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Dynamics of the Hubbard model: A general approach
by the time-dependent variational principle

Arianna Montorsi and Vittorio Penna
Dipartimento di Fisica and Unita´ INFM, Politecnico di Torino, I-10129 Torino, Italy

~Received 30 April 1996!

We describe the quantum dynamics of the Hubbard model at the semiclassical level, by implementing the
time-dependent variational principle~TDVP! procedure on appropriate macroscopic wave functions con-
structed in terms of SU~2!-coherent states. Within the TDVP procedure, such states turn out to include a
time-dependent quantum phase, part of which can be recognized as Berry’s phase. We derive two semiclassical
model Hamiltonians for describing the dynamics in the paramagnetic, superconducting, antiferromagnetic and
charge-density wave phases and solve the corresponding canonical equations of motion in various cases.
Noticeably, a vortexlike ground-state phase dynamics is found to take place forU.0 away from half filling.
Moreover, it appears that an oscillatorylike ground-state dynamics survives at the Fermi surface at half filling
for anyU. The low-energy dynamics is also exactly solved by separating fast and slow variables. The role of
the time-dependent phase is shown to be particularly interesting in the ordered phases.
@S0163-1829~97!02806-3#
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I. INTRODUCTION

Interest in strongly correlated itinerant electron syste
has been constantly growing in the last three decades. E
cially since the discovery~almost ten years ago! of high-Tc
superconductors, an enormous amount of work has been
voted to such systems, aimed both at investigating their m
roscopic thermodynamical properties via experimental m
surements, and to disclose—by employing the stand
methods of statistical mechanics—what type of macrosco
collective order is responsible for the frictionless regime.

Nevertheless, due to the high number of variables na
rally involved in the models proposed for investigating the
many-electron systems, and probably to the backgroun
the community of physicists who first considered these m
els, to the best of our knowledge very little effort has be
made in order to investigate their dynamical behavior.
the other hand, this type of analysis is known to lead
interesting properties of superfluidity when applied, for
stance, to the BCS Hamiltonian.1

Two circumstances, at least, prompt us to attempt the
namical approach and to carefully consider its possible
velopments. First of all, standard theoretical techniques s
as the time-dependent variational principle~TDVP! proce-
dure and its path-integral version, the stationary phase
proximation method, have been remarkably developed in
recent years, by exploiting the notion of the generalized
herent state2 ~GCS! and the spectrum generating~or dynami-
cal! algebra method. At the formal level, such grou
theoretical tools have greatly simplified and provided o
systematic character the TDVP procedure, which essent
consists of reducing the system quantum dynamics to a s
classical Hamiltonian form. The procedure, formulated,
example, in the form of Refs. 3 and 4, was introduced
studying the low-lying collective states in nuclei, but it
easily extended also to any systems endowed with a la
number of degrees of freedom.
550163-1829/97/55~13!/8226~14!/$10.00
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Furthermore the special role assigned to the quan
phase of the macroscopic trial wave function involved with
the TDVP framework makes the procedure even more att
tive. Such a quantum phase, in fact, is structured so a
have a memory of the entire dynamical behavior. It is th
natural to expect some kind of correlation between the t
of microscopic order which possibly characterizes the m
dium and the phase time behavior. Such effects have b
for instance, investigated in Ref. 5, where the study of qu
tum dynamics of solitons in ferromagnets was shown to h
remarkable consequences on Berry phase behavior.

This aspect, in turn, directly leads to the second circu
stance which motivates our interest for the dynamical vie
point. At low temperature, one can reasonably think of p
forming current measurements or superconductive quan
interference measurements based on experimental de
similar to the ones employed to investigate theJosephson
effect.6,7 It is essential recalling that, in that case, the tim
dependence of the order parameter~the macroscopic wave
function of the system! has a crucial role in allowing for the
detection of microscopic phenomena occurring in the m
dium. Although the TDVP approach is able to take into a
count a large number of dynamical degrees of freedom,
is thus able to describe a strongly correlated electron gas,
can expect that low excited states actually involve a
stricted number of dynamical variables. Under such con
tions the quantum phase could retain a nonrandom chara
which makes it suitable for experimental measurements.

A further quality of the TDVP approach must be st
pointed out. Such a scheme, in fact, involves the construc
of semiclassical Hamiltonians which are obtained in a co
pletely independent way with respect to the model Hamil
nians derived by standard mean-field techniques of statis
mechanics~for instance, Hartree-Fock!. The ground state of
the semiclassical Hamiltonian reproduces, as we shall
the same results of the Hartree-Fock approach from the s
dynamical fixed points. Moreover, as opposite to the me
field cases, here also the excited states at low energy
8226 © 1997 The American Physical Society
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expected to be a realistic description of those of the orig
model Hamiltonian. This character is related with the fa
that TDVP Hamiltonians, even though affected by the a
proximations imposed by the method, generally preserv
structure rather faithful to the second quantized Hamiltoni
Comparison with statistical mechanics approximate mod
is thus interesting in any case.

In this paper we propose the implementation of an app
priate generalization of TDVP to itinerant interacting ele
tron systems. This amounts to applying the TDVP to a t
wave function representing a semiclassical macroscopic s
constructed by generalized coherent states of the dynam
algebra of the model Hamiltonian.2,3 From the semiclassica
picture of the system obtained in this way one can der
canonical equations of motion, and a classical descriptio
the system’s dynamics. A key role within this approach
played by a time-dependent phase, which has to be fixe
as to satisfy, at least in average, the Schro¨dinger equation. In
Ref. 4 it was shown that, under appropriate assumptions
latter is nothing but the dynamical plus geometric phas9

beyond the adiabatic approximation.
Here we apply the above method to the Hubbard mod8

described by the Hamiltonian

HHub52T(̂
i,j &

(
s

ci,s
† cj ,s1U(

i
ni,↑ni,↓2m(

i
~ni,↑1ni,↓!

5(
k,s

~ek2m!nk,s1U (
k,l,m

ak,↑
† am,↓

† al,↓ak1m2 l,↑, ~1!

where, on the first line,ci,s
† ,cj ,s are fermionic creation

and annihilation operators ($cj ,s ,ci,s8%50,$cj ,s ,ci,s8
† %

5d i,j ds, s8I, ni,s8ci,s
† ci,s) on a d-dimensional latticeL

( i, jPL, sP$⇑,⇓%) with N sites, and̂ i, j & stands for near-
est neighbors inL. In the second line the same Hamiltonia
is rewritten in the reciprocal spaceL̃, with

ak,s8( je
ip j•kcj ,s ,ek822T( r51

d coskr . In Eq. ~1! the first

term represents the tight-binding band energy of the e
trons (T being the hopping amplitude!, theU term describes
their on-site Coulomb interaction, andm is the chemical po-
tential, which will allow us to fix the conserved quanti
Ne5( i(ni,↑1ni,↓), i.e., the total electron number operat
on the lattice.

Since the GCS of the dynamical algebra of Hamilton
~1! is quite complex to deal with, we choose as trial GCS
for constructing the semiclassical macroscopic state
SU~2! coherent states which are exact for the correspond
Hartree-Fock Hamiltonian. This is done for two differe
cases, namely that describing superconducting~SC! and
paramagnetic phases, and, at half-filling, that describing
tiferromagnetic ~AF! and charge-density-wave~CDW!
phases. The approximate equations of motion we obtain
the full Hamiltonian in the two cases are then solved in so
integrable cases, and by approximate methods in other in
esting limits. This gives rise to a variety of different dynam
cal behaviors, from vortexlike dynamics in the ground st
for theU.0, nÞ1 regime, to oscillations of the number o
electrons around the Fermi surface and possible laser e
at low energy, and to single-mode collective frequency
namics, which should reflect the occurrence of macrosco
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order in the medium. In particular, the time-dependent pha
which—due to its macroscopic nature—can be considere
an observable quantity, exhibits a behavior which is sho
to be related to the nonvanishing of order parameters, an
evaluated exactly in several situations.

The paper is organized as follows. In Sec. II we revie
the generalized TDVP approach and its connections with
quantum geometric phase. In Sec. III we treat explicitly t
SC-paramagnetic case, by constructing first the macrosc
trial wave function and the corresponding semiclassi
Hamiltonian, and deriving then the canonical equations
motion with the time-dependent phase factor. Section IV
devoted to studying the fixed points of these equations an
particular the ground-state solutions and metastable sta
obtaining for the ground state the Hartree-Fock results
well as a nontrivial vortexlike dynamics in the so-calle
paramagnetic phase, and topological excitations for
metastable states. In Sec. V we analyze an integrable c
which exhibits collective order and nonzero pairing induc
by the k-mode interactions. In Sec. VI we investigate t
global dynamics by comparing slow with fast degrees
freedom. We show how slow variables tend to constitute
autonomous subsystem which drives fast variable dynam
on large time scales. An integrable case where the slow s
system is reduced to a two-level system representink
modes close to the Fermi level, is explicitly solved in Se
VII. In Sec. VIII we repeat some of the above analysis f
the AF phase at half-filling, finding in particular an oscilla
ing behavior at the Fermi surface. The final section is
voted to some conclusions.

II. GENERALIZED TDVP METHOD

Knowledge of the dynamical algebraG of a given~time-
independent! HamiltonianH allows the construction of an
over-complete set of states known as generalized cohe
states,

uF0&5expF(
a

~uaEa2ua*E2a!G u0&,

where $Ea ,E2a% are the raising and lowering operators
the Cartan representation ofG, andu0& is the highest weight
of the representation, defined byE2au0&50 for all positive
a ’s. The stateuF(t)&, which is the obvious time-dependen
generalization ofuF0&,

uF~ t !&5expF(
a
„ua~ t !Ea2ua~ t !*E2a…G u0&,

is related to the time evolution ofuF0&, described by the
stateuC(t)&8e2( i /\)HtuF0&, through

uC~ t !&[ei [w~ t !/\] uF~ t !&, ~2!

where

w82Ht1 i\E
0

t

dt K F~t!U ]

]t UF~t!L , ~3!

andH5^F(t)uHuF(t)&.
The time dependence of the parametersua(t)’s is deter-

mined by imposing thatuC(t)&, as given by Eq.~2!, satisfies
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8228 55ARIANNA MONTORSI AND VITTORIO PENNA
the Schro¨dinger equation. It turns out that this amounts
requiring theua(t)’s obey the canonical equation of motio
~see below!. An alternative parametrization for the sta
uF(t)& can be used, namely

uF~ t !&5N21/2expS (
a.0

za~ t !EaD u0&, ~4!

N being the normalization factor, such th
^F(t)uF(t)&51. In this case the canonical equations of m
tion read4

i\(
b

ga,bżb5
]H
]za*

, i\(
b

ga,b* żb*52
]H
]za

, ~5!

wherega,b5]2lnN/]za* ]zb is the metric of the phase spac
spanned by$za ,za* %, and determines its symplectic structur
The metricga,b indeed determines the explicit form of Poi
son’s brackets,

$A,B%PB5(
a,b

i\~g21!a,bS ]A

]za*
]B

]zb
2

]A

]zb

]B

]za*
D , ~6!

whereg21 represents the inverse matrix ofg.
If the algebraG is the full dynamical algebra ofH ~i.e., if

HPG for any choice of the physical parameters! the above
procedure is exact. In particular, it gives the exact quan
ground state ofH as the fixed point of equations~5!. Never-
theless, in a many-body problem like the one described
the Hamiltonian~1! the dimension of the dynamical algeb
is exponentially growing withN, and infinite in the thermo-
dynamical limit. Even though one may still work out th
canonical equations of motion,12 their explicit solution be-
comes then quite hard to handle. It is therefore reasonab
inquire to which extent the above scheme can be used in
case where the GCS are built in a subalgebraA,G for
which the equations of motion become tractable. In this ca
of course, uC(t)& as given by Eq. ~2!, differs from
e2( ī /\)HtuF0&, and the Schro¨dinger equation is in genera
not satisfied. Nevertheless, the answer given by the gen
ized TDVP approach4 is that in fact the above scheme st
holds also in this case, if one just requires that at least
inner product of the Schro¨dinger equation foruC(t)& with
^C(t)u vanishes, i.e.,

K C~ t !US i\ ]

]t
2H D UC~ t !L 50. ~7!

Notice that nowuC(t)& is to be built only with the raising
operatorsEaPA. Hence the analogy with the exact solutio
~2!–~5! ~whereEaPG) is complete at a formal level, bu
approximate in the results,H being evaluated on a subspa
of the whole dynamical algebraG. Nevertheless, as for th
reliability of the method, one should recall that in the lim
\→0 the results obtained within TDVP become exact~to
second order in\), meaning that one obtains the classic
description of the system dynamics.

Both in the exact case, and in the TDVP approximati
the role of phasew(t) given by Eq.~3! is particularly simple
at the fixed points of Eq.~5!. In fact in this caseuF(t)& is
independent oft, and the second term at the right-hand s
~rhs! of Eq. ~3! ~the so-called kinetic term! is vanishing. This
-
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implies thatuC(t)&5exp„2( i /\)Ht…uF0& is uniquely deter-
mined by the energy pertaining to the initial stateuF0&. Such
behavior is very reminiscent of what is called the dynami
phase for a time-dependent Hamiltonian in the adiabatic
proximation. More generally, by inserting Eq.~3! into the
expression~2! for the stateuC(t)&, the latter can be written
as

uC~ t !&5expF i\E dtS 2H1 i\ K F~ t !U ]

]t UF~ t !L D G uF~ t !&,

~8!

and we recognize a formal analogy between the phasew(t)
and the dynamical plus geometric phase in the adiabatic
proximation~for a derivation of the quantum phase beyo
the adiabatic approximation, see for instance Ref. 10!. More
precisely, in Eq.~8! we can identify the first term in the
exponential with the dynamical phase, and the other~kinetic!
term as the geometric phase obtained by relaxing some o
hypotheses of the adiabatic approximation. We recall that
latter is nothing but the so-called Berry11 phase. In fact in
some simple exactly solvable case4 it was shown that—by
imposing appropriate quantization condition—the phase~3!
does coincide with the geometric plus dynamical pha
even if evaluated within the generalized TDVP approxim
tion scheme. This leads us to expect that the present
proach, apart from leading to a simplified, if approxima
description of the dynamics of the Hubbard model, may g
a precise physical information, i.e., which is the Berry pha
of the states we are studying. If this is the case, we exp
that whenever we shall obtain states with the same ene
H but different phasesw(t), an appropriate physical devic
should be able to observe their interference.

A further investigation of this relationship for the mod
discussed here is beyond the purpose of the present p
Here we want just to emphasize that the stateuC(t)&, thanks
to its phasew(t), is able in principle to approximate th
wave function of the full model Hamiltonian, no matter ho
small the subalgebraA of G. However, we expect in genera
that the results will be more reliable the moreA is a reason-
able description ofG, i.e., the more the Hamiltonian is in
~thermodynamical! phase in which the relevant operators a
contained inA. It will turn out that preciselyw(t) will mea-
sure how far the system is from the states generated byA. In
particular, we expect that the system is correctly descri
by A wheneverw(t) happens to be linearly increasing wit
time, in that the wave functionuC(t)& which satisfies Eq.~7!
results to differ by the one we constructed inA „uF(t)&…
just for an oscillating phase factor.

III. SEMICLASSICAL EQUATIONS OF MOTION
IN SC PHASE

The model described by Eq.~1!, has been intensively
studied in the literature.13 However, as for most many
electron problems, it is quite difficult to obtain rigorous r
sults~for a recent review, see Ref. 14!. In particular, only the
one-dimensional zero-temperature energy is kno
exactly.15 Therefore, different approximation schemes ha
been used in order to deal with Eq.~1!. Among them, a
standard one is the Hartree-Fock decoupling proced
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which amounts to approximating the interaction term by
ducing it to a sum of its bilinear parts, weighted by coef
cients which have to be fixed self-consistently. There are
course different ways of decoupling the interaction term,
pending on the phase which has to be investigated.6,17. The
dimension of the dynamical algebra of the resulting ‘‘deco
pled’’ Hamiltonian turns out to be greatly reduced, and to
effects one is lead to deal with a subalgebra of the spect
generating algebra of the original Hamiltonian. It is our pu
pose to construct the GCS involved by the TDVP scheme
these subalgebras.

In order to identify the subalgebra, we explicitly need t
reduced Hamiltonian. Neglecting for the moment the pos
bility of an AF or a CDW phase~which will be investigated
in a later section! and of a ferromagnetic phase~which is not
to be expected at lowU), it turns out that such a Hamiltonia
coincides with the linearized HamiltonianHl

(sc)5(kHk
(sc)

where

Hk
~sc!5~ek2m!nk1UFn2 nk1~Dak

†a2k
† 1H.c.!G

2US n24 N1uDu2DN.
Here, as customary,k stays for the multi-index
(k,s) @k[(k,↑), 2k[(2k,↓)#, and nk8ak

†ak . More-
over n is the average electron number per site,n5^Ne&/N,
andD8^(ka2kak&/N is the average pairing per site, whe
^d& denotes the expectation value of operatord over appro-
priate states.

It is important noticing thatHl
(sc), contrary toHHub, for

any DÞ0 does not commute with the electron-number o
erator per siteNe . This is justified by observing thatHl

(sc) is
a faithful approximation ofHHub in an ordered phase whic
does not conserve such quantity~namely, the superconduc
ing phase!. On the other hand, forD50 Ne is still con-
served, andHl

(sc) describes in that case the system in a pa
magnetic phase, which is known to be the case for
ground state, at least for low positiveU, away from half
filling ~i.e., nÞ1).

The Hamiltonians Hk
(sc)’s have the property tha

@Hk
(sc) ,Hk8

(sc)
#50, and hence can be diagonalized simul

neously. More precisely,Hl
(sc) turns out to be an element o

the dynamical algebraAsc5 % kAk
(sc), whereAk

(sc) is the local
SU~2! generated by

Ak
~sc!5H J3~k![

1

2
~nk1n2k21!,J1

~k![ak
†a2k

† ,J2
~k![a2kakJ .

~9!

Any eigenstate of the HamiltonianHl
(sc) can then be ex-

pressed as superposition of the GCSs ofAsc, namely

uh&5Pk~11h̄khk!
21/2exp~hkJ1

~k!!u0&sc,

where the coefficientshkPC parametrize the~overcomplete!
set of exact GCS ofHk

(sc) and u0&sc is the electron vacuum
In line with the general approach discussed in the pre

ous section we can think of thehk’s as time-dependent pa
-
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rameters, and construct the approximate trial time-depen
wave function of the full HamiltonianHHub, uc(t)&sc, as

uc~ t !&sc5e~ i /\!wsc~ t !uh~ t !&. ~10!

We are now ready for evaluating the expectation value
HHub over uc(t)&sc, namely the semiclassical Hamiltonia
Hsc, which reads

Hsc52(
k

~ek2m!
h̄khk

11h̄khk
1UF S (

k

h̄khk

11h̄khk
D 2

1(
k,l

h̄kh l

~11h̄khk!~11h̄ lh l !
G , ~11!

wherehk , h̄k obey the Poisson-bracket relations obtain
from Eq. ~6!, i\$hk ,h̄k%5(11h̄khk)

2.
Instead of proceeding directly to the derivation of the c

nonical equations of motion, we notice that Hamiltonian~11!
can be fruitfully rewritten in terms of the following semiclas
sical pseudospin variables

S3
~k!8

1

2

h̄khk21

h̄khk11
[sĉ f~ t !uJ3

~k!uf~ t !&sc,

S1
~k!8

h̄k

11h̄khk

[sĉ f~ t !uJ1
~k!uf~ t !&sc, ~12!

andS2
(k)5(S1

(k))* , whose Poisson brackets recover for ea
k a SU~2! k algebra. Explicitly

i\$S1
~k! ,S2

~k!%52S3
~k!, i\$S6

~k! ,S3
~k!%57S6

~k!. ~13!

Moreover, one can define the related ‘‘mesoscopic’’ va
ables Sa

(a)8(kPL̃a
Sa
(k), with a53,1,2, L̃a8$kPL̃;

ek5ea% denoting the mesoscopic~kinetic energy! levels.
One can easily verify that theSa

(a)’s form a SU~2! algebra
like Eq. ~13! ~with k→a), which we identify by
SU~2! a . Hamiltonian ~11!, when written in terms ofSa

(a),
reduces to a genuine one-dimensional problem, in that
indexa ~contrary tok) is strictly one-dimensional, number
ing the different mesoscopic levels. Indeed

Hsc52(
a

~ea2m!SS3~a!1
Na

2 D1uF SS31 N

2 D 21US1U2G .
~14!

HereSa8(aSa
(a)[(kSa

(k) , andu5U/N. The Casimir opera-
tors of both SU~2! k and SU~2! a algebras,
I k8uS1

(k)u21uS3
(k)u2 ~and the same definition forI a with k

replaced bya) are conserved quantities forHsc. In view of
the definitions~12!, I k51/4, andI a<Na

2/4, depending on the
initial conditions.

Noticeably, Hamiltonian~14!, like H and unlikeHl
(sc),

commutes also withS3, i.e., the semiclassical variable corr
sponding to the total electron number operator.S3 is thus, as
it should be, a conserved quantity, for which the relati
holds

S35
N

2
~n21!. ~15!
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8230 55ARIANNA MONTORSI AND VITTORIO PENNA
In this sense we can therefore claim that the 12d Hamil-
tonianHsc obtained by means of the present semiclass
approach is a more accurate approximation ofH thanHl

(sc),
In particular, in Eq.~14! the k modes are coupled dynam
cally throughuS1u2, while inHl

(sc) they are not. This feature
in turn keeps track in the present scheme of the nonlinea
of HHub, thus makingHsc a good candidate for giving a
approximate description of the physics of the Hubbard mo
in the whole phase space. Of course, the results obtaine
using insteadHl

(sc) will be reproduced by the present a
proximation, as we shall see in the next section.

From Eqs.~13! and~14! we can now derive the equation
of motion for the mesoscopic variablesSa

(a), which read

7 i\Ṡ6
~a!5daS6

~a!22uS3
~a!S6

i\Ṡ3
~a!5u~S2S1

~a!2S1S2
~a!!. ~16!

Here da52(ea2m)1unN, where the constant facto
unN22m in da is vanishing at half-filling
(m5U/2, n51), and in any case does not affect the dyna
ics described byS6

(a) , apart from an overall phase facto
e6 i /\(Un22m)t. Notice that of the three equations~16! only
two are independent, whereas the third one is obtained f
the Casimir constraint. For instance, one could use as in
pendent variablesS3

(a) , which fixes also the absolute value
S6
(a) , and the phasela of S6

(a)5uS6
(a)ue6 ila. This alternative

representation of the pseudospin variables will also be c
sidered, when useful, in the text.

Let us emphasize that the true dynamical variables are
course, the microscopic canonical variablesSa

(k) , which sat-
isfy the same equations of motion~16! with a replaced by
k. Here we preferred to write them only for the mesosco
variablesSa

(a) because the HamiltonianHsc given by Eq.~11!
was shown to be degenerate with respect to the inner dyn
ics of the mesoscopic variables. Moreover every solution
will be able to find for theS6

(a)’s holds straightforwardly also
for theS6

(k)’s, asdk[da . In fact, apart from this simple case
every solution for the microscopic variables can be, in pr
ciple, worked out once we have found the mesoscopic s
tions, and consequentlyS6 , as in this case equations~16!
with a→k reduce to a linear system with time-depende
coefficients. Interestingly, it is easily verified from Eq.~16!
that the scalar product of any two microscopic pseudos
vectorsS(k) belonging to the same mesoscopic level is co
stant. This observation implies that in fact the time evolut
of every microscopic vector in a given mesoscopic leve
identical, the relative orientation of differentS(k)(t) depend-
ing only on the initial conditions.

According to the generalized TDVP approach introduc
in previous section, and by means of Eqs.~3!, ~12!, ~14!, and
~16!, we are finally able to obtain the time derivative of th
time-dependent phasewsc(t),
al
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ẇsc52Hsc1 i\(
k

Ṡ2
~k!S1

~k!2Ṡ1
~k!S2

~k!

122S3
~k!

5uFn2N2

4
2S S1(

k
S2

~k!
112S3

~k!

122S3
~k! 1c.c.D G

52Hsc1
1

2
\(

k
~112S3

~k!!l̇k , ~17!

where the last expression was explicitly written to make e
dent that a nonvanishing geometric contribution towsc is
expected whenever the phaselk of S6

(k) is not constant.
Equation~17! has some other relevant features which it

worth underlying:
~i! it vanishes for vanishingu, as can be recognized from

the second line form. In fact we know that if this is the ca
the wave function given by Eq.~10! becomes exact, and
according to the discussion developed in the previous sec
this implies thatwsc(t) must reduce to the exact value give
by Eq. ~3!, which can be shown to be zero;

~ii ! it reduces to the constantun2(N2/4) for S150. Since
S1 is related through Eq.~12! to the semiclassical analog o
the total pairing operator, it must be inferred that a nonlin
time behavior ofwsc(t) is closely connected to the possib
superconductivity of the state;

~iii ! contrary to bothHscand the equations of motion~16!,
wsc(t) cannot be expressed only in terms of the on
dimensional mesoscopic variablesSa

(a). This means that it
maintains the memory of the inherent complexity of t
original Hamiltonian, and gives information about the tim
evolution of its wave function which goes beyond that im
plicit in its semiclassical approximation~14!, in particular
depending on the inner dynamics of the mesoscopic le
a.

IV. FIXED POINTS AND STATIONARY POINTS

The first step in investigating the dynamical behavior
any nonlinear Hamiltonian system usually consists of find
its fixed points, that is those points in phase space where
equation of motions involve vanishing time derivatives
the dynamical variables. The stability analysis of such a
of points leads to revealing their topological nature~by re-
sorting, for example, to standard methods such as Ro
Hurwitz criterion! and, in conclusion, to structuring th
phase space in regions where the dynamical behavior of
system exhibits well defined features.18

A complete stability analysis is beyond the scope
present work. In fact, in this section we shall simply wo
out all the solutions to fixed-point equations, in particu
showing that indeed those among them which minimize
energy Hsc give the same energy and the same se
consistency equation as the Hartree-Fock approximat
both foru<0 and foru>0. Apart from that, the knowledge
of the fixed points allows us, in principle, to look for othe
solutions of Eq.~16! by means of standard perturbativ
methods in their proximity.

Minimum energy points are contained among the stati
ary points ofHsc, which are easily shown to coincide wit
fixed points of Eq.~16! first by rewriting the equations o
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motions in terms of canonical variables (S3
(a) ,la), and by

setting then l̇a50,Ṡ3
(a)50. Since this is equivalent to

Ṡ1
(a)50 and Ṡ3

(a)50, Eqs.~16! furnish the stationary poin
equations

05daS1
~a!22uS3

~a!S1 ,

05S1
~a!S22S2

~a!S1 . ~18!

The case in whichS1
(a)50 for anya represents the simples

possible solution. We observe thatS3
(a) , thanks to the Ca-

simir’s constraint, can be chosen in a fully arbitrary w
within the interval2Na/2<S3

(a)<Na/2, so that an enormou
number of stationary points characterizes the mesosc
pseudospin dynamics.

It is important noticing that the solutionS6
(a)50, when

inserted in the equations for the microscopic variabl
makes them immediately integrable, and the solution sh
that in general a microscopic, inner dynamics fork pseu-
dospinsPL̃a can take place, according to

S1
~k!~ t !5S1

~k!~0!eit ~da /\! , ~19!

provided (kPL̃a
S1
(k)(0)8(kPL̃a

Reilk(0)50. Such a con-

straint in d52 is naturally obeyed by those configuratio
where the initial phaselk(0) is topologically nontrivial,
while R is independent ofk. Indeed this is the case whe
lk(0)—regarded as a function ofk along the 1-d closed
paths associated with eachath mesoscopic level—undergoe
a variation of 2pp, with pPN. For paths with energy
ea.0 the number of modesNa is great enough to allow
eilk(0) to be twisted many times in a quasicontinuous w
Let us underline that solution~19!, which, being consisten
with S6

(a)50, corresponds to a stationary point ofHsc, is not
a fixed point of the microscopic dynamics whe
S6
(k)(0)Þ0.
The energy associated with the solutionS150 has the

form E52u(S31N/2)21(ada(S3
(a)1Na/2). Foru.0 it is

easy to check that an absolute minimum endowed with
energy

Esc
~1 !52un2

N2

4
2 (

a.F
udauNa ~20!

is reached whenS3
(a)51(2)Na/2 for a.F (a,F) is im-

posed,F being that particular value ofa for which dF50,
which implies m5eF1U(n/2), (a.FNa2(a,FNa

5N(n21)22S3
(F) , andda52(ea2eF). This absolute mini-

mum corresponds touS6
(k)u50 for eachk. Noticeably, the

latter constraint does allow the ground state to still hav
phase dynamics. In fact, on the one hand, by rewriting
equations of motions in terms of the canonical variab
la ,S3

(a) introduced in previous section, it is straightforward
verified that in the limit whereuS6

(k)u→0 uniformly the equa-
tion for the angle variables reduces to

\l̇k5dk22uS3
~k!(

lPL̃

cos~lk2l l!, ~21!
ic

,
s

.

e

a
e
s

where, to second order inuS6
(k)u, S3

(k)56 1
2 for kPL̃7 . On

the other hand, foruS6
(k)u[0 the phase is totally free, as on

can check from equations~18!. Hence, by a continuity argu
ment, we expect that also in this case the dynamics
lk(t) evolves according to Eq.~21!. Equation~21! has al-
ready been investigated in a different context~see, for in-
stance, Ref. 19!. In particular, it was shown20 that for
XY-like models it allows for vortexlike excitations. More
over, in the continuum limit it can be recognized as
Bernoulli-like equation, the latter being known to descri
once more a vortex dynamics. Finally, let us observe that
solution of Eq.~21! contains as a particular case the~topo-
logical! one discussed after Eq.~19!, which requiresS6

(k)

Þ0, and reduces to it only in the~exact! noninteracting case
i.e., for u50.

The absolute minimum Eq.~20! corresponds to the para
magnetic phase within the Hartree-Fock approximation, a
gives the same ground-state energy. Contrary to that appr
mation, here it was possible to make evident a nontriv
dynamical behavior of the paramagnetic ground state. S
behavior implies in particular the appearance of a nonvan
ing geometric phase in the ground state, as can be unders
from the third of equations~3!. Let us recall that this should
happen at any filling but half. We shall see in fact that
half-filling (n51) states built with antiferromagnetic orde
can provide lower energy for the corresponding semiclass
Hamiltonian, again in agreement with the Hartree-Fock
proximation.

Moreover, let us stress that stationary points character
by S1

(a)50—even when not identifying an absolu
minimum—indeed can be shown to be local minima of t
Hamiltonian when the geometric constraints represented
the Casimir’s are taken into account. A simple first-ord
expansion ofHsc in the variablesuS1

(a)u2, whereS3
(a)’s are

now expressed as S3
(a)51(2)(I a2uS1

(a)u2)21/2 for
a.F(a,F), shows that the variationdHsc is positive pro-
vided u is positive and sufficiently small. In summary, w
conclude that such stationary points are minimum ene
points foru.0, possibly possess inner dynamics and top
logical structure, but do not involve superconductive situ
tions, beingS150.

The remaining set of fixed points, which are still solutio
of Eqs. ~18!, can be fruitfully parametrized through the p
rametersI a andS1 . Explicitly

S3
~a!52sadaA I a

da
214u2uS1u2

,

S1
~a!52sauuuA I a

da
214u2uS1u2

uS1u , ~22!

with sa561. S1 does not play the role of a free paramete
but it turns out to be constrained by the equation

1522u(
a

saA I a
da
214u2uS1u2

. ~23!

By substituting Eq.~22! in Eq. ~14!, and choosing the value
of sa andI a which minimizeHsc (sa51 andI a5Na

2/4), it is



r

ta
e
ria
r

in

q
sp
a
m
se
ly
o
bl
o
ak

s
n
n

ix

l

-
ion

per
d-
ver

ined

-

d

h

8232 55ARIANNA MONTORSI AND VITTORIO PENNA
seen from Eq.~23! that such a solution exists only fo
u,0, and corresponds to an energy

Esc
~2 !5uuu

N2

4
n~22n!2

1

2(a NaAda
214u2uS1u2

1uuuuS1u2 . ~24!

This result is once more in agreement with the ground-s
result for the superconducting regime within the Hartre
Fock approximation, as can be seen by identifying the va
tional parameterD with the semiclassical pairing operato
S1 . In particular, the constraint equation~23! coincides with
the self-consistency equation forD.

Let us notice that, opposite to the mesoscopic fixed po
S6
(a)50 case, here the insertion of the solutions~22! into the
equations of motion for the variablesS6

(k)’s does not allow
any microscopic dynamics, as the constraintS6

(a)Þ0 has to
be satisfied.

V. COLLECTIVE FREQUENCY DYNAMICS

The dynamical system described by semiclassical E
~16! is integrable in the special case when the pseudo
variablesS3

(a) are supposed to be time independent. The m
effect of such an assumption is, in fact, of halving the nu
ber of the system degrees of freedom. This can be easily
by observing thatuS1

(a)u cannot depend on time consistent
with the fact that the Casimir’sI a are constants of motion, s
that only the phases of the pseudospin projection varia
S1
(a) are allowed to depend on time. Further restrictions
the dynamics are due to the equations of motion which t
the form

2 i\Ṡ1
~a!5daS1

~a!22uS3
~a!S1,

S1
~a!S25S2

~a!S1 . ~25!

The first of Eqs.~25! show how the system formally reduce
to an ensemble of interacting oscillators with coupling co
stants 2uS3

(a) . Moreover, together with the second, rewritte
as

S1
~a!/S2

~a!5S1 /S2, ~26!

state that a unique, time-dependent phase (W/\)t character-
izes the system dynamics. Namely, for anya,

S1
~a!~t !5Vae

iaei ~W/\!t, ~27!

with Va ,a,WPR. Both the constant phasea and Va are
fixed by assigning the initial conditionsS1

(a)(0). The linear
character of Eqs.~25! allows one to recast them in the matr
form

~M$S%2WI!•S150, ~28!

where the vectorS1 has componentsS1
(a) and the dynamica

matrixM , whose elements can be obtained by system~25!,
explicitly depends on the setS5$S3

(a)%. The associated secu
lar equation, which in turn provides the eigenvalue equat
te
-
-

ts

s.
in
in
-
en

es
n
e

-

,

det~M2WI! 5F112u(
b

S3
~b!

W2db
GPa~W2da!50,

~29!

is polynomial inW. The eigenvector componentsVa can
now be expressed in terms ofW, V5(aVa andS3

(a) as

Va5
2uS3

~a!

da2W
V. ~30!

It should be noticed that in factV is itself a function of the
initial conditionsS3

(a) and energyHsc, through the relations
~14! and ~27!, which give V56@(Hsc1un2N2/4
22t (adaS3

(a))/u] 1/2.
Moreover the eigenvalues fulfilling Eq.~29! are obtained,

after assigning the initial condition set$S3
(a)%, by solving

152u(
b

S3
~b!

db2W
. ~31!

It turns out that the factorPa(W2da) in Eq. ~29! does not
play a role unlessS3

(a)50 for somea. When this is the case
some of the eigenvalues coincide with the system pro
frequencyda . The total number of eigenvalues, correspon
ing to the number of different mesoscopic levels, is howe
kept constant.

Both eigenvalues and eigenvectors can be easily obta
in an ~approximate! explicit way when uuu/t is suitably
small. Looking at the structure of Eq.~31!, it appears clear
that the values ofW close enough toda are reasonably ex
pected to fulfill it. In order to check this we first replaceW
with Wa5«1da in Eq. ~31! which becomes

152
2uS3

~a!

«
12u(

bÞa

S3
~b!

db2da2«
,

then, by takingu«u!udb2dau, for any pair (a,b), one easily
finds that«.22uS3

(a) thus obtaining

Wa.da22uS3
~a! .

On the other hand, the conditionu«u!udb2dau is satisfied if
it holds in the less favorable casea50,b561. Since
ud02d1u52te1.8tp2/N ~for d52), then the condition on
« becomesu«u!8tp2/N, which finally leads to

uUu!8tp2/Na

for the greatest possibleS3
(a) given by Na/2. The present

approximation scheme, based on consideringWa.da , is
thus permitted for reasonably small values ofuUu/t. In par-
ticular, if uUu!8tp2/N0 all the eigenvalues can be obtaine
from this scheme, whereas ifuUu>8tp2 none of theWa’s is
well approximated by it. Theath eigenvector associated wit
eigenvalueWa is readily obtained from Eqs.~30! and exhib-
its componentsVc(Wa) given by

Vc~Wa!.
2uS3

~c!

dc2da
V for cÞa,

Va~Wa!.VS 12 (
bÞa

2uS3
~b!

db2da
D .
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The above equations show how theath eigenvector
S1(Wa) in this approximate case is characterized by the f
that only the componentVb with b5a is strongly nonzero,
being in factVa.V. This implies that each eigenvector ca
be regarded as describing a superconductive situation w
the superconductive order parameterS15^(kJ1

(k)&5(kS1
(k)

is essentially given byS1.S1
(a) and theu-dependent contri-

bution to the energyHsc is mainly given by thek modes with
ek5ea .

Some general observations are now in order. First we
tice that the eigenvector problem is completely solved p
vided $S3

(a)% and Hsc—the quantities which, at this stag
describe the initial system configuration—have been
signed, and the eigenvaluesWa have been worked out from
Eq. ~31!. No restriction constrainsHsc and$S3

(a)% except for
the filling condition~15! and the conditionVÞ0. The latter
allows one to consider eigenvectors with arbitrarily sm
componentsVa but excludes the solutions characterized
S150 (Va50 for anya) representing a subset of the sol
tion of the fixed-point equation~18!. The single-mode solu
tion set is thus completely disjoint from such a fixed-po
subset in the space of solutions of Eqs.~25!, even if the
former is dense around any element of the latter. On
contrary, the other fixed points of Eq.~25!, given by Eq.
~22!, are a ~time-independent! subset of Eq.~27!, corre-
sponding toW50.

Moreover we point out that the nonlinear nature of ps
dospin dynamics survives our initial assumptionS3

(a)5 const
because of the second of Eqs.~25!. In fact the linear system
of coupled oscillators described by Eqs.~25! should have an
arbitrary superposition of eigenvectors related to Eq.~28! as
a general solution. This is no longer possible when Eqs.~26!
are taken into account in that any superposition of sing
mode solutions~eigenvectors! violates the request that pse
dospins exhibit the same phase.

Furthermore we observe thatS1
(k)(t) can be easily ob-

tained from Eqs.~25!, where the termS1(t) is now playing
the role of an external forcing term. SinceS1

(k)(t) results to
be proportional toS1

(a) up to a constant factoreiu, then it
follows that the equation for quantum phasewsc(t) has form

\ẇsc~t!5W~S31N/2!2Hsc. ~32!

Hence, already in this simple integrable case within our
proximation there is a nonvanishing contribution of the ge
metric phase~equal toWnN/2 timest), at any energy but the
ground state. Such a contribution should, in principle,
observable by appropriate experiments. Finally it is rema
able that these single-mode solutions, exhibiting some fo
of collective order through the unique time-dependent ph
(W/\)t, correspond to nonvanishing superconductive or
parameterS1 .

VI. SLOW DYNAMICS VS FAST DYNAMICS

A standard procedure for tackling many-body system
namics consists in simplifying the equation of motions
separating fast degrees of freedom from slow degree
freedom.4,9,21 Such a procedure is profitable in that it lea
the slow variable system to become an autonomous sys
and sometimes reduces the complexity of its equations
t
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motion. These features are, of course, appealing here bec
the slow variables dynamics is the one surviving at a mac
scopic level ~and thus it might be observable!, while the
dynamics of high-frequency degrees of freedom disappe
on large time scales.

For the pseudospin system a classification of pseudos
either as fast variables or as slow variables is naturally
tablished by the fact that eitherda.0 or daÞ0, respectively.
We recall that such reference parameter depends onn and is
associated with the mesoscopica level of the ground-state
configuration whereS3

(a) changes its sign.
The effect of such a distinction is made evident by p

forming the substitutionsS1
(a)5exp@ida(t/\)#Ca , which turn

Eqs.~16! into the form

2 i\Ċa522uS3
~a!Ca22uS3

~a! (
bÞa

ei ~db2da!t/\Cb ,

i\Ṡ3
~a!5uS Ca(

bÞa
Cb* e

i ~da2db!t/\2c.c.D , ~33!

explicitly exhibiting dependence on the frequenciesda . In-
troducing the parameterd* as the frequency distinguishin
slow frequencies~defined byudau<d* ) from fast frequencies
~defined by udau.d* ), it clearly results that those time
dependent oscillating terms of Eqs.~33! whereudbu.d* can
be neglected on a time-scale greater than\/d* , since their
rapid oscillations make their time-average vanishing.

This fact has remarkable implications. In fact, upon d
noting fast pseudospin variables and slow pseudospin v
ables byF6

(b) , F3
(b) andQ6

(b) , Q3
(b) , respectively, we are

now able to separate the dynamical equation set into
almost independent subsets, the first one of which descr
short-time-interval processes (t,\/d* ), and reads

2 i\Ḟ1
~a!5daF1

~a!22uF3
~a!~F11Q1! ,

i\Ḟ3
~a!5u„F1

~a!~F21Q2!2c.c.…. ~34!

while the second concerns long-time processes (t.\/d* )
involving the slow variables, and is given by

2 i\Q̇1
~a!5daQ1

~a!22uQ3
~a!Q1 ,

i\Q̇3
~a!5u~Q1

~a!Q12c.c.!. ~35!

HereQ15(a8Q1
(a) and F15(a9F1

(a) where the prime and
the double prime remind us thata must range within selected
intervals (udau.d* and udau,d* , respectively!. We notice
that in Eqs.~34! Q6 can be regarded as time-independe
terms ~adiabatic approximation!, since their evolution takes
place on the time scale of slow variables, whereas in E
~35! fast variables are absent because of the effects of r
oscillations discussed above. Also, whent.\/d* , such os-
cillations makesF6 negligible with respect toQ6 in terms
like (Q61F6) of Eqs. ~35!, so thatF-variable dynamics
turn out to be driven byQ6 . On the other hand, theQ
system can be considered as an almost isolated system w
exhibits the same features of the initialN-pseudospin system
except for the fact that now the pseudospin number
N*5(a8Na,N and the effective Hamiltonian is
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HQ5(
a

2~ea2m!Q3
~a!1u* ~N* /21Q3!

21uuQ1u2 ,

~36!

whereu*5U/N* . Two remarks are now in order. First w
note that the long-time dynamics is weakly influenced
thosek modes for whichuda2dFu.d* , so that the com-
plexity of the dynamical behavior now issues from theQ
system, as manifestly suggested by the fact that the restr
Q system has inherited the same structure
N-pseudospin system. This is the main consequence of
adiabatic approach. Secondly, we recall that the densit
states of the noninteracting system has in two dimension
logarithmic divergence fore.016, which implies that the
levels L̃a with ea.0 are the most populated ones. For si
ations where the value ofn involveseF.0 ~near half-filling!
such a fact well matches the first observation since it tu
out that theQ system, whose dynamics is complex, is a
the subsystem involving the most part ofk modes.

From the above observations, one is led to restricting
number of interacting levels in order to work out the simpl
yet still significant dynamics. The corresponding model tu
to be a three-level system, namely the pseudospin m
where theQ system is endowed with three levels. A simp
calculation allows one to establish that the number of c
stants of motion is not sufficient to make the system in
grable. In this sense three-level dynamics still is far fro
being trivial, yet it is physically meaningful in several ci
cumstances.

At first, for example, one can take into account just t
three innermost levels of thek space, i.e., those aroun
ea50, which in the following we shall label by
a521,0,11. This is natural when investigating the low
energy dynamics ofHsc at half-filling with u.0. In this
case, in fact, it is reasonable to expect that increasing
energy from the ground-state value of small amounts~recall
that S3

(0)50 andS3
(6)56N61/2 with N15N21) makes in-

teracting just the levels with the smallest energy, i.e., th
with a521,0,11. In view of the fact thatuea112eau!4t,
expressing the almost continuous character ofea vs a, one
can replace both the upper level and the lower level of
three-level model with two sheaves constituted by those
els withea.e11 andea.e21, respectively. This allows one
to enlarge the number of modes participating in the dynam
as well as to treat the situation where excited states are m
than small perturbations. We recall however that this cas
mainly pedagogic, as at half-filling the ground state
HamiltonianH has antiferromagnetic order.

Such observations readily extend to those situati
where nÞ1. In these cases, in fact, the minimum ener
configuration is not symmetric with respect toa50, but with
respect to the levela5F, whereS3

(a) change from negative
to positive so as to minimize the energy. Then the three-le
construction must be referred to the new central level t
obtained.

The further reduction to a two-level scenario immediat
makes theQ system integrable. Again by replacing the tw
levels with twoeffectivelevels one can reasonably expect
still represent the main features ofQ dynamics, in particular
when the energy is low enough to make interacting a limi
number of levels situated around the level witha5F.
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VII. TWO-LEVEL DYNAMICS

In the previous section we noted that the three-level s
tem is nonintegrable, although it is the oversqueezed ver
of a multilevel system that was dramatically more comple
A thorough investigation of its dynamics, where the occ
rence of a chaotic behavior indeed is expected due to
similitude with the dynamical model of Refs. 22 and 2
requires a separate, extended analysis that will be purs
elsewhere. Nevertheless we shall start with the three-le
model equations, so as to make the approximations
formed to achieve the two-level scenario evident.

Let us express the three-level system equations in
form given by Eqs.~35! by renamingSa

(n) (a51,2,3) for
n5F11,F,F21 by Pa , Za , andMa , respectively, and
by settingd65dF61, in order to simplify the notation and to
recall the interpretation of the levels as level sheaves.
equations then read

2 i\Ṁ15d2M122uM3Q1,

i\Ṁ35u~M1Q22M2Q1!, ~37!

2 i\Ż1522uZ3Q1,

i\Ż35u~Z1Q22Z2Q1!, ~38!

2 i\ Ṗ15d1P122uP3Q1,

i\ Ṗ35u~P1Q22P2Q1!. ~39!

For u.0 the two-level model is readily obtained b
freezing theZ variables at the valuesZ3505Z1 . From the
physical viewpoint, such an assumption is not particula
restrictive because it allows one to switch on dynam
through M variables andP variables starting from the
ground-state configuration. One should recall, in fact, t
P15M15Z150 characterize the ground state, while t
further conditionZ350 can be implemented by suitably s
lecting n @see the discussion following Eq.~20!#. The fact
that setda is almost continuous still ensures the possibility
choosingn almost arbitrarily.

For u,0, instead, the fact thatP1 ,M1 ,Z1Þ0 in con-
nection with the minimum energy state, prevents the sys
from developing a dynamics in whichZ1 andZ3 keep their
ground-state values. Thereby the presence of the ce
level, even if as a nondynamical level reminiscent of thre
level scenary, is prohibited and the central level must
embodied within one of the two sheaves, unless one is fac
the nonintegrable version of pseudospin dynamics. At t
point the two-level scenario is restored and one can proc
to integrate the equations of motion.

We construct now the solutions of two-level dynamics
solving simultaneously the systems of Eqs.~37! and ~39!.
The main variable of the system isD35P32M3 which
will be shown to obey a nonlinear equation completely d
coupled from the other variables. Indeed the knowledge
D3(t), together with the constant of motionQ3 allows one to
integrate such a system,24 which becomes linear with time
dependent coefficients. To work out the equation forD3
one needs to exploit all the constants of motion. Explicit
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the energy H25d1P31d2M31u* (N* /21Q3)
21uuP1

1M1u2, N*5N11N2 counting the active modes of two
level dynamics, must be used to eliminate the variablesP6

andM6 from the equation

\2Ḋ3
254u2uP1M22P2M1u2, ~40!

obtained via the second equation in Eq.~37! and in
Eq. ~39!. This is done by exploiting first the identit
uP1M22P2M1u254uP1u2uM1u22(uP11M1u22uP1u2
2uM1u2)2, which leads us to rewrite the rhs of Eq.~40! as

4u2uP1M22P2M1u2516u2uP1u2uM1u224@h22sD3

2u~ uP1u21uM1u2!#2, ~41!

where h25H22gQ32u* (Q31N* /2)
2, g5(d11d2)/2,

and s5(d12d2)/2. Then, by using the pseudospin C
simir’s I M5M3

21uM1u2, I P5P3
21uP1u2 and the further

identitiesP3
21M3

25(Q3
21D3

2)/2, P3
22M3

25Q3D3, one re-
duces theD3 equation to the closed form

\2

2
Ḋ3

2522~h22sD3!
212u~h22sD3!~2I2Q3

22D3
2!

22u2~ I P2I M2Q3D3!
2, ~42!

with I5I P1I M .
Equation~42!, which expresses the integrable characte

the two-level system, presents several interesting featu
First of all it shows that theD3 dynamics is as complex a
that of a 1-d potential problem. Indeed, upon introducing t
potential

U~D3!522aD3
312bD3

212cD312d,

where a5us, b5s21uh21u2Q3
2 , c5us(2I2Q3

2)
22sh222u2Q3(I P2I M), and d5(h22uI)21uh2Q3

2

24u2I MI P , Eq. ~42! simply becomes\2Ḋ3
2/252U(D3).

Therefore the dynamical behavior of the two-level syst
can be completely specified by identifying the regions wh
the cubicU(D3) is negative and finding the value of th
derivative ofU(D3) whenD3 approaches an inversion poin
Such regions actually are identified by the compact inter
in the potential well ofU(D3) whose extremes coincide wit
two of the three roots of the cubic equationU(D3)50. The
remaining semi-infinite interval whereU(D3) tends to2`
must be excluded, in thatD3 there would assume infinitely
large values, while its range is finite:2N2<D3<N1 .

The two other points which play some role in charact
izing the dynamics throughU(D3) are, of course, the poten
tial stationary points

R65
1

3a
@b6~b213ac!1/2#,

furnished bydU/dD350. In fact, upon denoting the mini
mum and the maximum coordinates byDm andDM , respec-
tively, it is possible to identify the fixed points as those co
figurations of the two-level system withU(Dm)50 so that
the D3 interval reduces to the pointD35Dm . It is easily
checked thatDm is consistent with the general result give
by Eqs.~20!–~22! for the exact minimum energy points. O
the other hand, when the initial conditions imp
f
s.

e

l

-

-

U(Dm),0 and U(DM).0, then the system oscillates be
tween two extreme states. From the physical point of vi
this property has the interesting consequence that the fil
of each of the two mesoscopic levels near the Fermi surf
(F61) varies periodically with time, while the sum of th
two fillings remains constant.

On the other hand, it is worth noticing that such period
behavior of the mesoscopic levels filling ceases to exist
appropriate initial conditions. In fact whenU(DM)50 the
system exhibits alaserlike effect, namely it tends, employing
an infinitely long time, to an asymptotic stationary state
which ~depending on the sign ofu) a mesoscopic level is
totally empty while the other is full. Moreover one shou
recall that each choice of the constants of moti
h2 , Q3 , I M , andI P embodied ina, b, c, andd selects a
different cubic potential. Two solutions are associated w
the same potential when they differ just for the choice of
initial positionD3(0).

The nice feature of Eq.~42! is that it can be reduced to th
equation for the WeierstrassP function,25 which reads

S dPdt D 254P32g2P2g3 ,

Any solution of Eq.~42! can then be given in explicit form
A straightforward calculation based on the substitution
D3 with D356P1b/3a @the plus ~minus! corresponds to
the casea.0 (a,0)# turns Eq.~42! into the above equa
tion for P where t5Aat/\ and the standard coefficient
g2 , g3 are identified as

g25
4

3a2
~b213ac!,

g356
4

27a3
~2b319abc127a2d!.

Then, by exploiting the solutionP in terms of Jacobi elliptic
functions26 P(t)5(1/3)g2(11k2)2g2k2sn2(gt1a;k)
where

g25
4

3
g4~12k21k4!,

g35
4

27
g6~122k2!~22k2!~11k2!,

the explicit analytic expression ofD3(t) is easily shown to
be24

D3~ t !5
b

3a
6F13 g2~11k2!2g2k2sn2~gt1a;k!G .

~43!

Such a solution, as expected, shows that the dynamic
periodic around the pointDm with period

T252\
K~k2!

guau1/2
,

since the elliptic sine fulfills the equatio
sn(x12K)52sn(x), whereK(k2) is the elliptic integral of
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the first kind.26 As anticipated, a special case can be selec
out when initial conditions allow the conditionU(DM)50 to
occur. This condition states that one of the twoU roots con-
fining the oscillations ofD3 inside the potential well, coin-
cides with the maximum coordinateDM . ReachingDM thus
requires an infinitely long time provided the motion sta
exactly at the other inversion point, that is the remaining r
of U(D3)50. When this is the casek→1 so that
sn(x,k)→th(x) andD3(t) describes indeed a transition fo
t→`.

In order to explicitly provide a situation where such tra
sition happens we concisely examine the dynamics
u.0 whenQ350 andI M5I P . In this case the potentialU
manifestly exhibits its roots since it reduces to

U~D3!522~h22sD3!~h222uI2sD31uD3
2!. ~44!

Hence the circumstance whereU(D3)50 forD35DM is ob-
tained by imposing the two roots of the quadratic factor
Eq. ~44! to merge, i.e., to tend toDM . As a result one finds
first the constraint 4uh25s218u2I on the energy, then tha
the limiting point of the transition isD3(`)5s/2u5DM

when D3(0)5h2 /s, provided the condition 4AI P
,usu/u,2N1 holds ensuring that2N1,DM,D3(0).

Returning to Eq.~43!, one can now easily evaluate th
phasewsc(t) given by expression~17! in the simplest case in
which S1

(k)5S1
(a)/Na for any k. Since this involves tha

S3
(k)56S3

(a)/Na , then pseudospins populating a level at m
differ one from the other by the sign ofS3

(k) . We shall
choose the same sign for thek’s of a given level so that the
microscopic dynamics is just a copy of the mesoscopic
namics. Here, we shall not consider the possibility of m
structurated configurations of pseudospins, since they do
introduce any substantial novelty concerning the phase
havior.

Finally, by using the above assumption,wsc(t) can be
written in the form

ẇsc52Hsc1\(
a

~Na/21S3
~a!!l̇a . ~45!

The latter expression is particularly useful for the dynam
of weakly excited states since the variablesS3

(a)’s are ex-
pected to undergo small variations in time, with respect
their ground-state values. The levels whose pseudospins
fast should therefore contribute towsc principally through the
phasesl̇a’s. On the other hand, after solving Eqs.~34! for
the pseudospins labeled bya5F12 anda5F22 ~namely
pseudospins of the first two levels with fast variables! so as
to have a four-level system mimicking the real system
simple calculation shows the time average ofl̇F62 to be
almost zero in theQ-time scale. Indeed the slow variable
M3 andP3 and the phases ofM1 andP1 provide the main
contribution toẇsc even when the fast variables are include
The expression of such a contribution can be readily
tained by rewriting Eq.~45! in terms ofM3 , P3, and of the
constants of motion. One thus finds
d

t

r

t

-
e
ot
e-

s

o
are

a

.
-

ẇsc.2Hsc1uH n2N2424~M1P21M2P1!

3
N2P32N1M3

~N122P3!~N222M3!
J . ~46!

The slow variation in time of its variables makes it a go
candidate for experimental detection.

VIII. EQUATIONS OF MOTIONS
IN THE ANTIFERROMAGNETIC PHASE

When the possibility of a AF phase is considered, t
natural order parameter which has to be nonzero is16

m8
1

N K (
jPL

eiGj̇~nj ,↑2nj ,↓!L
5
1

N K (
kPL̃

ak,↑
† ak2G,↑2ak,↓

† ak2G,↓L ,
~47!

whereG is a vector with all its components equal top.
Also here, we look at the reduced Hartree-Fock Ham

tonian in the AF phase,Hl
(af) , in order to derive the dynami

cal algebra in which we shall subsequently construct
GCS’s. It reads

Hl
~af!52t(̂

i,j &
(
s

ci,s
† cj ,s1

U

2
m(

j
eiGj~ni,↑2ni,↓!

2U
N

4
~12m2!

and it can be rewritten in reciprocal space
Hl
(af)5(kPL̃2 ,sHk,s

(af) where now

Hk,s
~af!5ek(

s
~nk,s2nk2G,s!1U

m

2
~ak,↑

† ak2G,↑2ak,↓
† ak2G,↓

1H.c.!1
U

4
~m22n2! ,

and L̃2 is that half of L̃ in which ek is negative, e.g., for
d52 L̃2[$kPL̃uek,0, or ek50 and 0,k1<p%.

Hl
(af) can be recognized as an element of the dynam

algebraAaf5 % kPL̃1 ,sAk,s
(af) with

Ak,s
~af!5HKk,s

~1 !5ak2G,s
† ak,s ,Kk,s

~2 !5@Kk,s
~1 !#†,Kk,s

~Z!

5
1

2
~nk2G,s2nk,s!J ;SU~2!k,s , ~48!

andKk,s
(6)5Kk,s

(X)6 iK k,s
(Y) In full analogy with the case treate

in Sec. III, we use as a trial approximate time-depend
wave function for studying the full HamiltonianH in anti-
ferromagnetic phase the time-dependent generalization
GCS’s, which can be built inAaf , i.e.,
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uc~ t !&af5e~ i /\!waf~ t !uj~ t !&

5e~ i /\!waf~ t !PkPL̃2 ,s~11 j̄k,sjk,s!21/2

3exp~jk,sKk,s
~1 !!u0&af, ~49!

whereu0&af[PkPL̃2 ,sus&PkPL̃1 ,su0& (L̃15L̃2L̃2), and

the parametersjk,s have to be thought of as time depende
The semiclassical HamiltonianHaf , identified as the ex-

pectation value ofH over uc(t)&af , can be fruitfully rewrit-
ten in terms of the semiclassical variabl
zk,s8af̂ c(t)uKks

(z)uc(t)&af , with z5X,Y,Z, which still sat-
isfy a SU~2! algebra Eq.~13!. Also here it is useful to intro-
duce a one-dimensional indexa instead ofk, and to define
the mesoscopic variablesza,s8(kPL̃a

zk,s . One obtains

Haf522 (
aPL̃2 ,s

eaZa,s14uX↑X↓2u
N2

4
, ~50!

with zs5(aPL̃1
za,s .

The semiclassical equations of motion for theza,s’s, can
be easily derived from Eqs.~50! and ~5!, and read

\Ẋa,s52eaYa,s ,

\Ẏa,s522eaXa,s24uX2sZa,s ,

\Ża,s54uX2sYa,s . ~51!

It is interesting to notice that the above equations do red
to equations formally identical with those studied for t
SC-paramagnetic phases for the special cho
Ys50, Xs56X2s5(1/2)S6 , so that at least in this cas
the dynamics can be derived from that obtained there. Mo
over, let us notice that the choice
Xa,↑56Xa,↓ , Ya,↑56Ya,↓ reduce to a half the number o
Eqs.~51!. One can easily verify that such choices minimi
the value ofHaf in the positive (2) and negative (1) u
regime, respectively.

From Eqs.~51! we also obtain the time-dependent pha
characteristic of the TDVP approach,

ẇaf52Haf1 (
kPL̃2

Ẏk,sXs,~k!2Ẋs,~k!Yk,s

122Zk,s

5f24u(
s FX2s (

kPL̃2

Xs
~k!
112Zk,s
122Zk,sG , ~52!

wheref5u(N2/4)22(kPL̃2
ek is a constant. As in the su

perconducting case, also in Eq.~52! the time-dependent par
of ẇaf is vanishing for vanishingu as well as forXs50,
which is related to the vanishing of the antiferromagne
order parameterX(X8X↑2X↓).

As in the case treated in the previous sections, also h
we first look for the fixed points of Eqs.~51!. A first solution
is of course the vanishing one, i.e.,Xa,s5Ya,s50, and
Za,s fixed by initial conditions. In particular, the configura
tion of Za,s minimizing the energy has energ
.

e

e

e-

e

c

re

Eaf
(0)52u(N2/4)12(aPL̃2

eaNa , which is easily verified to
coincide with that of the paramagnetic phase~20! in the posi-
tive u regime at half-filling.

The remaining set of fixed points can be parametrized
the Casimir’sIa,s5Xa,s

2 1Za,s
2 , which again are conserve

quantities. It is characterized byYa,s50, and

Xa,s52sa,suA Ia,s
ea
214u2X2s

2 X2s,

Za,s5easa,sA Ia,s
ea
214u2X2s

2 , ~53!

where sa,s561. The Xs’s have to satisfy the constrain
equations

Xs52u(
a

sa,sA Ia,s
ea
214u2X2s

2 X2s .

The corresponding energyEaf reads

Eaf52u
N2

4
1(

a,s
ea
2sa,sA Ia,s

ea
214u2X2s

2 14uX↑X↓ .

~54!

In particular, the fixed points which minimize Eq.~54! are
associated with the choicessa,s521, Ia,s5Na

2/4, and
X↑52sgn(u)X↓ . In this case the constraint equations, ap
from the solutionXs50, reduce to one, i.e.,

15uuu(
a

Na

Aea
214u2X↑

2
, ~55!

and the minimum energy is straightforwardly obtained fro
Eqs.~54! and ~55! as

Eaf
~m!52u

N2

4
22 (

aPL̃2

NaAea
214u2X↑

214uuuX↑
2 .

~56!

As expected, this energy corresponds to a nonvanish
antiferromagnetic order parameterX52X↑ only for
sgn(u)51 ~i.e., repulsive Coulomb interaction!, whereas it
gives X50 for sgn(u)52. In the first case, the energ
Eaf
(m) coincides in fact with the one obtained within Hartre

Fock approximation, withX replaced bym satisfying the
same self-consistency equation~55!. On the contrary, in the
attractive Coulomb interaction regime, even thoughX50 the
energyEaf

(m) is lower than the one obtained within Hartre
Fock approximation, which would be precisely given b
Eaf
(0) namely the energy corresponding to the trivial vanis

ing fixed point. This is not surprising, in that, while withi
the Hartree-Fock scheme the only parameter to be fixed s
consistently ism, here to all effect we have two related p
rameters,X↑ andX↓ , which can separately be nonzero ev
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8238 55ARIANNA MONTORSI AND VITTORIO PENNA
when their difference~i.e., X) is vanishing. Recalling tha
Xs5af̂ cu( j(2) jnj ,suc&af , this latter case (X↑5X↓Þ0) can
be recognized as a CDW phase.

Notice that in the absolute minimum energy point f
u,0 both the conditions which reduce the equations of m
tion ~51! to those of the superconducting case Eq.~16! were
fulfilled @see the discussion following Eq.~51!#. A direct
comparison with the result obtained for the negativeu re-
gime by means of the superconducting states Eq.~24! shows
that in fact at half-fillingEsc

(2)[Eaf
(m) . Hence we derived

within TDVP atu,0 two degenerate wave functions for th
ground state, the superconducting and the charge-den
wave one. Indeed it is easily verified that the two wave fu
tions are orthogonal, and that the expectation value of
order operator of one phase, when taken over the wave f
tions of the other phase, is identically vanishing.

Now let us analyze the equation of motions~51! away
from the fixed points in some simple case. A first integra
case is obtained when the variableXs is kept constant. How-
ever this assumption is consistent only if(aeaYa,s50, and
such a condition in turn is satisfied only ifYa,s is indepen-
dent of time for eaÞ0. Then the solution for eachaÞF
reduces to Eq.~53!, whereas fora5F it turns out to be given
by

YF,s5Ascos~ast !1Bssin~ast !,

ZF,s5Ascos~ast !2Bssin~ast ! , ~57!

andXF,s5Xs2(aÞFXa,s , with as54(u/\)X2s . Solution
~57! survives in correspondence to stationary points of
Hamiltonian ~when Xs are chosen according to the se
consistency equations!, as the system energy is not chang
by the value ofZF,s andYF,s . Such a solution describes th
periodic behavior of the mesoscopic Fermi level, holdi
even for the interacting ground state. In fact, due to the
simir constraint the constantsAs andBs turn out to be re-
lated by the equationAs

21Bs
25IF2XF,s

2 . The latter condi-
tion implies thatAs5Bs50 for XF,s56AIF, which is the
case only for the absolute minimum point of the nonintera
ing case @see Eq. ~53!#. On the contrary, for any
uXF,su,AIF from Eq. ~57! we obtain this oscillatorylike be
havior of the solution at the Fermi surface. Such a beha
affects neither the order parameter, nor the energy, bu
turns out to affect the phasewaf(t) characteristic of the
TDVP approach, by adding to the term linear in time a str
tured periodic time-dependent contribution given by

(
kPL̃F

tan21F Bk,s1Ak,stanS as

2
t D

asA124Xk* ,s
2

G . ~58!

Here we used the same dynamics for the local and the
soscopic pseudospin variables. In summary, we obtained
in the AF and CDW phases a nontrivial phase dynamics
the ground state.

Apart from this simple case, more generally the syst
described by Eq.~51! has been investigated in the case wh
the mesoscopic levels which have fast dynamics are on
-

ty-
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two.22,23Already within such a framework it appears to ha
very interesting chaotic properties.

IX. CONCLUSIONS

In the present paper we developed a consistent schem
dealing with the dynamics of an itinerant interacting man
electron system described by the Hubbard Hamiltonian. S
a scheme is based on TDVP procedure, and has been ap
for describing the dynamics of the model by means of m
roscopic wave functions built in terms of the GCS of t
dynamical algebras which generate the Hartree-Fock s
tion in SC, AF, CDW, and paramagnetic phases. Already
these simple cases a certain number of remarkable fea
related to the dynamical description rather than to
statistical-mechanical one was underlined.

First of all, a geometric phase—a macroscopic quan
which, in principle, is observable—occurs for appropria
values of the physical parameters in the ground state as
as for some low-energy excited states. Such a feature ca
be identified by solving the eigenvalue equation for t
Hamiltonian~or related techniques, like the Bethe ansatz
proach!, as it is a consequence of the phase of the eigenfu
tion, which in the eigenvalue equation is free. Even mo
noticeably, away from half-filling in the repulsive regime,
was shown that such macroscopic behavior of the Be
phase is originated from a vortexlike dynamics of the pha
of the microscopic variables. Both these features could
due to the approximations implied by our scheme, henc
first interesting point which is left open to future work is
study exactly the dynamics of the stationary points ofH, by
solving the Schro¨dinger equation near them. This could b
done by using the Glauber GCS’s, which map exactly
quantum Hamiltonian into its semiclassical form, and stud
ing the fixed points of the resulting equations of motion.12

Other interesting dynamical properties of the system w
stressed in the low-energy regime for some integrable ca
At half-filling, the ground state has been shown to exhibit
oscillatorylike behavior at the Fermi surface. Away fro
half-filling, for u.0 an analogous oscillating behavior fo
the mesoscopic density variable takes place near the F
surface. Such a feature is responsible for a nontrivial ti
dependence of the collective Berry phase. Again, this po
should be further analyzed in different approximations.
alternative viewpoint could be furnished even by employi
the same TDVP scheme starting from GCS’s more reali
than the Hartree-Fock ones. For instance, in theU→` limit,
a reliable basis is given by the Gutzwiller states.27

One more solution obtained exactly within the prese
scheme and exhibiting interesting features is the single-m
solution, characterized by the nonvanishing of the superc
ducting parameter, and by a unique time-dependent ph
reflecting collective order. The possible relevance of this
lution within the framework of superconductivity is relate
to the fact that it survives atu.0, and at any energy but th
ground state, with a volume in the space of solutions incre
ing with energy.

All the above solutions, which are exact within th
present approximation scheme, are interesting also in
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they could represent good starting points for studying m
exhaustively the dynamics described by Eq.~16! in their
neighborhood, by means of standard perturbative method
classical dynamics. As a general conclusive observation
us notice that their validity beyond the present TDV
scheme could be tested by solving exactly the Schro¨dinger
a-

y

of
e

of
et

equation forHHub on small clusters of sites. Work is in
progress along these lines.
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