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Dynamics of the Hubbard model: A general approach
by the time-dependent variational principle

Arianna Montorsi and Vittorio Penna
Dipartimento di Fisica and UnitdNFM, Politecnico di Torino, 1-10129 Torino, ltaly
(Received 30 April 1996

We describe the quantum dynamics of the Hubbard model at the semiclassical level, by implementing the
time-dependent variational principl@DVP) procedure on appropriate macroscopic wave functions con-
structed in terms of S(2)-coherent states. Within the TDVP procedure, such states turn out to include a
time-dependent quantum phase, part of which can be recognized as Berry's phase. We derive two semiclassical
model Hamiltonians for describing the dynamics in the paramagnetic, superconducting, antiferromagnetic and
charge-density wave phases and solve the corresponding canonical equations of motion in various cases.
Noticeably, a vortexlike ground-state phase dynamics is found to take platexfér away from half filling.
Moreover, it appears that an oscillatorylike ground-state dynamics survives at the Fermi surface at half filling
for anyU. The low-energy dynamics is also exactly solved by separating fast and slow variables. The role of
the time-dependent phase is shown to be particularly interesting in the ordered phases.
[S0163-182607)02806-3

[. INTRODUCTION Furthermore the special role assigned to the quantum
phase of the macroscopic trial wave function involved within
Interest in strongly correlated itinerant electron systemghe TDVP framework makes the procedure even more attrac-
has been constantly growing in the last three decades. Espéve. Such a quantum phase, in fact, is structured so as to
cially since the discoveryalmost ten years agmf high-T, have a memory of the entire dynamical behavior. It is thus
superconductors, an enormous amount of work has been deatural to expect some kind of correlation between the type
voted to such systems, aimed both at investigating their ma@f microscopic order which possibly characterizes the me-
roscopic thermodynamical properties via experimental meadium and the phase time behavior. Such effects have been,
surements, and to disclose—by employing the standarfPr instance, investigated in Ref. 5, where the study of quan-

methods of statistical mechanics—what type of macroscopi m d)l/(nekl)rlmcs of solitons in ferré)magntra]ts Wf f}hO.W” to have
collective order is responsible for the frictionless regime. remarkable consequences on Berry pnase benhavior.

. . This aspect, in turn, directly leads to the second circum-

Nevertheless, due to the high number of variables natu- . . : . .
rally involved in the models proposed for investigating theseStamCe which motivates our interest for the dynarmcal view
oint. At low temperature, one can reasonably think of per-

many-electron systems, and probably to the background rming current measurements or superconductive quantum

the community of physicists who first considered these modiieference measurements based on experimental devices

els, to .the best of our knowledgg very Iittlg effort ha; beengimilar to the ones employed to investigate thesephson
made in order to investigate their dynamical behavior. OreffectS7 It is essential recalling that, in that case, the time
the other hand, this type of analysis is known to lead todependence of the order parametite macroscopic wave
interesting properties of superfluidity when applied, for in-function of the systemhas a crucial role in allowing for the
stance, to the BCS Hamiltonian. detection of microscopic phenomena occurring in the me-
Two circumstances, at least, prompt us to attempt the dydium. Although the TDVP approach is able to take into ac-
namical approach and to carefully consider its possible deeount a large number of dynamical degrees of freedom, and
velopments. First of all, standard theoretical techniques sucis thus able to describe a strongly correlated electron gas, one
as the time-dependent variational princigEDVP) proce- can expect that low excited states actually involve a re-
dure and its path-integral version, the stationary phase aptricted number of dynamical variables. Under such condi-
proximation method, have been remarkably developed in thdons the quantum phase could retain a nonrandom character
recent years, by exploiting the notion of the generalized cowhich makes it suitable for experimental measurements.
herent state(GCS and the spectrum generatitg dynami- A further quality of the TDVP approach must be still
cal) algebra method. At the formal level, such group-pointed out. Such a scheme, in fact, involves the construction
theoretical tools have greatly simplified and provided of aof semiclassical Hamiltonians which are obtained in a com-
systematic character the TDVP procedure, which essentiallgletely independent way with respect to the model Hamilto-
consists of reducing the system quantum dynamics to a semiians derived by standard mean-field techniques of statistical
classical Hamiltonian form. The procedure, formulated, formechanicqfor instance, Hartree-FotkThe ground state of
example, in the form of Refs. 3 and 4, was introduced forthe semiclassical Hamiltonian reproduces, as we shall see,
studying the low-lying collective states in nuclei, but it is the same results of the Hartree-Fock approach from the set of
easily extended also to any systems endowed with a largéynamical fixed points. Moreover, as opposite to the mean-
number of degrees of freedom. field cases, here also the excited states at low energy are
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expected to be a realistic description of those of the originabrder in the medium. In particular, the time-dependent phase,
model Hamiltonian. This character is related with the factwhich—due to its macroscopic nature—can be considered as
that TDVP Hamiltonians, even though affected by the ap-an observable quantity, exhibits a behavior which is shown
proximations imposed by the method, generally preserve # be related to the nonvanishing of order parameters, and is
structure rather faithful to the second quantized Hamiltonianevaluated exactly in several situations.
Comparison with statistical mechanics approximate models The paper is organized as follows. In Sec. Il we review
is thus interesting in any case. the generalized TDVP approach and its connections with the
In this paper we propose the implementation of an approguantum geometric phase. In Sec. Ill we treat explicitly the
priate generalization of TDVP to itinerant interacting elec- SC-paramagnetic case, by constructing first the macroscopic
tron systems. This amounts to applying the TDVP to a trialtrial wave function and the corresponding semiclassical
wave function representing a semiclassical macroscopic statéamiltonian, and deriving then the canonical equations of
constructed by generalized coherent states of the dynamicaiotion with the time-dependent phase factor. Section IV is
algebra of the model HamiltonidrT. From the semiclassical devoted to studying the fixed points of these equations and in
picture of the system obtained in this way one can deriveparticular the ground-state solutions and metastable states;
canonical equations of motion, and a classical description abbtaining for the ground state the Hartree-Fock results as
the system’s dynamics. A key role within this approach iswell as a nontrivial vortexlike dynamics in the so-called
played by a time-dependent phase, which has to be fixed quaramagnetic phase, and topological excitations for the
as to satisfy, at least in average, the Sdimger equation. In  metastable states. In Sec. V we analyze an integrable case,
Ref. 4 it was shown that, under appropriate assumptions, th&hich exhibits collective order and nonzero pairing induced
latter is nothing but the dynamical plus geometric phasesby the k-mode interactions. In Sec. VI we investigate the

beyond the adiabatic approximation. global dynamics by comparing slow with fast degrees of
Here we apply the above method to the Hubbard mddel,freedom. We show how slow variables tend to constitute an
described by the Hamiltonian autonomous subsystem which drives fast variable dynamics

on large time scales. An integrable case where the slow sub-
system is reduced to a two-level system represenking
H o= _T%% El;f CiT,oCi,oJFUZ ”LT”LL_MZ (M,1+Mi,))  modes close to the Fermi level, is explicitly solved in Sec.
’ VIIl. In Sec. VIII we repeat some of the above analysis for
_2 2 Fot the AF phase at half-filling, finding in particular an oscillat-
e (ek_f““)”k,o“LUkylvm a,18m, &, 8+m-11» (1) ing behavior at the Fermi surface. The final section is de-
voted to some conclusions.
where, on the first Iine,cff(,,cj,(, are fermionic creation
and annihilation operators {c(jyg,civar}zo,{cjyg,cfyo,} Il. GENERALIZED TDVP METHOD
=3ij 05, o1, ”i,oiCiT,a.Ci,o) on a d-dimensional latticeA Knowledge of the dynamical algebgaof a given(time-
(i, je A, oe{f,U}) with N sites, andi, j) stands for near-  jhgependent HamiltonianH allows the construction of an

is rewritten in the reciprocal spaceA, with states,

=3k, q=—2T3 ", cok . In Eq. (1) the first

term represents the tight-binding band energy of the elec- |‘Do>=eXF{2 (0,E,— 0LE_.)

trons (T being the hopping amplitudiethe U term describes “

their on-site Coulomb interaction, andis the chemical po- where{E,,E__,} are the raising and lowering operators in

tential, which will allow us to fix the conserved quantity the Cartan representation 6f and|0) is the highest weight

Ne=Zi(ni;+n; ), i.e., the total electron number operator of the representation, defined By ,|0)=0 for all positive

on the lattice. a’s. The statd ®(t)), which is the obvious time-dependent
Since the GCS of the dynamical algebra of Hamiltoniangeneralization of®),

(1) is quite complex to deal with, we choose as trial GCS’s

for constructing the semiclassical macroscopic state the _ *

SU(2) coherent states which are exact for the corresponding |d>(t)>—ex;{§ (0o (D= (1) E“)}|O>’

Hartree-Fock Hamiltonian. This is done for two different ] _ )

cases, namely that describing superconductisg) and IS related to the time evolution dfbo), described by the

paramagnetic phases, and, at half-filling, that describing arstate| ¥ (t))=e~("™"|®,), through

tiferromagnetic (AF) and charge-density-wave(CDW) .

phases. The approximate equations of motion we obtain for |q’(t)>EeI[¢(t)m]|¢(t)>’ (2)

the full Hamiltonian in the two cases are then solved in somgyhere

integrable cases, and by approximate methods in other inter-

esting limits. This gives rise to a variety of different dynami- ) [t

cal behaviors, from vortexlike dynamics in the ground state P= _Ht+'ﬁjod7<q>(7)

for theU>0, n#1 regime, to oscillations of the number of

electrons around the Fermi surface and possible laser effeand H= (P (t)|H|D(t)).

at low energy, and to single-mode collective frequency dy- The time dependence of the parametégét)’s is deter-

namics, which should reflect the occurrence of macroscopimined by imposing that¥(t)), as given by Eq(2), satisfies

10),

J
o), ©®
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the Sph'r'dinger equation. It turns o.ut that thi_s amount; toimplies that| W (t))=exp(— (i/4) Ht)| Do) is uniquely deter-
requiring thed,(t)’s obey the canonical equation of motion mined by the energy pertaining to the initial stéde,). Such
(see below. An alternative parametrization for the state behavior is very reminiscent of what is called the dynamical

|®(t)) can be used, namely phase for a time-dependent Hamiltonian in the adiabatic ap-
proximation. More generally, by inserting E¢3) into the
|<I>(t)>=/\/‘1’2exp{ z 2. (E )|O) (4) expression2) for the statd W (t)), the latter can be written
a0 ) as
N being the normalization factor, such that i J
(®(t)|P(t))=1. In this case the canonical equations of mo- I‘If(t)>=ex;{—f dt( _H+iﬁ<q)(t)’ _‘q)(t)>”|q)(t)>,
tion rea h at
)
) . H . . IH ,
|h§ﬁ: ga’BzB=E , |h§ﬂ: Oa.p25=— 7 (5) and we recognize a formal analogy between the plese

o and the dynamical plus geometric phase in the adiabatic ap-
wheregaﬁ:azlnj\//azzazﬁ is the metric of the phase space proximation (for a derivation of the quantum phase beyond

spanned byz,,z*}, and determines its symplectic structure. the adiabatic approximation, see for instance Ref. Mbre

: . . o ._ precisely, in Eq.(8) we can identify the first term in the
Zcr)]r?’smt?rtgglggfg indeed determines the explicit form of Pois exponential with the dynamical phase, and the otkigretic)

term as the geometric phase obtained by relaxing some of the

JA JB  OA IB hypotheses of the adiabatic approximation. We recall that the
{ABlpg=2, i(9 Vel = ——-——=|, (6) latter is nothing but the so-called Betfyphase. In fact in
xp 92, 025 92 07, some simple exactly solvable c4sewas shown that—by
whereg ! represents the inverse matrix gf imposing appropriate quantization condition—the phede

If the algebrag is the full dynamical algebra dfl (i.e.,if ~ does coincide with the geometric plus dynamical phases
H e G for any choice of the physical parametetse above €ven if evaluateo_l within the generalized TDVP approxima-
procedure is exact. In particular, it gives the exact quantunfion scheme. This leads us to expect that the present ap-
ground state of as the fixed point of equatior(s). Never- ~ Proach, apart from leading to a simplified, if approximate,
theless, in a many-body problem like the one described b§iescription of the dynamics of the Hubbard model, may give
the Hamiltonian(1) the dimension of the dynamical algebra & Precise physical information, i.e., which is the Berry phase
is exponentially growing witiN, and infinite in the thermo- ©f the states we are studying. If this is the case, we expect
dynamical limit. Even though one may still work out the that whenever we shall obtain states with the same energy
canonical equations of motidf, their explicit solution be- 7 but different phases(t), an appropriate physical device
comes then quite hard to handle. It is therefore reasonable g10uld be able to observe their interference.
inquire to which extent the above scheme can be used in the A further investigation of this relationship for the model
case where the GCS are built in a subalgerag for ~ discussed here is beyond the purpose of the present paper.
which the equations of motion become tractable. In this casd;€re we want just to emphasize that the sfatét)), thanks
of course, |W(t)) as given by Eq.(2), differs from to its phagego(t), is able in pnnC|pI_e to approximate the
e (MM @\ and the Schinger equation is in general Wave function of the full model Hamiltonian, no matter how
not satisfied. Nevertheless, the answer given by the generaimall the subalgebra of G. However, we expect in general
ized TDVP approachis that in fact the above scheme still that the results will be more reliable the modeis a reason-
holds also in this case, if one just requires that at least th@Ple description ofj, i.e., the more the Hamiltonian is in a

inner product of the Schdinger equation fof ¥ (t)) with (thermodynamicalphase in which the relevant operators are
(W(t)| vanishes, i.e. contained inA. It will turn out that preciselyp(t) will mea-

sure how far the system is from the states generated.ty
9 particular, we expect that the system is correctly described
(Iﬁﬁ - H) “P(t)> =0. (7) by .A wheneverg(t) happens to be linearly increasing with
time, in that the wave functiopW (t)) which satisfies Eq(7)
Notice that now{W(t)) is to be built only with the raising results to differ by the one we constructed.in (|®(t)))
operatorsE , € A. Hence the analogy with the exact solution just for an oscillating phase factor.
(2)-(5) (whereE_ e @) is complete at a formal level, but
approximate in the resultg{ being evaluated on a subspace
of the whole dynamical algebré. Nevertheless, as for the
reliability of the method, one should recall that in the limit
fi—0 the results obtained within TDVP become ex#ct The model described by Ed1), has been intensively
second order i), meaning that one obtains the classicalstudied in the literatur® However, as for most many-
description of the system dynamics. electron problems, it is quite difficult to obtain rigorous re-
Both in the exact case, and in the TDVP approximation,sults(for a recent review, see Ref. J14n particular, only the
the role of phase(t) given by Eq.(3) is particularly simple one-dimensional zero-temperature energy is known
at the fixed points of Eq(5). In fact in this casg®(t)) is  exactly’® Therefore, different approximation schemes have
independent of, and the second term at the right-hand sidebeen used in order to deal with E€l). Among them, a
(rh9 of Eq. (3) (the so-called kinetic terjris vanishing. This standard one is the Hartree-Fock decoupling procedure,

<‘I’(t)

Ill. SEMICLASSICAL EQUATIONS OF MOTION
IN SC PHASE
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which amounts to approximating the interaction term by rerameters, and construct the approximate trial time-dependent
ducing it to a sum of its bilinear parts, weighted by coeffi- wave function of the full Hamiltoniam ., |#(t))sc, as

cients which have to be fixed self-consistently. There are of _

course different ways of decoupling the interaction term, de- [(1))se= "M esdV] (1)). (10

pending on the phase which has to be investightédThe  \yo e now ready for evaluating the expectation value of

d|me”n3|on_of the dynamical algebra of the resulting decou-HHub over |#(t))s., namely the semiclassical Hamiltonian
pled” Hamiltonian turns out to be greatly reduced, and to aIIH which reads
SC»

effects one is lead to deal with a subalgebra of the spectrum
generating algebra of the original Hamiltonian. It is our pur- Tk Tk
pose to construct the GCS involved by the TDVP scheme in  Hg = 22 (GK_M)H?JFU[ ( E T
these subalgebras. k 77k K Tk 77k
In order to identify the subalgebra, we explicitly need the e
reduced Hamiltonian. Neglecting for the moment the possi- + —_ —_
bility of an AF or a CDW phaséwhich will be investigated ki (L memd (1+ o)

in a later sectiopand of a ferromagnetic phagehich is not  \where 5,, 7, obey the Poisson-bracket relations obtained
to be expected at low), it turns out that such a Hamiltonian from Eq. (6), in 7, 1= (1+ 7em) 2.

, 11

coincides with the linearized HamiltoniaH %= 3,H Instead of proceeding directly to the derivation of the ca-
where nonical equations of motion, we notice that Hamiltonfaf)
can be fruitfully rewritten in terms of the following semiclas-
n sical pseudospin variables
HEO= (- mnict U| 50 (Aafal o+ Hoo) P P
11
o S= 5 ==L (D)o
-U ZN+|A| N. Pkt 1
Here, as customary,k stays for the multi-index sk 2 — 1301 H(t 12
(ko) [ka(k 1) —ke(—k.1)]. and nala.  More. 0= e =t 0lIle0)e (12

overn is the average electron number per site;(N)/N, ) (k) _
andA=(3,a_,a.)/N is the average pairing per site, where and S =(S\”)*, whose Poisson brackets recover for each

(@) denotes the expectation value of operdoover appro- K @ SU2) algebra. Explicitly

riate states. . .
P It is important noticing thaH{*®, contrary toH,y,,, for in{s, s} =28, in{sl §}=F8K. (19
any A#0 does not commute with the electron-number op-Moreover, one can define the related “mesoscopic” vari-
erator per site\;. This is justified by observing that{*”is  aples S@=3,_ 1 S®, with a=3+,—, Az={keA;
a faithful approximation oHy, in an ordered phase which y
does not conserve such quantihhamely, the superconduct- One can easily verify that thsff‘)’s form a SU?2) algebra

ing phasg On the other hand, foA=0 A/ is still con- ke Eq. (13 (with k—a), which we identify by

served, andH{*® describes in that case the system in a Parag 5 Hamiltonian (11), when written in terms oS

. . . a-* 1 a !
magnetic phase, which is known't.o be the case for th?educes to a genuine one-dimensional problem, in that the
ground state, at least for low positivé, away from half

filling (i.e.,n#1). index a (contrary tok) is strictly one-dimensional, number-

The Hamiltonians HEs have the property that ing the different mesoscopic levels. Indeed
[H HE=0, and hence can be diagonalized simulta- @, Na
neously. More preciselyH(? turns out to be an element of Hsczzg (€a=m)| S37+ 2 (S3+ 2 S+
the dynamical algebrals= @ A", where A5 is the local (14)
SU(2) generated by

€x= €55 denoting the mesoscopitkinetic energy levels.

2

+ 2

+u

HereS,=3,5¥=3,8% andu=U/N. The Casimir opera-
1 tors of both SW2), and SU2), algebras,
A9 = Jgk>z§(nk+ nk—1),J$>za§a*k,J“‘>zakak]. Le=|SP12+|S¥)? (and the same definition for, with k
9) replaced bya) are conserved quantities féts.. In view of
the definitiong12), 1, =1/4, andl ,< N§/4, depending on the
Any eigenstate of the Hamiltoniahi(>” can then be ex- initial conditions.

pressed as superposition of the GCSs4gf, namely Noticeably, Hamiltonian(14), like H and unlike H{*%,
commutes also witl$s, i.e., the semiclassical variable corre-
| 7) =T (1+ 7m0~ Yexp 7 d¥)|0)so sponding to the total electron number operafyris thus, as

it should be, a conserved quantity, for which the relation
where the coefficientg, e C parametrize th¢overcompletg  holds
set of exact GCS of(* and|0). is the electron vacuum.
In line with the general approach discussed in the previ-

N
ous section we can think of thg,'s as time-dependent pa- S3=§(n—1). (15
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In this sense we can therefore claim that the dL Hamil- _ gkgk _ gkgk
tonian H,, obtained by means of the present semiclassical Osc= —Hectih D, ;&)_
approach is a more accurate approximatiorHothan H|(5°), k 1-25;

In particular, in Eq.(14) the k modes are coupled dynami-

cally through|S, |2, while in {59 they are not. This feature =u }

in turn keeps track in the present scheme of the nonlinearity

of Hyu, thus makingHs. a good candidate for giving an 1 .

appro;?mate descriptionsgf the physics of the Hubbard model =~ Hsct ﬁhzk: (1+25(3k)))‘k ' (17)

in the whole phase space. Of course, the results obtained by

using insteadH(*? will be reproduced by the present ap- where the last expression was explicitly written to make evi-

N2 1+28Y
2N k) 4
n’- (S+§k: Sk =2k T CC

proximation, as we shall see in the next section. dent that a nonvanishing geometric contribution ¢g. is
From Egs.(13) and(14) we can now derive the equations expected whenever the phasgof S is not constant.
of motion for the mesoscopic variablééa), which read Equation(17) has some other relevant features which it is

worth underlying:
(i) it vanishes for vanishing, as can be recognized from
. the second line form. In fact we know that if this is the case
FinSY = 5,8~ 2uss. the wave function given by Eq10) becomes exact, and
according to the discussion developed in the previous section
this implies thatp(t) must reduce to the exact value given
) by Eq. (3), which can be shown to be zero;
ihS=u(s_s?-s,.s¥). (16) (ii) it reduces to the constann?(N2/4) for S, =0. Since
S, is related through Eq12) to the semiclassical analog of
the total pairing operator, it must be inferred that a nonlinear
Here 8,=2(e;—um)+unN, where the constant factor time behavior ofe.(t) is closely connected to the possible
unN-2u in 8, is vanishing at halffiling Superconductivity of the state; . .
(w=U/2, n=1), and in any case does not affect the dynam- (iii ) contrary to both+. and the equations of motiqd6),

ics described byS(f), apart from an overall phase factor Z;_SC(t) _cannlot be expr.essed. t?lgé) |nTr1'c§rms of ttr;]etqpe—
e*/M(Un=21)7 Notice that of the three equatiori$6) only Imensional Mesoscopic varia - 1is means hat |

two are independent, whereas the third one is obtained frorW‘ti'.ntams th? memory of .the |_nherent_c0mpIeX|ty of_the
original Hamiltonian, and gives information about the time

the Casimir constraint. For instance, one could use as inde-

. (a) L evolution of its wave function which goes beyond that im-
pendent variableSy™ , which fixes also the absolute value of plicit in its semiclassical approximatiofL4), in particular

s, and the phasg, of S¥'=|S¥|e*™a. This alternative depending on the inner dynamics of the mesoscopic levels
representation of the pseudospin variables will also be cong.
sidered, when useful, in the text.

Let us emphasize that the true dynamical variables are, of
course, the microscopic canonical variab®g , which sat-
isfy the same equations of motidi6) with a replaced by The first step in investigating the dynamical behavior of
k. Here we preferred to write them only for the mesoscopicany nonlinear Hamiltonian system usually consists of finding
variablesS®® because the Hamiltoniad. given by Eq.(11) its fixed points, that is those points in phase space where the
was shown to be degenerate with respect to the inner dynarffuation of motions involve vanishing time derivatives of
ics of the mesoscopic variables. Moreover every solution wdhe dynamical variables. The stability analysis of such a set

will be able to find for thes®’s holds straightforwardly also  ©f Points leads to revealing their topological natubs re-
for the S¥'s. ass.= 8. . In fact. apart from this simple case sorting, for. e>.<ample, to standard .methods such as Routh-
> k— - » ap p ' Hurwitz criterion and, in conclusion, to structuring the

every solution for the microscopic variables can be, in pri”'phase space in regions where the dynamical behavior of the
ciple, worked out once we have found the mesoscopic SO'”System exhibits well defined featurts.

tions, and consequent$. , as in this case equatior$6) A complete stability analysis is beyond the scope of
with a—k reduce to a linear system with time-dependentpresent work. In fact, in this section we shall simply work
coefficients. Interestingly, it is easily verified from E4Q6)  out all the solutions to fixed-point equations, in particular
that the scalar product of any two microscopic pseudospighowing that indeed those among them which minimize the
vectorsS™¥ belonging to the same mesoscopic level is con-energy H. give the same energy and the same self-
stant. This observation implies that in fact the time evolutionconsistency equation as the Hartree-Fock approximation,
of every microscopic vector in a given mesoscopic level isboth foru<0 and foru=0. Apart from that, the knowledge
identical, the relative orientation of differeB{“(t) depend-  of the fixed points allows us, in principle, to look for other

IV. FIXED POINTS AND STATIONARY POINTS

ing only on the initial conditions. solutions of Eq.(16) by means of standard perturbative
According to the generalized TDVP approach introducedmethods in their proximity.
in previous section, and by means of E@, (12), (14), and Minimum energy points are contained among the station-

(16), we are finally able to obtain the time derivative of the ary points ofHs., which are easily shown to coincide with
time-dependent phasgt), fixed points of Eq.(16) first by rewriting the equations of
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motions in terms of canonical variableS{{,\,), and by where, to second order ii8¥|, S=+1 for kexx. Oon
setting then\,=0,S®=0. Since this is equivalent to the other hand, fofS!¥|=0 the phase is totally free, as one
S@=0 andS¥=0, Eqs.(16) furnish the stationary point can check from equatior(d8). Hence, by a continuity argu-
equations ment, we expect that also in this case the dynamics of
\k(t) evolves according to Eq21). Equation(21) has al-
0=6,8?—-2usPs, , ready been investigated in a different contésge, for in-
stance, Ref. 19 In particular, it was showi that for
XY-like models it allows for vortexlike excitations. More-
over, in the continuum limit it can be recognized as a
Bernoulli-like equation, the latter being known to describe
once more a vortex dynamics. Finally, let us observe that the
solution of Eq.(21) contains as a particular case tfiepo-

0=58¥s_-s?¥s, . (18

The case in whicIS(f)zo for anya represents the simplest
possible solution. We observe thaf®), thanks to the Ca-

simir's constraint, can be g)wosen in a fully arbitrary "8 |ogical) one discussed after Eq19), which requiresS®
within the interval—N,/2<Sy”<N,/2, so that an enormous . : . . =
#0, and reduces to it only in thexac) noninteracting case,

number of stationary points characterizes the mesoscopic

. . I.e., foru=0.
seudospin dynamics. ! .
P It is irzpor'[);mt noticing that the solutio8®=0, when The absolute minimum Eq20) corresponds to the para-

. . . : . ) magnetic phase within the Hartree-Fock approximation, and
inserted in the equations for the microscopic variables

. . ; ; ives the same ground-state energy. Contrary to that approxi-
makes them immediately integrable, and the solution show g 9y y bp

i ) S i ation, here it was possible to make evident a nontrivial
that in general a microscopic, inner dynamics fopseu-  gynamical behavior of the paramagnetic ground state. Such

dospinse A, can take place, according to behavior implies in particular the appearance of a nonvanish-
o ® o h ing geometric phase in the ground state, as can be understood
S¥(t)=s¥(0)e" %/t (190 from the third of equation$3). Let us recall that this should

] M N happen at any filling but half. We shall see in fact that at
provided X, § SV(0)=Zy 7, Re*™=0. Such a con- paltfiling (n=1) states built with antiferromagnetic order
straint ind=2 is naturally obeyed by those configurations can provide lower energy for the corresponding semiclassical
where the initial phase\,(0) is topologically nontrivial, Hamiltonian, again in agreement with the Hartree-Fock ap-
while R is independent ok. Indeed this is the case when proximation.

A(0)—regarded as a function & along the 1d closed Moreover, let us stress that stationary points characterized
paths associated with eaath mesoscopic level—undergoes by S(f‘)=0—even when not identifying an absolute
a variation of 2rp, with peN. For paths with energy minimum—indeed can be shown to be local minima of the
€,=0 the number of modesl, is great enough to allow Hamiltonian when the geometric constraints represented by
e to be twisted many times in a quasicontinuous waythe Casimir's are taken into account. A simple first-order
Let us underline that solutiofL9), which, being consistent expansion ofH, in the variableg S(f‘)|2, where S(sa)’s are
with S®)=0, corresponds to a stationary pointigf, is not  now expressed as SP=+(—)(1,—|S?|?) Y2 for
a fixed point of the microscopic dynamics when a>F(a<F), shows that the variatiodH, is positive pro-
s®(0)=0. vided u is positive and sufficiently small. In summary, we
The energy associated with the soluti8a=0 has the conclude that such stationary points are minimum energy
form E= —u(S;3+N/2)%+2,8,(S?)+N,/2). Foru>0 itis  points foru>0, possibly possess inner dynamics and topo-
easy to check that an absolute minimum endowed with théogical structure, but do not involve superconductive situa-
energy tions, beingS, =0.

The remaining set of fixed points, which are still solutions
2

N of Egs. (18), can be fruitfully parametrized through the pa-

ES'= _U”ZT_EF | 6alNa (20 ramgter(sl a)and S, . ExplicitIZ/ P : P
is reached whers{®) = + (—)N,/2 for a>F (a<F) is im- SP= s, / la
posed,F being that particular value af for which 6g=0, 272 N 52+ 4u2S,|?
which implies  u=e+U(N/2), Z,oeN;— 2N,
=N(n—1)—-2S{", ands,=2(e,— €). This absolute mini- ,
mum corresponds t¢S¥|=0 for eachk. Noticeably, the S®=2s,Jul\/ o—3=IS:| . (22)
latter constraint does allow the ground state to still have a Oat 4u%|S,|

phase dynamics. In fact, on the one hand, by rewriting th
equations of motions in terms of the canonical variable
)\a,Sga) introduced in previous section, it is straightforwardly

Suith s,=*1.S, does not play the role of a free parameter,
Sut it turns out to be constrained by the equation

verified that in the limit wheréS{|—0 uniformly the equa- W
tion for the angle variables reduces to =— -5 -
g =202 s\ 2 29
fiNg= 5k_2ug3k>2 cogNg—\)), (2D By substituting Eq(22) in Eq. (14), and choosing the values

leA of s, andl , which minimizeH,. (s,=1 andl = N§/4), itis
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sy
1+2U% m

seen from Eq.(23) that such a solution exists only for

u<0, and corresponds to an energy deftM-WI) = [T4(W—=0,)=0,

2 (29
EC) = ul > n(2—n)- 12 N.v62+4u?[S, |? ; Ol ;
sc _|U|T”( n-s = NaVoa™aU S:| is polynomial in W. The eigenvector components, can
now be expressed in terms ¥, V=3,V, and Sga) as

2us?

This result is once more in agreement with the ground-state Vf%\/
result for the superconducting regime within the Hartree- a
Fock approximation, as can be seen by identifying the variak should be noticed that in fadt is itself a function of the
tional parameterA with the semiclassical pairing operator initial conditionsS®) and energyHs., through the relations
S, . In particular, the constraint equati¢23) coincides with  (14) and (27), which give V==*[(Htun’N%/4
the self-consistency equation far. -2t 2,6,89)/u] 2

Let us notice that, opposite to the mesoscopic fixed points  Moreover the eigenvalues fulfilling E¢29) are obtained,
S®=0 case, here the insertion of the solutid@g) into the  fter assigning the initial condition sg8®}, by solving
equations of motion for the variabl&®¥'s does not allow
any microscopic dynamics, as the constratf! #0 has to
be satisfied. 122“%

+ul|S4 ]2 . (24)
V. (30)

b)

B W (32

It turns out that the factofl ,(W— &,) in Eq. (29) does not

play a role unles§(3a)=0 for somea. When this is the case
The dynamical system described by semiclassical Eqssome of the eigenvalues coincide with the system proper

(16) is integrable in the special case when the pseudospifrequencys,. The total number of eigenvalues, correspond-

variablessga) are supposed to be time independent. The mairng to the number of different mesoscopic levels, is however

effect of such an assumption is, in fact, of halving the num-Kkept constant.

ber of the system degrees of freedom. This can be easily seen Both eigenvalues and eigenvectors can be easily obtained

by observing thatS®| cannot depend on time consistently in an (approximatg explicit way when|u|/t is suitably

with the fact that the Casimir’k, are constants of motion, so Small. Looking at the structure of E€31), it appears clear

that only the phases of the pseudospin projection variableat the values oWV close enough t@&, are reasonably ex-

S are allowed to depend on time. Further restrictions orP€cted to fulfill it. In order to check this we first replave

the dynamics are due to the equations of motion which tak&/ith Wa=g+ 5, in Eq. (31) which becomes

V. COLLECTIVE FREQUENCY DYNAMICS

the form 2U%a) S(3b)
| T BVPYT) R
~in8@=4,82-2us¥s,, & 67a Op— Ja—e
then, by takinge|<|8,— &4/, for any pair @,b), one easily
sPs =8%s, . (259 finds thate=—2uS® thus obtaining
The first of Eqs(25) show how the system formally reduces W,=8,—2uS .

to an ensemble of interacting oscillators with coupling con- N ) o
stants 252 . Moreover, together with the second, rewritten ON the other hand, the conditiga| <[4, — 5| is satisfied if

as it holds in the less favorable case=0,b==*1. Since
| 69— 81| =2te;=8t7?IN (for d=2), then the condition on
S@/s@=s, /s 26) ¢ becomegs|<8t7?/N, which finally leads to
< 2
state that a unique, time-dependent pha&#é#() - character- |U|<8tm®/N,
izes the system dynamics. Namely, for ey for the greatest possibl&®) given by N,/2. The present
@ o (W) approximation scheme, based on considefilig=45,, is
Sy (7)=Vqe' e , (27)  thus permitted for reasonably small values|df/t. In par-

ticular, if |U|<8t7%/N, all the eigenvalues can be obtained
from this scheme, whereas|lf}| =8t none of thew,’s is
well approximated by it. Thath eigenvector associated with
eigenvalueW, is readily obtained from Eq$30) and exhib-
its componentd/.(W,) given by

(M{S}-WI)-S,=0, (28) 2U§3C)
V(:(Wa)2 5—o

with V,,a,WeR. Both the constant phase and V, are
fixed by assigning the initial conditior8?(0). Thelinear
character of Eq925) allows one to recast them in the matrix
form

_ V for c#a,
where the vectoB, has components®) and the dynamical

matrix M, whose elements can be obtained by sys(28), b)
explicitly depends on the sétz{s(;‘)}. The associated secu- Va(W, )ZV( 1- 2 ZU% ) .
lar equation, which in turn provides the eigenvalue equation, are b7a Op— Oa
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The above equations show how thath eigenvector motion. These features are, of course, appealing here because
S, (W,) in this approximate case is characterized by the facthe slow variables dynamics is the one surviving at a macro-
that only the componen¥,, with b=a is strongly nonzero, scopic level(and thus it might be observablewhile the
being in factV,=V. This implies that each eigenvector can dynamics of high-frequency degrees of freedom disappears
be regarded as describing a superconductive situation whem large time scales.

the superconductive order parameger=(3,J¥)=3,sP For the pseudospin system a classification of pseudospins
is essentially given b, ~S® and theu-dependent contri- either as fast variables or as slow variables is naturally es-

bution to the energ§.is mainly given by th& modes with ~ fablished by the fact that eithé;=0 or 5, # 0, respectively.

€= €q. We recall that such reference parameter depends amd is
Some general observations are now in order. First we ng@Ssociated with the mesoscopclevel of the ground-state

tice that the eigenvector problem is completely solved proconfiguration where&s{? changes its sign.

vided {S®} and Hs—the quantities which, at this stage, The effect of such a distinction is made evident by per-

describe the initial system configuration—have been asforming the substitution${® = exgi&,(t/4)1¥,, which turn

signed, and the eigenvalu®g, have been worked out from Egs.(16) into the form

Eq. (31). No restriction constrain®(s. and{S{’} except for

the filling condition(15) and the conditiorV+# 0. The latter —inW,= _2ug3a>\pa_2ug3a>z €'~y

allows one to consider eigenvectors with arbitrarily small b#a

componentsV/, but excludes the solutions characterized by

S,=0 (V,=0 for anya) representing a subset of the solu-

tion of the fixed-point equatiofil8). The single-mode solu-

tion set is thus completely disjoint from such a fixed-point . _
subset in the space of solutions of E¢®5), even if the explicitly exhibiting dependence on the frequencigs In-

former is dense around any element of the latter. On th&roducing the paramete¥, as the frequency distinguishing
contrary, the other fixed points of E¢25), given by Eq. sIOV\_/ frequenC|e$def|neq byl 8, < 8, ) from fast frequenqes
(22), are a(time-independentsubset of Eq.(27), corre- (defined by|5a.|>5*), it clearly results that those time-
sponding toW=0. dependent oscillating terms of Eq83) where|5,| > 5, can
Moreover we point out that the nonlinear nature of pseu€ neglected on a time-scale greater thaa, , since their
dospin dynamics survives our initial assumptﬁﬁ)z const rapid .oscnlat|0ns make their time-average vanishing.
because of the second of E@25). In fact the linear system '!'h|s fact has remgrkablg implications. In fact, upon de-.
of coupled oscillators described by E@85) should have an noting fast(b?seu?b?spln va(rg;elble?b;and slow pseudospln van-
arbitrary superposition of eigenvectors related to @@ as ~ ables byF=", F37 and Q.7, Q3”, respectively, we are
a general solution. This is no longer possible when E2@.  Now able to separate the dynamical equation set into two
are taken into account in that any superposition of single@lmost independent subsets, the first one of which describes
mode solutiongeigenvectorsviolates the request that pseu- Short-time-interval processes<(%/4, ), and reads
dospins exhibit the same phase.
Furthermore we observe th&)(7) can be easily ob-
tained from Eqs(25), where the tern8, (7) is now playing @) @
the role of an external forcing term. Sin&&(r) results to inFs"=u(F(F-+Q-)—c.c). (34)

be proportional tOS(f)_ up to a constant factoe'’, then it \hile the second concerns long-time processes#( s, )
follows that the equation for quantum phagg(7) has form  inyolving the slow variables, and is given by

8= u[ ¥, 3, wree o), (33

—inFP=6,F@-2uFP(F,+Q,) ,

hpsd 7) = W(S3+N/2) ~ Hso. (32 ~inQP=5.QP-2uQ%Q. |
Hence, already in this simple integrable case within our ap- ,
proximation there is a nonvanishing contribution of the geo- inQY=u(Q¥Q, —c.c). (35

metric phaséequal toWnN2 timest), at any energy but the , " .
ground state. Such a contribution should, in principle, beHereQ+=2a_Q(f‘) an_dF+=EaF(f‘) where the prime and
observable by appropriate experiments. Finally it is remark!N€ double prime remind us thatmust range within selected
able that these single-mode solutions, exhibiting some forritervals (9> 8, and|3,| <4, , respectively. We notice

of collective order through the unique time-dependent phasiat in Eqs.(34) Q.. can be regarded as time-independent

(W/#)t, correspond to nonvanishing superconductive ordeferms (adiabatic approximationsince their evolution takes
parametesS, . place on the time scale of slow variables, whereas in Egs.

(35) fast variables are absent because of the effects of rapid
oscillations discussed above. Also, whent/ 5, , such os-
cillations maked~. negligible with respect t&-. in terms

A standard procedure for tackling many-body system dydike (Q.+F.) of Egs. (35), so thatF-variable dynamics
namics consists in simplifying the equation of motions byturn out to be driven byQ. . On the other hand, th®
separating fast degrees of freedom from slow degrees afystem can be considered as an almost isolated system which
freedom™*®2! Such a procedure is profitable in that it leads exhibits the same features of the inithpseudospin system
the slow variable system to become an autonomous systefxcept for the fact that now the pseudospin number is
and sometimes reduces the complexity of its equations dfl, =2 N,<N and the effective Hamiltonian is

VI. SLOW DYNAMICS VS FAST DYNAMICS
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VII. TWO-LEVEL DYNAMICS

Ho=2 2(ea— p)QP+u, (N, /2+Q3)2+u|Q,|? ,
Q ; (€a=n) Q37+ Ux (N, /24 Qs Q- In the previous section we noted that the three-level sys-
(36)  tem is nonintegrable, although it is the oversqueezed version

whereu, =U/N, . Two remarks are now in order. First we of a muItiIev_eI system that was drama_tically more complex.
note that the long-time dynamics is weakly influenced by” thorough investigation of its dynamics, where the occur-
thosek modes for which|5,— 8¢|> 4, , so that the com- rence of a ehaouc behaw_or indeed is expected due to its
plexity of the dynamical behavior now issues from tQe S|m|I!tude with the dynamical model ef Refs. 22 and 23,
system, as manifestly suggested by the fact that the restrictdgduires a separate, extended analysis that will be pursued
Q system has inherited the same structure thelsewhere. Nevertheless we shall start with the three-level
N-pseudospin system. This is the main consequence of tH80d€el equations, so as to make the approximations per-
adiabatic approach. Secondly, we recall that the density dormed to achieve the two-level scenario evident. _
states of the noninteracting system has in two dimensions a L&t Us express the three-level system equations in the
logarithmic divergence for=0'%, which implies that the form given by Eqgs(35) by renamings{,’ (a=+,-,3) for
levels A, with €,=0 are the most populated ones. For situ-”:':“L_lJ:!F_1 by Pav Zy and M_a, respectlyely, and
ations where the value ofinvolveser=0 (near half-filing ~ PY S€ttingd. = d¢..,, in order to simplify the notation and to
such a fact well matches the first observation since it turn&€c@ll the interpretation of the levels as level sheaves. The
out that theQ system, whose dynamics is complex, is also€duations then read
the subsystem involving the most partlofnodes.

From the above observations, one is led to restricting the
number of interacting levels in order to work out the simplest

—IﬁM+=5_M+—2UM3Q+,

yet still significant dynamics. The corresponding model turns iAiM3=u(M,Q_-—M_Q,), 37
to be a three-level system, namely the pseudospin model )
where theQ system is endowed with three levels. A simple —ihZ,=-2uZ;Q,,
calculation allows one to establish that the number of con-
stants of motion is not sufficient to make the system inte- inZ;=u(Z,Q_—2_Q.,), (38
grable. In this sense three-level dynamics still is far from
being trivial, yet it is physically meaningful in several cir- —ihP,=6,P,—2uPsQ.,,
cumstances.
At first, for example, one can take into account just the inPs=u(P,Q_—P_Q.,). (39)

three innermost levels of thk space, i.e., those around

€,=0, which in the following we shall label by  For u>0 the two-level model is readily obtained by
a=—1,0+1. This is natural when investigating the low- freezing theZ variables at the valueS;=0= 2, . From the
energy dynamics oft{s. at half-filling with u>0. In this  physical viewpoint, such an assumption is not particularly
case, in fact, it is reasonable to expect that increasing thgestrictive because it allows one to switch on dynamics
energy from the ground-state value of small amourgsall  through M variables andP variables starting from the
that S=0 andS{")=+N.,/2 with N;=N_,) makes in- ground-state configuration. One should recall, in fact, that
teracting just the levels with the smallest energy, i.e., thos® =M _=2Z,=0 characterize the ground state, while the
with a=—1,0,+1. In view of the fact thate,.,— €5/ <4t,  further conditionZ;=0 can be implemented by suitably se-
expressing the almost continuous characteepf/s a, one  lecting n [see the discussion following Eq20)]. The fact
can replace both the upper level and the lower level of thehat sets, is almost continuous still ensures the possibility of
three-level model with two sheaves constituted by those levehoosingn almost arbitrarily.
els withe,= €, , ande,=€_1, respectively. This allows one For u<O0, instead, the fact tha®, ,M, ,Z,+#0 in con-
to enlarge the number of modes participating in the dynamicgection with the minimum energy state, prevents the system
as well as to treat the situation where excited states are mofgom developing a dynamics in whici, and Z; keep their
than small perturbations. We recall however that this case iground-state values. Thereby the presence of the central
mainly pedagogic, as at half-filling the ground state oflevel, even if as a nondynamical level reminiscent of three-
HamiltonianH has antiferromagnetic order. level scenary, is prohibited and the central level must be
Such observations readily extend to those situationgmbodied within one of the two sheaves, unless one is facing
wheren#1. In these cases, in fact, the minimum energythe nonintegrable version of pseudospin dynamics. At this
configuration is not symmetric with respectde- 0, but with  point the two-level scenario is restored and one can proceed
respect to the leveh=F, wheresga) change from negative to integrate the equations of motion.
to positive so as to minimize the energy. Then the three-level We construct now the solutions of two-level dynamics by
construction must be referred to the new central level thusolving simultaneously the systems of E¢37) and (39).
obtained. The main variable of the system B;=P3;—Mj3 which
The further reduction to a two-level scenario immediatelywill be shown to obey a nonlinear equation completely de-
makes theQ system integrable. Again by replacing the two coupled from the other variables. Indeed the knowledge of
levels with twoeffectivelevels one can reasonably expect to D;(t), together with the constant of moti@y allows one to
still represent the main features @fdynamics, in particular integrate such a systetfiwhich becomes linear with time-
when the energy is low enough to make interacting a limiteddependent coefficients. To work out the equation By
number of levels situated around the level wats F. one needs to exploit all the constants of motion. Explicitly,
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the energy H,=d,P3+ 5—M3+U*(N*_/2+Q3)2+U|P+ U(D,)<0 and(Dy)>0, then the system oscillates be-
+M.,|?, N, =N.+N_ counting the active modes of two- tween two extreme states. From the physical point of view
level dynamics, must be used to eliminate the variables  this property has the interesting consequence that the filling

andM .. from the equation of each of the two mesoscopic levels near the Fermi surface
i ) ) (F=1) varies periodically with time, while the sum of the
h°Dg*=4u’|P.M_—P_M |?, (40 two fillings remains constant.
obtained via the second equation in E(7) and in On the other hand, it is worth noticing that such periodic

Eq. (39. This is done by exploiting first the identity behavior of the mesoscopic levels filling ceases to exist for
IPLM_—P_M+[2=4[P+|2M+[2—(|P++M, [>—|P, |2 appropriate. i|_1itial conditions. In fact whdﬁ(DM)=0 thg
—|M |?)2, which leads us to rewrite the rhs of E@0) as system exhibits #asellike effect, namely it tends, employing
o an infinitely long time, to an asymptotic stationary state in
AU?|P.M_—P_M,|?=16u%P,|?|M_,|?—4[h,— oD, which (depending on the sign af) a mesoscopic level is
) - totally empty while the other is full. Moreover one should
—u(|P4[*+ M. [5)]% (4)  recall that each choice of the constants of motion
where h,=H,— yQs—u, (Qs+N,/2)?, y=(8,+5_)/2, N2, Qs, Iw, andlp embodied ina, b, c, andd selects a
and o=(8,—5_)/2. Then, by using the pseudospin Ca- different cubic potential. Two solutions are associated with
simir's |y= M§+|M+|2, | p= P§+|P+|2 and the further fth_?_ slame_gotegtl?cl);/vhen they differ just for the choice of the
; ities P2+ M2= (024 D2)/2. P2— M2=0.D . initial position D5(0). _ _
gjjcnégfs@g o Satig(rggto th?g/clbse?a forrgn QsDs, one re The nice feature of Eq42) is that it can be reduced to the
3 €4 equation for the Weierstraga function?® which reads
h2.
—D3?=—2(h,— 0D3)%+2u(h,— 0D3)(21 — Q3—D3 dp\?
2 -3 (h—0oDs3) (hy—oD3)( Q3 3) E :47)3_927)_93,
U2 — 2
2ui(lp=1u—QsDa)%, (42) Any solution of Eq.(42) can then be given in explicit form.
with [=1p+1y. A straightforward calculation based on the substitution of
Equation(42), which expresses the integrable character oD 5 with D;= *P+b/3a [the plus(minug corresponds to
the two-level system, presents several interesting featurethe casea>0 (a<0)] turns Eq.(42) into the above equa-
First of all it shows that thé5 dynamics is as complex as tion for P where 7= \/at/# and the standard coefficients
that of a 1d potential problem. Indeed, upon introducing the g,, g5 are identified as

potential
4
U(D3)=—2aD3+2bD3+2cD4+2d, 92=3,2(b*+3a0),
where a=uo, b=o02+uh,+u?Q3, c=uc(2l—Q3) A
—20h,—2u?Q5(Ip—1y), and d=(h_2—u|)2+uh2Q§ gs= (2b%+ 9abc+ 27a%d).
—4u?lylp, Eq. (42) simply becomesi?D3%/2= —U(Ds3). 27a

Therefore the dynamical behavior of the two-level systemrhen, by exploiting the solutio® in terms of Jacobi elliptic
can be completely specified by identifying the regions whergynction<® P(7) = (1/3)y2(1+k?) — y2K2srt(y7+ oK)
the cubici/(D3) is negative and finding the value of the where

derivative oft/(D3) whenD3 approaches an inversion point.

Such regions actually are identified by the compact interval 4 -

in the potential well oi4(D ;) whose extremes coincide with 92:§ Y(1-k*+kT),

two of the three roots of the cubic equatitiD3)=0. The

remaining semi-infinite interval wher@(D3) tends to—o° 4

must be excluded, in thd; there would assume infinitely 93=2—776(1—2k2)(2— k?)(1+k?),

large values, while its range is finite:N_<D3z<N, .

The two other points which play some role in character-the explicit analytic expression @4(t) is easily shown to
izing the dynamics through/(D5) are, of course, the poten- be?*
tial stationary points

1 D3(t)=£i E)/2(1-|-k2)—}/ZkZSI’IZ(}/T-I- a;k)}.
R.=——[b=*(b2+3ac)?, 3a |3
3a 43
furnished bydi//dD;=0. In fact, upon denoting the mini-
mum and the maximum coordinates by, andD, , respec-
tively, it is possible to identify the fixed points as those con-

Such a solution, as expected, shows that the dynamics is
periodic around the poird,, with period

figurations of the two-level system wit(D,,)=0 so that K(k?)
the D3 interval reduces to the poib;=D,,. It is easily TZ:ZﬁW’

checked thaD, is consistent with the general result given
by Egs.(20)—(22) for the exact minimum energy points. On since  the elliptic  sine  fulfils the  equation
the other hand, when the initial conditions imply sn(x+2K)=—sn(x), whereK(k?) is the elliptic integral of
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the first kind?® As anticipated, a special case can be selected

out when initial conditions allow the conditidi(D,,)=0 to @s=—Hsct Ui N°N?A—4(M  P_+M_P.)

occur. This condition states that one of the #eoots con-

fining the oscillations oD inside the potential well, coin- N_P3;—N, M,

cides with the maximum coordina®, . ReachingDy, thus N, = 2P3)(N_—2M3)] : (46)

requires an infinitely long time provided the motion starts

exactly at the other inversion point, that is the remaining roofThe slow variation in time of its variables makes it a good
of U(D3)=0. When this is the cas&k—1 so that candidate for experimental detection.

sn(x,k) —th(x) andDj(t) describes indeed a transition for

t—eo. » _ o VIIl. EQUATIONS OF MOTIONS
In order to explicitly provide a situation where such tran- IN THE ANTIFERROMAGNETIC PHASE
sition happens we concisely examine the dynamics for
u>0 whenQ;=0 andly=I1p. In this case the potenti&! When the possibility of a AF phase is considered, the
manifestly exhibits its roots since it reduces to natural order parameter which has to be nonzeld is
1 o
U(D3)=—2(h,~ 0D3)(h,—2ul—gD5+uD3). (44 m= N<J-2A e'G‘(n,»,T—n,-,l)>
Hence the circumstance whewéD ;) =0 for D;=D), is ob- 1
tained by imposing the two roots of the quadratic factor in = N< 2~ al,Tak—G,T_al,lak—G,l>y
Eq. (44) to merge, i.e., to tend tB,,. As a result one finds keA
first the constraint éh,= o>+ 8u?l on the energy, then that (47)
the limiting point of the transition iD5(*)=0/2u=Dm  \hereG is a vector with all its components equal 40
when Dg(0)=h,/o, provided the condition 4ip Also here, we look at the reduced Hartree-Fock Hamil-

<|o|/u<2N holds ensuring that N+<Dy<D5(0). tonian in the AF phased(®", in order to derive the dynami-

Returning .to Eq.(43), one can now easjly evaluate t_he cal algebra in which we shall subsequently construct our
phasep.(t) given by expressiolil7) in the simplest case in GCS's. It reads

which S¥=s@/N, for any k. Since this involves that
S =+s@®/N,, then pseudospins populating a level at most U -
differ one from the other by the sign @&{°. We shall H#=—t> > cf ¢+ 5m2 e —n; )
choose the same sign for thés of a given level so that the @ e .
microscopic dynamics is just a copy of the mesoscopic dy- N
namics. Here, we shall not consider the possibility of more -u Z(l—mz)
structurated configurations of pseudospins, since they do not
introduce any substantial novelty concerning the phase beand it can be rewritten in reciprocal space as
havior. H®=%, 5 ,HE where now
Finally, by using the above assumptiop,{t) can be N ’
written in the form

m
_ + +
Hffz?— ka (Nk,o—Nk—g,s) TU E(ak,Tak—G,T —8 | Ak-G,|
g

(.Psc:_Hsc_"ﬁE (Na/2+sga))i\a- (45) U 2 2
a +H.c.)+z(m -n9) ,

The latter expression is particularly useful for the dynamicsand K; is that half of A in which € IS negative, e.g., for
of weakly excited states since the variab®8)'s are ex- d=2 A_={ke A|e,<0, or ¢,=0 and O0<k,<}.

pected to undergo small variations in time, with respect to Hl(af) can be recognized as an element of the dynamical
their ground-state values. The levels whose pseudospins aggyebra.d,— BrcX, o (ag with

fast should therefore contribute ¢ principally through the
phases\,’s. On the other hand, after solving Eq84) for

the pseudospins labeled lay=F +2 anda=F—2 (namely A=K =a] g a0 Kl =[K T KE
pseudospins of the first two levels with fast variaples as

to have a four-level system mimicking the real system, a 1

simple calculation shows the time average)gf., to be =§(nk—e,o—”k,0)]NSU(Z)k,a , (48

almost zero in theQ-time scale. Indeed the slow variables

M3 andP3 and the phases &fl . andP.. provide the main  andK (") =K{)+iK{") In full analogy with the case treated
contribution tog. even when the fast variables are included.in Sec. lll, we use as a trial approximate time-dependent
The expression of such a contribution can be readily obwave function for studying the full Hamiltoniad in anti-
tained by rewriting Eq(45) in terms ofM3, P3, and of the ferromagnetic phase the time-dependent generalization of

constants of motion. One thus finds GCS’s, which can be built ind 4, i.e.,
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(1)) o= €02 (1)) E@=—u(N%/4)+23,.5 €,N,, which is easily verified to
coincide with that of the paramagnetic ph&26) in the posi-
tive u regime at half-filling.
« (+) The remaining set of fixed points can be parametrized by
eXPl€ic.rKicr)|O)ar 49 the Casimir'sZ, ,=X3 ,+Z2 ., which again are conserved

where|0) =11, 5 ,U|U>erX+ 0) (K+:K_K_), and Quantities. It is characterized b, =0, and
the parameterg, , have to be thought of as time dependent.

The semiclassical HamiltoniaH 4, identified as the ex- _o /
pectation value of over |(t))4, can be fruitfully rewrit- Sa,oU 2)(2
ten in terms of the semiclassical variables
o™= afl WO K] (t))ar, with {=X,Y,Z, which still sat-
isfy a SU2) algebra Eq(13). Also here it is useful to intro- —e.s / (53)
duce a one-dimensional indexinstead ofk, and to define ara

the mesoscopic variable;glgﬁikexagkyg. One obtains

= e(i/ﬁ)(paf(t)nkez\d_ .o’( 1+ gk,o’&k,o‘) -2

wheres, ,=*1. The X,’s have to satisfy the constraint
N2 equations
Ha=—2 2, €aZa,HAUX X U7 (50)

aeA_,o
With £,=Sa 5 La- X, =22 S Ve 2x2

The semiclassical equations of motion for #g,’s, can
be easily derived from Eq$50) and (5), and read The corresponding enerdy,; reads

hxa,azzana,a ,
Ea=— u—+2 €250 o x2 +4uX, X, .

Y a0=—2€aXa o= AUX_oZa » (54)

hZyo=AUX_ Yoy . (51  In particular, the fixed points which minimize E(b4) are
' ' associated with the choices, ,=—1, Ia,U:N§/4, and
It is interesting to notice that the above equations do reduc; = —sgn(u)X, . In this case the constraint equations, apart
to equations formally identical with those studied for thefrom the solutionX, =0, reduce to one, i.e.,
SC-paramagnetic phases for the special choice
Y,=0, X,=*=X_,=(1/2)S., so that at least in this case

the dynamics can be derived from that obtained there. More- 1=|ul> _Na , (55)
over, let us notice that the  choices a e+ auX]

Xa1==*Xa s Ya;=%Y,, reduce to a half the number of

Egs.(51). One can easily verify that such choices minimizeand the minimum energy is straightforwardly obtained from
the value ofH in the positive () and negative ) u Egs.(54) and(55) as

regime, respectively.

From Egs.(51) we also obtain the time-dependent phase N2
characteristic of the TDVP approach, EM=—u—-2 > NyJe2+4au2X2+4u|x? .
4 TR0 ! !
: Yie.oXeo ) XU,(k)Yk,U (56)
‘Paf: - af+ 2 1 22 ) ) .
keA_ ko As expected, this energy corresponds to a nonvanishing

+22, antiferromagnetic order parameteK=2X, only for
=¢p—4u, | X_, > X 0 12200 (52)  sgnu)=+ (i.e., repulsive Coulomb interactiprwhereas it
= Ked Xz 1-27, ,|’ gives X=0 for sgn))=—. In the first case, the energy
E(m) coincides in fact with the one obtained within Hartree-
where ¢=u(N?/4)—23, 3 € is a constant. As in the su- Fock approximation, withX replaced bym satisfying the
perconducting case, also in E&2) the time-dependent part same self-consistency equati(Bb). On the contrary, in the
of ¢4 is vanishing for vanishingi as well as forX,=0, attractive Coulomb interaction regime, even thokghO0 the
which is related to the vanishing of the antn‘erromagnetlcenergyE(m) is lower than the one obtained within Hartree-
order parameteX(X=X;—X|). Fock approximation, which would be precisely given by
As in the case treated in the previous sections, also her‘é(o) namely the energy corresponding to the trivial vanish-
we first look for the fixed points of Eq$51). A first solution  ing fixed point. This is not surprising, in that, while within
is of course the vanishing one, i.eX, ,=Y,,=0, and the Hartree-Fock scheme the only parameter to be fixed self-
Z, . fixed by initial conditions. In particular, the configura- consistently ism, here to all effect we have two related pa-
tion of Z,, minimizing the energy has energy rametersX; andX,, which can separately be nonzero even



8238 ARIANNA MONTORSI AND VITTORIO PENNA 55

when their differencei.e., X) is vanishing. Recalling that two.?#?*Already within such a framework it appears to have
Xo=af ¥1Zj(—)'n; o] )4, this latter caseX; =X #0) can  very interesting chaotic properties.
be recognized as a CDW phase.

Notice that in the absolute minimum energy point for

u<0 both the conditions which reduce the equations of mo- IX. CONCLUSIONS
tion (51) to those of the superconducting case Bd) were .
fulfilled [see the discussion following Eq51)]. A direct In the present paper we developed a consistent scheme for

comparison with the result obtained for the negativee-  dealing with the dynamics of an itinerant interacting many-
gime by means of the superconducting states(E4).shows electron system described by the Hubbard Hamiltonian. Such
that in fact at half-filing E{.’=E{". Hence we derived a scheme is based on TDVP procedure, and has been applied
within TDVP atu<0 two degenerate wave functions for the for describing the dynamics of the model by means of mac-
ground state, the superconducting and the charge-densityescopic wave functions built in terms of the GCS of the
wave one. Indeed it is easily verified that the two wave func-dynamical algebras which generate the Hartree-Fock solu-
tions are orthogonal, and that the expectation value of thé&on in SC, AF, CDW, and paramagnetic phases. Already for
order operator of one phase, when taken over the wave funthese simple cases a certain number of remarkable features
tions of the other phase, is identically vanishing. related to the dynamical description rather than to the
Now let us analyze the equation of motio(fl) away statistical-mechanical one was underlined.

from t_he fixe_d points in some simple case. A first integrable  First of all, a geometric phase—a macroscopic quantity
case is obtained when the varialg is kept constant. How- hich, in principle, is observable—occurs for appropriate
ever this assumption is consistent only2ife,Y, ,=0, and  yajyes of the physical parameters in the ground state as well
such a condition in turn is satisfied only¥f, , is indepen- a5 for some low-energy excited states. Such a feature cannot
dent of time fore,#0. Then the solution for eace#F  pe jgentified by solving the eigenvalue equation for the
reduces to Eq(53), whereas foa=F it turns out to be given  jamjjtonian(or related techniques, like the Bethe ansatz ap-

by proach, as it is a consequence of the phase of the eigenfunc-
_ tion, which in the eigenvalue equation is free. Even more
YE o= A C0q ayt) + B, sin(a,t), noticeably, away from half-filling in the repulsive regime, it
was shown that such macroscopic behavior of the Berry
Ze y=A,coga,t)—~B,sin(a,t) |, (57) phase is originated from a vortexlike dynamics of the phases

of the microscopic variables. Both these features could be
andXg =X, =22 Xq,0, With a,=4(u/fi)X_,. Solution  due to the approximations implied by our scheme, hence a
(57) survives in correspondence to stationary points of theirst interesting point which is left open to future work is to
Ham!ltoman (When_ X, are chosen according to the self- study exactly the dynamics of the stationary pointsofoy
consistency equatiojysas the system energy is not changedsgying the Schidinger equation near them. This could be
by the value oZ¢ , and Y ,. Such a solution describes the yone by using the Glauber GCS's, which map exactly the
periodic behavior of the mesoscopic Fermi level, holdingq,antym Hamiltonian into its semiclassical form, and study-
even for the |_nteract|ng ground state. In fact, due to the Ca1'ng the fixed points of the resulting equations of mottén.
simir constraint th(.:" cc;nstaznts,, andl23(, turn out to be re- Other interesting dynamical properties of the system were
l?teq by .the equatiom, +B;, =T~ Xz ,. The Iatfcer (,:Ond" stressed in the low-energy regime for some integrable cases.
tion implies thatA,=B,=0 for Xg ,= = yZg, which is the st haiffilling, the ground state has been shown to exhibit an
case only for the absolute minimum point of the non'nteraCt'osciIIatorylike behavior at the Fermi surface. Away from

ing cas\jz_[see Ea. (53]. On Fhe _contrgry, fqr any half-filling, for u>0 an analogous oscillating behavior for
|Xe,o| < VZ¢ from Eq. (57) we obtain this oscillatorylike be- o mesoscopic density variable takes place near the Fermi
havior of the solution at the Fermi surface. Such a behaviog tace Such a feature is responsible for a nontrivial time

affects neither the order parameter, nor the energy, but fjenendence of the collective Berry phase. Again, this point
turns out to affect the phase.(t) characteristic of the gnq,1q be further analyzed in different approximations. An
TDVP approach, by adding to the term linear in time a struCternative viewpoint could be furnished even by employing
tured periodic time-dependent contribution given by the same TDVP scheme starting from GCS’s more realistic
than the Hartree-Fock ones. For instance, inlhe « limit,

a, a reliable basis is given by the Gutzwiller statés.
Bk,o"‘Ak,ota’(?t) One more solution obtained exactly within the present
E tan ! = (59 scheme and exhibiting interesting features is the single-mode
KeAp ap1-4Xs , solution, characterized by the nonvanishing of the supercon-

ducting parameter, and by a unique time-dependent phase
Here we used the same dynamics for the local and the meeflecting collective order. The possible relevance of this so-
soscopic pseudospin variables. In summary, we obtained aldotion within the framework of superconductivity is related
in the AF and CDW phases a nontrivial phase dynamics foto the fact that it survives at>0, and at any energy but the
the ground state. ground state, with a volume in the space of solutions increas-

Apart from this simple case, more generally the systening with energy.

described by Eq51) has been investigated in the case where All the above solutions, which are exact within the
the mesoscopic levels which have fast dynamics are one @resent approximation scheme, are interesting also in that
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they could represent good starting points for studying moreequation forHy,, on small clusters of sites. Work is in

exhaustively the dynamics described by E#§6) in their

progress along these lines.

neighborhood, by means of standard perturbative methods of

classical dynamics. As a general conclusive observation let
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