula ~24!,
which reads

A31[
1

2 S nA6AnA
21122

unAu

A12g2D , ~54!

B31[
1

2 S nB6AnB
21122

unBu

A12g2D , ~55!

one singles out the further restrictionunAu5unBu
,A(12g)/(11g). The apparent freedom in choosing th
sign in Eqs.~54! and ~55! just corresponds to exchange th
role of A31 and A32 (B31 and B32). In fact, the physical
solutions turn out to be just two, in that the conditiona5b
can be implemented in two different ways, namelyA31
5B31, A325B32 ~paramagnetic!, and A315B32, A325B31
~antiferromagnetic!. The energies corresponding to such s
lutions,

Ep85
U

2
~11n!1U~A31

2 1A32
2 !28TA1

4
2A31

2 A1

4
2A32

2 ,

Ea f5
U

2
~11n!12UA31A3228TA1

4
2A31

2 A1

4
2A32

2 ,

differ only due to theU term, which is manifestly lower in
the antiferromagnetic case. It turns out that the antiferrom
netic cluster energy

Ea f5
U

2
~n1unuA12g2! ~56!

is always lower than paramagnetic case within the dom
specified byunAu5unBu,A(12g)/(11g).

The successive comparison among Eqs.~50!, ~49!, and
~56! shows that the ground-state phase space for this t
sublattices solution~Fig. 1! exhibits a structure in qualitative
agreement with many other theories, in particular, the o
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FIG. 1. The ground-state phase diagram of the one-band model for the two-site solution:d5n is the electron doping (d50 half-filling!
on the two-site cluster, and 1/g5U/4T. Its structure is in qualitative agreement with the diagram of Ref. 10, p. 256.
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obtained in the low-density approximation for the one-ba
model ~Ref. 10!. Moving from half-filling, in which case a
magnetic phase is found forU.4T, the antiferromagnetic
phase takes place at increasing values ofU, and in any case
for filling greater than one quarter. Indeed, by requiring t
Ea f,Ep f , the transition line to the antiferromagnetic pha
is given by

n5
1

g
~g211A12g2!.0. ~57!

For lower values of filling, the system is a nonmagne
metal. Within such regime an extra transition emerges
g51 from a paramagnetic solution with ferromagnetic stru
ture on each cluster~energyEp f), and a paramagnetic solu
tion with no order even within the clusters~energyEp). Ap-
parently by increasingU the lattice begins to organiz
towards ferromagnetism. Let us notice that, consistently w
the 1D character of the model studied, both ferromagn
and antiferromagnetic solutions exhibit only local order,
that the actual value of the magnetization on different tw
site clusters is uncorrelated.

In the previous section we explicitly gave the energ
corresponding to some simple solutions of the equation
motions exhibiting nontrivial dynamics. A natural question
then whether some of these solutions survive down to
ground state, or not. Interestingly, one can verify that, in fa
the staggered solution, with energyEs , at half-filling turns
out to be degenerate with the two-site antiferromagnetic
lution described above, with energyEa f . Indeed, both of
them in this case have a vanishing hopping term, in ag
d

t

r
-

h
ic

-

s
f

e
t,

o-

e-

ment with the expected insulating behavior of such regim
and in practice on the single cluster the two solutions co
cide. However, the explicit solution of the equations of m
tion in the staggered case proves that at a dynamical leve
only consistent way of moving from the fixed point is b
means of the staggered choice of phases.

VI. CONCLUSIONS

The main object of this paper has been to develop
approach to the Hubbard model quantum dynamics tha
not based on the particular physical regime under invest
tion, on the one hand, and is capable of reformulating
model dynamics in a form more tractable than that relying
the direct diagonalization of the model Hamiltonian, on t
other. Such requirements have been achieved by combi
three ingredients, which are the representation of quan
dynamics within a coherent-state picture, the expression
the Hubbard Hamiltonian in terms of spin variable~2! issued
from its fermionic standard form through the Jordan-Wign
transformation~1!, and the implementation of the TDVP
method. The choice of the trial state~6! has generated
Hamiltonian ~7! ~that is H with the constraintsxC50, C
5A, B) whose dynamics is governed by Eqs.~8! and ~11!,
and accounts for the evolution of the spin operator expe
tion values.

The resulting dynamical scenery has revealed both a
structure—that corresponding to a pair ofXX models
coupled through the Coulomb term—and interesting lin
with other models.

For uAj u2, uBj u2.0, one obtains a model of two couple
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fluids at low density. In particular, in this limit, the dynamic
has been recognized to have the form of two coupled lat
NLSE. A feature that is unusual for the standard NLS
comes from the dependence of the off-site terms in Eqs.~8!
and ~9! on the signs ofC3 j , which allows for the fragmen-
tation of the planar lattice in regions where eitherC3 j.
11/2 ~sites occupied by electrons of typeC), or C3 j.
21/2 ~local depletion of electrons of typeC). The latter case
suggests the occurrence of solitonlike behavior in corresp
dence to the negative sign of the off-site terms.

The opposite regimeuAj u2, uBj u2.1/4 has been studied i
Sec. III, where the equations of motion have revealed that
model actually describes two coupled Josephson-junction
rays. In particular the conditionuCj u2.1/4 makes emerge
dynamics concerning essentially the phasesa j , b j that can
be solved exactly after reducing the equations of the App
dix to the linear system described by Eqs.~14! and ~15!. Its
main feature is certainly the macroscopic effect of ph
locking @(a j2b j )→0# which is enacted when going from
U,4T to U.4T, and might be related to the meta
insulator transition exhibited by the Hubbard model.

Pursuing the investigation of dynamical situations
which phases are active anduAj u2,uBj u25const has led us to
recognize two other interesting results. First, a set of to
logical solutions has been obtained by considering unifo
configurationsC3 j5C3 /L, C5A,B, which are nontrivial
when one excludes the half-filling case. The phasesa j and
b j are allowed to change asj is varied so as to give rise to
pair of vortexlike configurations labeled by two integersp
andq for Aj andBj ~the fluid order parameters!, respectively.
Also, the time behavior exhibits a dependence on the e
tronic fillings as well as on the topological characte
through the frequenciesvA(p) andvB(q).

A second class of solutions has been obtained ins
when considering the solutions of Eqs.~8! and ~9! fulfilling
the constraintsC3 j5const at each site, and depending on
unique frequency. Despite the strong simplification thus
troduced, the complexity of the problem is still dramatic
shown by the dynamical constraints~28! and~29!. It is worth
recalling that their implementation corresponds to find fi
the eigenvalues of Eqs.~8! and~9! in which C3 j are regarded
as constant, assigned parameters, and singling out the
subset of eigenvectors such thatuCj u are compatible with the
assignedC3 j . The staggered solutions@see ~31! and ~32!#
represent the case where the avalanche of initial condition
reduced to a set of four data, namely the values ofuCj u for
the sublattices of both even and odd sites.

Based on the polygonal symmetry of the spin equation
motion their number has been reduced by introducing
collective variables~33! in Sec. III C. The first nontrivial
case~but also the only one directly tractable in an analy
way! has been shown to correspond to the two-sublat
solutions (Cj5Cl , C3 j5C3l , l 5 j 12, ; j ). The analysis of
the fixed points of Eqs.~35!–~38! allows one to reconstruc
the set of configurations in which those corresponding to
minimum energy are implicitly contained as a conseque
of the absence of dynamics. In Sec. V we specialized to
latter in order to obtain a zero-temperature phase space.
ticeably, we have seen that already such a simple t
sublattice solution contains all the qualitative features
similar diagrams obtained in many other theories. Hence,
e
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argue that the general solution of fixed-point equations
avaliable on finite lattices by means of numerical analys
should exhibit a richer structure than the one obtained wit
standard mean-field schemes even for what concerns
zero-temperature phase space.

Further developments of the present work can be en
aged along the following lines. As to the transformation~1! it
is important to notice how its use has been possible beca
of the 1D character of the system. In higher dimensions
fact, this transformation depends explicitly on the 1D pa
employed to cover and thus enumerate exhaustively the
tice sites. Such a dependence introduces in the hopping
of the Hamiltonian a site-dependent exponential phase
tor, which does not prevent the implementation of the a
proach developed here. Hence, in spite of the increased c
plexity thus introduced, a natural extension of the pres
work is in the analysis of the 2D case dynamics.

As a matter of fact, due to the large number of degrees
freedom involved, the 1D case itself is already not fully tra
table via numerical investigations. In this respect, focus
on zero-dimensional systems is almost expected in orde
have a dependable numerical description. On the other h
it is well known that the physics of such mesoscopic syste
~e.g. quantum dots and Josephson junctions! is properly de-
picted in many cases by Hubbard-like Hamiltonians.14,15Fur-
ther investigation of such systems within the scheme p
posed here seems promising.

A final point still deserves to be deepened, which is t
requantization of the spin variables. Despite the obvious
ficulty of such a task in general,6 the dynamical situations
here investigated, involving the macroscopic excitation
few system modes, seems quite feasible to this end.
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APPENDIX

After setting Aj5Rj exp(iaj), Bj5Sj expibj), where Rj

[(1/42A3 j
2 )1/2, Sj[(1/42B3 j

2 )1/2 with the Poisson bracket
$a l ,A3 j%5d l , j / i\, $b l ,B3 j%5d l , j / i\, it is found

ȧ j5dA2UB3 j12TA3 j (
i P( j )

Ri

Rj
cos~a i2a j !, ~A1!

Ȧ3 j52TRj (
i P( j )

Ri sin~a j2a i !, ~A2!

ḃ j5dB2UA3 j12TB3 j (
i P( j )

Si

Sj
cos~b i2b j !, ~A3!

Ḃ3 j52TSj (
i P( j )

Si sin~b j2b i !, ~A4!

where~j! indicates the set of the nearest-neighbor sites.
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