Observation of isotropic giant magnetoresistance in paramagnetic Au$_{80}$Fe$_{20}$

Paolo Allia, Marco Coisson, Vincenzo Selvaggini, Paola Tiberto, and Franco Vinai

1Dipartimento di Fisica, Politecnico di Torino, and INFN, Research Unit Torino Politecnico, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
2DISPEA, Politecnico di Torino, and INFN, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
3Istituto Elettrotecnico Nazionale Galileo Ferraris and INFN, Research Unit Torino Politecnico, Corso Massimo d’Azeglio 42, I-10125 Torino, Italy

(Received 2 February 2001; published 20 April 2001)

Magnetization and magnetoresistance were measured at room temperature and above on Au$_{80}$Fe$_{20}$ platelets and ribbons obtained by solid-state quenching and melt spinning. The as-quenched samples contain a solid solution of Fe in Au and exhibit a paramagnetic (Curie-Weiss) behavior in the considered temperature range; magnetic data indicate very short-ranged magnetic correlation among adjacent spins, enhanced by local composition fluctuations. The solid solution is very stable. Only a very limited fraction (never exceeding 1%) of nanometer-sized, bcc Fe particles appears after long-time isothermal anneals at suitable temperatures. A negative magnetoresistance was observed at room temperature in all examined samples. The observed effect is anhysteretic, isotropic, and quadratically dependent on magnetic field H and magnetization M. The signal scales with M rather than with H, indicating that it depends on the field-induced magnetic order of the Fe moments, as it does for conventional giant magnetoresistance in granular magnetic systems. This effect derives from spin-dependent scattering of conduction electrons from single Fe spins or very small Fe clusters. The scattering centers are almost uncorrelated at a distance of the order of the electronic mean free path (of the order of 1.5 nm, or a few atomic spacings, at RT).

DOI: 10.1103/PhysRevB.63.180404

PACS number(s): 75.50.Tt, 75.20.En, 75.75.+a

I. INTRODUCTION

The Au$_{100-x}$Fe$_x$ magnetic system has been studied for many decades owing to its notable magnetic properties at low and high temperature, including magnetic cluster formation, spin/-cluster glass behavior, mictomagnetism, and superparamagnetism in various ranges of Fe concentration. However, comparatively few studies on magnetotransport properties of AuFe/AuFeNi alloys are found in the literature, and room-temperature data for bulk granular paramagnetic systems have been reported for a few Fe/Au multilayered films. Au-based bulk materials, such as AuCo and AuCoB heterogeneous alloys, exhibit at room temperature a magnetoresistance (MR) having the same origin as in other granular systems (Cu-Co, Ag-Fe, and Cu-Fe). The MR of heterogeneous bulk systems containing nanometer-sized particles of a ferromagnetic metal is intimately connected with the process of magnetic ordering in these materials (often exhibiting high-temperature superparamagnetism) and may be exploited to get information about magnetic correlations extending over the scale of the electronic mean free path (mfp). However, no definite tendency towards segregation of nanometer-sized particles of bcc Fe is exhibited by the AuFe system; this circumstance has possibly prevented systematic investigation of MR so far.

II. EXPERIMENT

Au$_{80}$Fe$_{20}$ alloys were produced either by rapid solidification from the melt (using a standard melt-spinning apparatus in vacuum) or by solid-state quenching. In the first case, continuous ribbons were formed (width 2 mm; average thickness 120 μm), while platelets obtained by solid-state quenching were subsequently laminated to a thickness of 150 μm. The samples for magnetic and electrical measurements were produced either by cutting ribbon pieces or by platelet punching. The composition (routinely verified by scanning electron microscopy and lattice-constant measurements through x-ray diffraction) was chosen in order to deal with a paramagnetic system at room temperature and above [the Curie temperature of homogeneous Au$_{80}$Fe$_{20}$ occurs at 290 K (Ref. 13)]. Furnace anneals of as-prepared samples were performed in a controlled atmosphere. The prepared alloys were examined by TEM and small-angle neutron scattering (SANS) (PAPOL, Laboratoire Léon Brillouin, Saclay) in order to check for the presence of Fe precipitates.

Magnetic measurements were performed in the ranges 300 K $\leq T \leq$ 620 K and -20 kOe $\leq H \leq +20$ kOe through a vibrating-sample magnetometer (VSM), and in the ranges 5 K $\leq T \leq$ 300 K and -50 kOe $\leq H \leq +50$ kOe through an extraction method with a superconducting magnet. MR measurements were done by means of a standard four-probe technique with soldered contacts, using the VSM's electromagnet. The measuring temperature was monitored by a compensated thermocouple placed in close proximity to the sample (high-temperature measurements) and by a calibrated CERNOX sensor (low-temperature measurements).

III. RESULTS

A. Magnetic properties

X-ray-diffraction, SANS, and TEM data coherently indicate that both as-quenched ribbons and as-prepared platelets contain a homogeneous solid solution of Fe in Au, without...
any evidence of nanometer-sized Fe particles or smaller superparamagnetic (SP) clusters (as did the platelets or disks containing up to some hundreds of atoms, often found in similar alloys of the Au-Fe system\(^4,6\)). The solid solution obtained through the adopted preparation techniques is rather stable against precipitation of large-scale Fe particles. Although a faint change in the lattice constant was observed by x-ray diffraction, indicating some segregation of Fe atoms, neither Fe particles nor Fe clusters were observed by TEM and SANS even after long-time anneals at temperatures well below the solvus temperature (\(~793\) K), specifically chosen in order to possibly enhance the tendency towards sample heterogenization \(\text{[higher annealing temperatures (}\mathcal{T}_a = 1170 \text{ K)} \text{ must be used to obtain fully homogeneous materials}^{13}\). However, local atomic rearrangements responsible for reversible and/or irreversible changes in the local magnetic properties have been observed even at room temperature in alloys of the AuFe system\(^{14,15}\).

Typical room-temperature magnetization curves for the as-quenched ribbon (\(A\)) and the as-quenched, laminated platelet (\(B\)) are shown in Fig. 1. The \(M(H)\) dependence in the ribbon is linear over the entire magnetic-field range, with no detectable hysteresis, indicating a pure paramagnetic behavior. A small hysteresis superimposed on the paramagnetic straight line is observed in the as-quenched platelet (\(B\)), indicating a very small fraction of bcc Fe precipitates, undetected by TEM and SANS. A significant change in the slope of samples \(A\) and \(B\), clearly related to the different preparation techniques, is observed. After low-temperature annealing of the platelet (16 h at 673 K and 16 h at 773 K), a more definite hysteretic behavior appears (\(C\)), again superimposed on the paramagnetic straight line and indicating precipitation of ferromagnetic bcc Fe particles. The hysteretic behavior is best viewed by subtracting the dominant paramagnetic con-
TABLE I. Effective number of Bohr magnetons per magnetic atom p_{eff} and paramagnetic Curie temperature T_C for Au$_{80}$Fe$_{20}$ ribbons/platelets submitted to various anneals, and comparison with the fully homogenized alloy.

<table>
<thead>
<tr>
<th></th>
<th>p_{eff}</th>
<th>T_C (K)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogeneous</td>
<td>4.83</td>
<td>290</td>
<td>3.45</td>
</tr>
<tr>
<td>Platelet, AQ</td>
<td>5.88</td>
<td>272</td>
<td>5.11</td>
</tr>
<tr>
<td>Ribbon, AQ</td>
<td>5.01</td>
<td>286</td>
<td>3.71</td>
</tr>
<tr>
<td>Platelet, annealed 16 h at 593 K</td>
<td>6.35</td>
<td>240</td>
<td>5.96</td>
</tr>
<tr>
<td>Ribbon, annealed 1 h at 673 K</td>
<td>8.11</td>
<td>213</td>
<td>9.73</td>
</tr>
<tr>
<td>Ribbon, annealed 16 h at 673 K</td>
<td>7.67</td>
<td>220</td>
<td>8.70</td>
</tr>
<tr>
<td>Ribbon, annealed 16 h at 773 K</td>
<td>6.88</td>
<td>244</td>
<td>7.00</td>
</tr>
</tbody>
</table>

fully saturates at 295 emu/cm3 for $H > 25$ kOe. Consequently, the effective number of Bohr magnetons per magnetic atom turns out to be $p_{\text{eff}} = 2.6\mu_B$. This value is exactly the one referred to as the best Fe moment value in the AuFe system.16 High values of the p_{eff} extracted from high-temperature data are usually explained invoking the existence of magnetic correlations over very short distances, giving rise to clusters of strongly coupled adjacent Fe spins, coherently rotating under the influence of an external magnetic field, and constituting the true magnetic units of the system.1,4 The weaker interaction existing among these units may be responsible for the reduced T_C values. Assuming that all Fe spins in a cluster are ferromagnetically coupled, the average number n of spins per cluster can be estimated using the following relation: $\mu_{\text{CW}} = n^{1/2} \mu_1$, where μ_1 is the "true" moment ($2.6\mu_B$) while μ_{CW} is the value obtained from the Curie-Weiss analysis. The resulting n values are reported in Table I. These data support the hypothesis that a substantial fraction of spins are magnetically coupled over very short distances. Larger values of n would be obtained if the spins were not ferromagnetically aligned within clusters; the MR data indicate however that n cannot be substantially larger than the present estimates (see below).

B. Magnetoresistance

The Au$_{80}$Fe$_{20}$ alloy exhibits a room-temperature negative MR even in the absence of any detectable SP contribution to the magnetization curve. Typical room-temperature curves are shown in Fig. 3. The highest MR value is around 0.65% at 20 kOe. The main features of these MR curves are the following: the effect is isotropic [see the inset in Fig. 3(a), where the data taken on the as-quenched (AQ) platelet in the transverse and perpendicular configurations are superimposed] and anhysteretic, even in those samples where a small magnetic hysteresis is present; the MR follows a nearly perfect parabolic law when plotted against both H and magnetization M; the MR scales with M rather than with H: the curves almost (if not perfectly) overlap when plotted against M [Fig. 3(b)]; and this means that the alloy’s resistivity essentially depends on the field-induced magnetic order of the Fe moments. All these findings indicate that this effect is similar to the giant magnetoresistance (GMR) observed in granular bulk systems and granular thin films5 containing large (nanometer-sized) SP particles. The origin of the MR in the present alloy is therefore the same as in heterogeneous granular systems, i.e., spin-dependent electronic scattering of conduction electrons from magnetic atoms; however, in the present case, the magnetic scatterers are not TM atoms at the interfaces between the matrix and nanometer-sized SP particles,17,18 but very small Fe clusters or single, paramagnetic Fe atoms diluted in the Au matrix. The GMR in granular systems arises when the mean distance between adjacent scatterers is comparable to the electronic mean free path λ. In Au$_{80}$Fe$_{20}$, the room-temperature λ (calculated using the experimental resistivity value $\rho = 63 \, \mu\Omega \cdot$ cm and taking one electron per Au atom in the Drude formula) turns out to be 1.5 nm, or less than 4 atomic distances. This estimate again indicates an atomic origin of the MR. As previously remarked, the observed GMR does not strictly follow a universal curve when plotted against magnetization. The present data are not enough to interpret the tiny differences in MR-curve concavities [Fig. 3(b)] in terms of different structural

FIG. 3. Room-temperature magnetoresistance (MR) curves of Au$_{80}$Fe$_{20}$ (platelets/ribbons in the AQ condition and after thermal treatments; see legend) (a) MR vs H; (b) MR vs M. Inset in (a): results obtained on AQ Au$_{80}$Fe$_{20}$ platelet in perpendicular (full symbols) and transverse (open symbols) measuring conditions.
or electronic parameters, such as average size/distance of scatterers and electronic mfp. Such a study, requiring a wider set of analyzed data, is left for future work.

Finally, the parabolic shape of the MR vs M curves suggests that the spins of magnetic scatterers are essentially independent at a distance of the order of λ (different from the case of most granular SP systems, where flat-top parabolas may indicate magnetic correlation19). On the other hand, the magnetic measurements discussed previously (see Fig. 2 and Table I) suggest a significant correlation of adjacent spins, however not extending over distances on the order of λ such a circumstance would destroy the MR effect. These two results, taken together, indicate that in the Au$\textsubscript{80}$Fe$\textsubscript{20}$ alloy the magnetic correlation among spins is rather effective at distances comparable to a single atomic spacing, while it becomes vanishingly small over distances on the order of λ (a few atomic distances), so that the system appears as more or less magnetically correlated, depending on the type of measurement performed. The effect of thermal fluctuations on MR in the paramagnetic phase of Au$\textsubscript{80}$Fe$\textsubscript{20}$ deserves further investigation. In fact, both the electronic mfp and the short-range magnetic order within clusters are expected to be reduced (possibly at different rates) on increasing T, affecting the MR value in a complex way. The experimental behavior of $1/\chi$ vs T indicates that p_{eff} is stable at least up to 640 K, so that in the initial temperature interval ($T_e \leq T \leq 640$ K) the changes in MR should be dominated by the electronic mfp.

ACKNOWLEDGMENTS

The authors would like to thank M. Baricco (IFM Department, University of Torino) and A. Deriu (Physics Department, University of Parma) for providing the TEM and SANS data, respectively. This work was performed with the partial support of INFM-PRA ELTMAG.

