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Interacting Euclidean three-dimensional quantum gravity
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We show that Euclidean three-dimensional gravity coupled to a Gaussian scalar massive matter field
in the first-order dreibein formalism gives a quantum theory which has a finite perturbative expansion
around a nonvanishing background. We also discuss a possible mechanism to generate a nontrivial
background metric starting from Rovelli-Smolin loop observables.

PACS number(s): 04.60.+n, 12.25.+¢

1. INTRODUCTION

Some time ago, Witten [1] showed that pure three-
dimensional (3D) quantum gravity (QG) in the first-order
dreibein formalism is a finite off-shell (topological) theory
when expanding around a vanishing background, i.e.,
(e,‘: )=0. This result comes from the fact that Einstein
3D theory is off shell and hence it is dependent on the
variables that represent the gravitational field. Later,
Deser et al. [2] extended Witten’s result showing that
the theory remains finite even when expanding around
a flat background gravitational field (ej) 8% (in
Euclidean space). Of course, we now have that
Det(eg )70.

In this work, we shall demonstrate that, as far as a per-
turbative theory is concerned, Euclidean 3D gravity cou-
pled to a Gaussian scalar massive matter field still yields
to a finite quantum theory in the first-order dreibein for-
malism.

In the end, we shall discuss a possible ‘“quantum”
mechanism for generating as an “order parameter” a
nontrivial metric background from some gauge-invariant
and diffeomorphism-invariant nonlocal observables of the
pure topological theory, i.e. of 3D QG itself. These ob-
servables and their algebra were first introdyced by
Rovelli and Smolin [3] in the frame of Ashtekar’s refor-
mulation of canonical 4D general relativity [4] recently
specialized to the case of (2+1)-dimensional Einstein
gravity [5].
|

II. PATH-INTEGRAL FORMULATION
OF THE THEORY

First-order dreibein gravity with a Euclidean signature
is described by the action

Ig= [ d’x e"e,, [3 08 +eb0lf] , (1)

where we have absorbed a k ~! factor into the dreibein e,
and the spin connection a),‘:=e"”°w“bc is an independent
variable. In the following we shall consider the coupling
of Eq. (1) to a real scalar massive matter field which has

the first-order action [6]
Iy =%fd3x [<!>"\/;e5‘8“¢p+%(¢")z+em 29?)

where @ is a Lagrange multiplier, e/ is formally the in-

verse matrix [e% ]!, e =Det ™ '(e}') and, of course, we as-

sume that Det(e,, }70. Notice that the Euclidean metric
. . _ a.b . .

8uv is given by g, =e e,8,,. This equation can be

rewritten in the form

Iy=1[ d*(e¥e* 3,03 p+em?p?) 2

after using the equation of motion of ® and setting
2l=Vee!, where &% are tensor densities of weight 1.
Now, we need to fix a gauge. We choose a Landau-type
gauge:

dey, =0=8“wf‘ . (3)

The resultant ghost and gauge-fixing action is then

Ippigr= [ d’x (€, 300 +D, %% +2,3((3,8) +¢% 0 )c?]+d, 84 (e ¢, )+, [(3,8] +e&w5)d )] @

where @, and D, are Lagrange multipliers, c,,,E" and
d,,d"® are Faddeev-Popov ghosts. The sum of Eq. (1), Eq.
(2), and Eq. (4) gives the total quantum action I. The cor-

*Permanent address: Dipartimento di Fisica, Universita di
Milano, 1-20133 Milano, Italy and INFN, Sezione di Pavia, I-
27100 Pavia, Italy.
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[
responding Euclidean path integral has the form

[ DeiDoDeDE, DD, Ddbe " . 5)

The action I is invariant under the following nilpotent
(on-shell) Becchi-Rouet-Stora-Tyutin (BRST) transforma-
tion s [7):

sog=—(D,¢c ¥,

3577 ©1992 The American Physical Society
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sc°=1ef.cbct, sc,=€,, sC,=0,

sd"=e,,,c"d°, sd,=D,, sD,=0
ey, =—(D d)"—ebce cc,

sp=—elc9,p,
D:b E(a“8g+egbw;) 3
s2=0.

Our purpose is to integrate out, first, the matter field in
the functional integral. Exact Gaussian integration of the
matter field gives

Ne "= [Dpe M=N[Det (Q+m?)]" 2
=Nexp[—inDet(Q+A?], (6

where O= —e)9,2™9, =-9,8° and m’=em? Here,
W=1In Det(ﬁ+rﬁ2) is the one-loop effective action of
the matter field. Following Birrell and Davies [8], we see
that using the DeWitt-Schwinger representation and di-
mensional regularization, W can be written as

W .= [d"x Lgx)= [d"x VEXIL 4(x;m?),

where, in n dimensions, the asymptotic (adiabatic) expan-
sion of L ¢ is

e,—‘(41r)_"/220(x)(m2)(" WP(j—n/2) . @)
j=0

We immediately notice that, in odd dimensions, L ¢ has
only finite terms because I'(j—n/2)< o and a;(x) are
geometrical invariants built out of the curvature tensor
and its contractions. In three dimensions, for large exter-
nal momenta (or equivalently for large m? in Planck
units), only the first two terms of Eq. (7) are sensibly
different from zero.
After the functional integration (6), we are left with the
J

.

loop expansion constructed from the effective lowest.
order action

I'SIgt+IgpygertW, .- (8)

In a quantum perturbative treatment of I’ (see the next
section) one has to consider the modified Feynman rules,
coming from W ., of Ir+Igp.Gp- Indeed, the first two

terms of L 4 may be regarded as a contribution to the
gravitational Lagrangian although they arise from the ac-
tion of the quantum matter field, since one has that
ag(x)=e and a,;(x)=(e/6)R(e,w), where R(e,w) is the
curvature scalar considered in the first-order dreibein for-
malism [Eq. (1)]. Notice that for large m2 (in Planck
units), Ig(e,w)+ sz(e,w) is equivalent to a Euclidean
non-Abelian Chern-Simons (CS) gauge theory with the
gauge group SO(4)~SU(2) X SU(2), assumm that the in-
duced cosmological constant A=m3/12#* is positive
definite [1]. As a consequence, we may understand the
effects of coupling Gaussian matter fields to 3D gravity in
the ultraviolet region, i.e., for large momentum of the
graviton, as a “dressing” of the pure 3D gravity sector.
Thus, one still ends with a Chern-Simons gauge theory
which, according to common wisdom [1], gives a finite
quantum theory. This is actually the case, as we shall see
in the next section by arguments of power counting.

III. PERTURBATIVE EXPANSION

As usual, the exact treatment of Eq. (8) is too hard a
thing to cope with and therefore we go on with a pertur-
bative expansion. To establish the finiteness of Eq. (8)
around a flat background e, =8, +hy, h <<1 (in Euclide-
an space), we keep the gauge of Eq. (3) that we now write
as 3h, =0=0"w,. Remembering that we move indices
with §], i.e., we identify the metric introduced in the
gauge fixing with that introduced by the background, we
write the resultant ghost and gauge-fixing action as [2]

Iepigr= f d’x {C, 0"} +D,"h s +T,0"[(3,8; +e% 0 )1 +d, 0[5 (85 +h 5 )c " +(3,85 +edwf)d]) 9)

The vertices of this action and of the pure gravitional one
I are cubic, while the three basic (off-diagonal) propaga-
tors are [2]

(a)vh” __lsaba’wsvﬁeaﬂ}'_p_’;_,% asp—o , (10a)
p
Bb
(Eac")=;2’=(d d®) . (10b)

In the following we shall represent the graviton propaga-
tor (wh) as in Fig. 1, where the dashed (wavy) line
stands for » (h). In addition, we should have propaga-
tors due to the flat background but, for simplicity, we
treat them as new vertices beside the cubic ones. We now
have to consider the contribution to the above Feynman

r

rules [Eq. (10)] due to the matter one-loop terms in Eq.
@), ie., in inDet{[O+m?)(8+h)}, which shall be
treated in the standard perturbative expansion in the
quantum field hy;. This amounts to calculating the
effective graviton propagators and vertices given at the
lowest order by the insertion of matter one loop terms in
the A lines alone. In this connection, we need the ¢ prop-
agator and the hpg cubic vertex. In this perturbative
framework, the two- (three-) point functlon (pp)
({h@@)) is obtained from Eq. (2) expanding e, up to or-
der O(h?); i.e., in the momentum representatlon picture

-——-"VUVv
FIG. 1. Graviton propagator {wh ).
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FIG. 2. Matter propagator {p@).

one must start from
Iy= [P (o> +m* g’ +5"(p,p, =8, m )],
(11)
s“"=8¢,‘8"’s;, szsh:—-;-SSh, hsagh: .

As a consequence we get the matter Euclidean Feynman
rules

(pp)= , {@ps®)=—2p,pg—8,m?) . (12)

p2+m2

We pictorially associate {@@) and {p@s®) with Fig. 2
J

[ am [kolk+p)g—8,gm?][k,(k+p),—8,,m?]
w—3/2 (k2+mH)[(k+p)*+m?]

S

FIG. 3. Matter-graviton vertex { pps ).

and Fig. 3, respectively. With these Feynman rules, we
notice that the first term coming from the hj expansion
of the nonlocal action W defined in Eq. (6) gives a con-
stant contribution to the cosmological constant. The oth-
er diagrams, instead, all go like p> as p— 0. In fact, if
we take, e.g., the term quadratic in A, the self-energy di-
agram, its lowest order contribution to Eq. (10a), is given
by

=112 pgp 0 (1 /V )+ (35 AuppeP?P° — 15 Baguwip ' — 3Cog,pVpH +0(m?) ,  (13)

where

A aBuvpo = 8,,58“,,8‘,, + 8aV8p“8,ﬂ+ 85”8pa8,v+ 8“v8Pa8,,3 ,
B aPpvh = 8,,“8,,58;“& 83v8 nask# ’
Caﬁm, =8,,58,w+ 8,,"8,,,,+ Swsﬁv .

Its calculation, using dimensional regularization, shows
that it is finite and it goes like p* for large momentum
pE\/Fz. On the other hand, all the graviton vertex
corrections [to Iz, Eq. (1)] induced by InDet(0+#i?)
in Eq. (8) behave like p? when the momentum p E\/p_2 of
one of the gravitons becomes large. Roughly speaking,
this is a consequence of the fact that the matter propaga-
tor and vertex grow as (1/p2) and p? for p— «, respec-
tively. This is the crucial reason why our theory will
come out UV finite. Then, the lowest-order effective
graviton propagator and cubic vertex are given respec-
tively in Fig. 4 and Fig. 5. They behave as

(w,‘ist>ea<p)~;l—3, po>, (14)
(0fwlst)glp)~p’ p—o . (15)

Remember that s5 =h5 —184(84h}) and p is a Euclidean
momentum variable. The off diagonality of the full one-
particle-irreducible (1PI) dressed propagator Eq. (14),
which comes from a straightforward calculation, may be
also explained by the following simple argument. At the

[(-——-U) - AT

FIG. 4. Effective graviton propagator { os ).¢.

r

tree level, off diagonality comes from the fact that Eu-
clidean 3D gravity is a (three-dimensional) non-Abelian
gauge theory with a nonsemisimple Lie group as an inter-
nal symmetry, namely ISO(3), and hence it has the La-
grangian structure eR. This is a particular case of the
connection (B)-curvature (F) theories (BF theories). In
our dimensional-regularization scheme the above gauge
invariance is preserved in the full dressed effective action
Eq. (8), and therefore it still has a BF structure.

The important consequence of Eq. (14) is that now the
graviton fields (w,h) should be assigned ultraviolet di-
mension zero in place of the canonical value one of pure
gravity, while the dimension of the ghost fields is one-half
as usual. Taking into account the above considerations,
we find the superficial degree of divergence w(G) of an ar-
bitrary diagram G by standard dimensional power count-
ing as

a>‘ﬁ,,,(<;)=:«s+2y,(a»,,—z.)—zl;;7 , (16)

where w is the dimension of the interaction monomial
attached to a generic vertex appearing in Eq. (8) and E;
is the number of external antighosts d. Notice that in the
power counting (16) the graviton external legs in (w,h) do
not contribute since dimyy(h)=dimyy(w)=0.

It is worth mentioning that the power counting (16)
makes sense also for Feynman graphs with external lines
included, which in our approach involve, in principle,
only the graviton and the ghost fields [although only the

FIG. 5. Effective vertex propagator {ows )er
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ghost fields contribute to (16)]. Indeed, our basic idea in
this work is to treat the Gaussian quantum matter ¢ field
as a correction to the graviton self-energy and therefore
to the effective graviton propagator, thus obtaining zero
UV dimensions for the graviton field. From a technical
point of view this is always possible, since we can exactly
integrate out the boson ¢ in the vacuum amplitude func-
tional integral (5).! As a consequence, our perturbative
Feynman rules follow from the effective action (8), and
hence do not contain the ¢ field anymore.

There is also a formal reason that suggests that there
are no more renormalizations for the scalar field N-point
functions than those required by the power counting (16).
If at the beginning (i.e., before the ¢-functional integra-
tion) we pick an N-point function of the ¢ field, after the
introduction of a scalar density source in the path in-
tegral, by using the fact that the integral is still Gaussian
in @, we find that the scalar N-point function is given by
the functional integral with respect to the effective mea-
sure De Do D(ghosts)e ~7', with I’ defined by Eq. (8), of a
sum ¥ of products of scalar field propagators. It turns
out that 3 may be factorized out of the functional in-
tegral. Hence, we are left only with the renormalization
of the vacuum amplitude functional integral as before.

We now turn to the study of possible divergences.
First, only one-loop diagrams can be constructed because
of the off diagonality of the propagator [Eq. (14)] and the
dependence on the field variables of the vertices [2]. In
addition, all the interaction monomials have dimension
wy=3 for V={hoo) and V=[InDet(Q+m*—0(h?)]
or wy <3 for the ghost vertices (@gpos=2). This tells us
that our theory is at least power-counting renormalizable.
As a matter of fact, considering, at first, graphs without
ghost vertices, we see that we have a superficial cubic de-
gree of divergence for any number n of external (graviton)
legs. However, they vanish using the dimensional regu-
larization scheme which implies that
[1d%k /(27)*)(k?P~'=0 for B=0,1,2,... and any d
('t Hooft—Veltman conjectures) [11] and in our case
B=1, d—(3). In D=3 neither quadratic nor logarith-
mic divergences are possible for parity reasons; only
linear ones remain. In this case, diagrams consist of two
ghost vertices of the type (wct) or {wdd ). As we have
already noticed, in the dimensional-regularization
scheme, linearly divergent graphs are set to zero. There-
fore, the quantum theory of 3D gravity coupled to a free
scalar massive matter field is finite off shell in the first-
order dreibein formalism when it is expanded around a
nondegenerate flat background.

In the end, we should like to observe the following two
things. First, we notice that the perturbative renormal-
izability can also be reached in the framework of a BRST
quantization scheme. Indeed, one could show that the
possible divergent part Iy, of the effective action I', Eq.
(8), satisfies (in our Landau-like gauge) the Ward identity

1A similar idea was implemented by Tomboulis [9] in the

(1/N) expansion of 4D QG coupled to N massless fermions, and

later on extended by Smolin [10] to d dimensions.

)

Sw;

S —
ST 4= Sexre:““‘se, +s.500 Igiv=0,
M

where (s.gef, S.qj) are the BRST transformations that
leave the effective action I’ invariant. Here we have used
the fact that, as has been observed, all 1PI diagrams con-
taining external ghost lines are convergent in the dimen-
sional regularization scheme and/or for parity-symmetry
reasons. Therefore, Iy, does not depend on the ghosts.
Then, this Ward identity tells us that Iy, is a BRST in-
variant functional of (e,w) alone. Since the divergent
part is local and of dimension three at most, the only pos-
sible form 'y, is thus given by the 3D Einstein action (in
first-order dreibein formalism) itself.

Second, we would like to notice that in the above re-
normalization discussion we have assumed that the
effects of Lorentz anomaly terms (if any) such as

I = [ R T H3TRTSTS) (D

in Euclidean signature may be taken into account by en-
larging [12] the spin-connection gauge group, which at
the classical Euclidean level is SO(3)~SU(3). In Eq. (17),
I and R are the Levi-Civita connection and the curva-
ture respectively for the dreibein field e, which is the
fundamental variable. I;~s can be interpreted as a CS
term for an SO(3)~SU(2) gauge connection I'. Thus, in
the first-order dreibein formalism, this is equivalent to
starting with the SO(3)@SO(3) Lie-algebra-valued con-
nection w®T, or equivalent to considering the complex
gauge group SO(3,C)~SL(2,C) as “internal Lorentz”
symmetry. In any case I is a topological invariant
CS(M?), for a close oriented Riemann manifold M 3
which takes values on the circle (R/3Z)~S T13)if M3is
homeomorphic to a closed hyperbolic three-manifold.’
Therefore, it does not participate to the local short-
distance scale structure of 3D QG and, hence, to the
above computation of UV divergences.

IV. CLASSICAL BACKGROUND METRIC
FROM GLOBAL OBSERVABLES
OF PURE THREE DIMENSIONAL
QUANTUM GRAVITY

In this final part of the paper, we suggest a possible
way out of the conceptual problem raised by Witten [15]
on how to introduce a background space-time metric as
some expectation value of gauge and diffecomorphism-
invariant observables, the Wilson lines [16], of the topo-
logical pure 3D quantum gravity (QG). Clearly, this
problem underlies the coupling of matter degrees of free-
dom to 3D gravity as discussed, for instance, in the previ-

2According to a famous conjecture [14] about three-manifolds,

almost all interesting (irreducible) three-manifolds have a
“geometrical decomposition” into (closed) hyperbolic three-
varieties.
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ous sections. Indeed, the gravitational coupling of “non-
topological” matter fields only makes sense in the “bro-
ken phase” of general relativity where there is a Rieman-
nian space-time with distances and light cones, while the
topological nature of the theory depends upon having an
unbroken phase Ef, = (e; )=0 without metric or
Riemannian interpretation.

Pure 3D QG has a set of observables, the so-called
Rovelli and Smolin [3] (also Nelson and Regge [15]) ob-
servables. One of them will play a fundamental role in
explaining a pure “quantum’ mechanism that leads to a
nontrivial background space-time metric as an “order pa-
rameter” for the diffeomorphism group. Let us show this
mechanism by considering the pure Euclidean 3D QG
where the Lorentz group is SO(3)~SU(2). Following
Rovelli and Smolin, we shall use for this purpose a part of
their observable called T' written here as
T! =TrW,[C](s), where Tr is the trace in the fundamen-
tal representation of SU(2). Naively, one may understand
W,[C](s) as the parallel displacement generator of the
dreibein e}, along a loop C=C(s). It is defined as fol-
lows. Let us assume for simplicity that the Euclidean
space-time M> is homeomorphic to R®. Then, for any
loop (knot) CER® and loop parameter s, W,IC](s) is
given by inserting E ,(x)=e(x)7,, where 7, are the gen-
erators of SU(2), along the holonomy #(c) of C at the
point x =C (s), i.e.,

W, [Cl(s)=E (C(s))H(c)=W[Cl(s)7, , (18)
FH(C)=Pexp [ﬁcdx" @y (x)7,

Here, P stands for path-ordering and wj, is the spin con-
nection, i.e., the gauge-connection for the Euclidean
Lorentz group. T' is not reparametrization invariant

J
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v/2

x e x'
vi/2

FIG. 6. Theloop y=v/2Uy'/2.

since it depends on a preferred value of the loop parame-
ter s. However, it is reparametrization covariant in the
sense that W,IC Us)=W,[CIf(5)], where
C'(s)=C[f(s)}), f'(s)>0, is a reparametrizaton of C
with the same orientation. Thus, our basic idea for
measuring in a ‘“gauge-invariant way” the distance be-
tween two points x and x’, is to connect them with two
half-paths (y /2) and (y ~!/2), together forming a loop y
as in Fig. 6, where x =y(s) and x'=y(s’).

Then, we define® as a background classical space-time
metric gf,',,(x), which must be by definition a ¢ number,
the following expectation value of the trace of the prod-
uct of two composite operators W,[y](s) evaluated at
the points x =y(s) and x'=y(s’):

goy(x)=lim (Tr{(Wily/2)(s)r, W[y ~'/2](s")r.}) .

x =y(s)
'=pls)
T (19)
Notice that the operator inside the e;_gectation value of
(19) is called by Rovelli-Smolin (RS) observable. The
evaluation of Eq. (19) is quite complicated and for our
aim it is sufficient to limit ourselves to calculating it in
the tree-approximation. Thus, at lowest order in the ex-
pansion of the path-ordered 7f in W[y ] we get

—1lim ﬁrdzp (e (x,)wb(z))lim ﬁydw" (eS(x, )03 (w))Tr(1,7,7.74) . (20)
e—0 e—0

Here, we have used the fact that the trace of an odd prqd-
uct of Pauli matrices vanishes and that {ee ) =0=(0wo).
Notice that in this tree approximation and at lowest or-
der in the expansion of the path-ordered approximation,
Eq. (20) looks like (up to a numerical factor) the product
of two (T') evaluated in the same approximation.
Furthermore, in order to regularize (e ,w), we have
taken (see Fig. 7) the point x, which in the following will
be denoted by x,, on the “framed path” y  defined by

vr={xF+ent(t)|n()]|=1, >0}, @1

FIG. 7. An example of framing. The outer curve represents
the framed contour.

r

where n* is a vector orthogonal to ¥ obtained by shifting
the path y on which we calculate the holonomy F(y).
In Eq. (20) we shall use the formula

1
x.—z|
(22)

The result (22) has been obtained by using the expansion
of e}, around the “topological vacuum”

8 .

5 a b =% v
lim § ,dz? (e (x, Joj(z)) =lime, 3% $ a2 -

a_—pa

€p= Ny

g,=(es)=0

and the form of the propagator {(hjw}), Eq. (10a).

Clearly in Eq. (22) there exists and underlying definition

3A similar idea of detecting the space-time geometry from the
ISO(2,1)-Wilson lines has been recently suggested by S. Carlip
[17].
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of distance through the modulus. But following Witten
[1,14], we may assume to fix a priori an external space-
time metric §,, which will be identified in a “self-
consistent” way, in the end, with a flat-order approxima-
tion Of g5, iree(X)=8,,+ X385, 1rec(0)+ -+ . In any
case the metric dependence enters only the gauge-fixing
procedure and does not affect the physical space. An
easy way of understanding this is to recast the first-order
dreibein form of the Euclidean 3D Einstein action in an
ISO(3) Chern-Simons form [1]. Then one should recog-
nize that the associated symmetric energy-momentum
tensor T is given by the commutator with the BRST
charge Q, that is, T=[Q,(---)], where the other
member of the commutator is not relevant here [18].
Since Q annihilates the physical states, the mean value of
T vanishes between physical states. This implies general
covariance on the physical space, as it should be. Going

J

-_—

back to Eq. (22), it is identical, up to 8%, to the potentia]
A ,(x,) due to a closed magnetic vortex line y. By the
Biot-Savart law, A ulx¢) can also be interpreted as the to.
tal magnetic field generated by a steady unitary current
flowing through ¥ and observed at a point x, belonging
to a curve 7 that is twisted around y (see Fig. 7). The
twists are necessary in order to have a nontrivial results,
For instance, if y is a circle and 7, is parametrized (in
R3) by:

x =(1+gecosf)cosb ,
vrix 2=(1+¢sinf)sind , (23)

x3=¢sind

setting €,,,,=€;,3=1, we find that A, is equal to

hM,(x )N, =7 _P-»oeco 5 de[cosOG (6;7)1,
hmollz(x )|, =7 al—r.%eco T [smGG (6;7)], (24a)
. 1 1
limoA y(xe M, =y, = | e cost) de[°°SOG G+ a1+ 2e 5ind) do[s“‘oG (657)]
Here, G.(6;7) is defined as
4 Ale) ) |7 B |
0:y)= € T |_2B8) || eiEeE | L, 2Bl ,
G50 | Vae+Be A(e)+B(e) ] ] AE©FBEE 5 | Te+B@ 240

where F and E are elliptic integrals of the first and second
kind and 4 (), B(¢) are suitable functions of € such that

lim A(e)=1limB(g)=2 . (24¢c)
e—0 e—0

The same result is obtained from the second factor of Eq.
(20). Thus, we see that gf,'.,,t,,e(x) is given by the sym-

metric 3 X 3 matrix v
A A, A,
gf}v,,m =~const X A A, |, (25)
A3

where in the constant we have absorbed the factor
18%%6Tr(7,7,7,74). A, obtained in Eqgs. (24), is non-
vanishing, nontopological, and depends on the length
cutoff €, so that it is singular when this cutoff is re-
moved.* It is this regularization, or framing procedure,
that breaks the diffeomorphism-invariant unbroken phase
at the level of the “true” ground state of the T2 observ-
able. In other words, roughly speaking, the square root

4Notice that € can be reabsorbed, after a constant Weyl trans-
form, by a renormalization of the Newton coupling constant.

of the mean field { 7?) is a collective state which plays
the role of a classical background dreibein field
2, (x;e)=83A (x,.). On the other hand, the above fram-
ing procedure and hence the € dependence are strictly
necessary in order to get knot— (link-) invariant quanti-
ties [19] starting from the expectation value of the set of
RS observables [3] which are the Wilson line operators

T°=Tr#H(C) (26)

with C a knot (link) in R,

We should like to conclude with three remarks. The
first is that the perturbative nonrenormalizability of 3D
QG in the second-order metric formalism comes from the
fact that the correlation functions of the operator-valued
metric field are actually expectation values of products of
composite fields (the T2 observable). Troubles arise
essentially because we use the Feynman rules for the
whole composite fields instead of those of the fundamen-
tal ones (which are e and w). This situation perhaps also
affects 4D QG. This understanding of perturbative non-
renormalizability was underlined several times by Ashte-
kar, Rovelli, and Smolin.

Second, we have shown that a classical background
Euclidean space-time metric [Eq. (25)] is already induced
at the tree-approximation level. Then, following the com-
mon wisdom that regards the tree (semiclassical) approxi-
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mation as a large-scale (low-momenta) limit, we may un-
derstand that e—O0 limit as an infrared one and therefore
we may agree with Witten’s claim [14] that *. . .this in-
frared divergence is the birth of macroscopic space-time,
starting from microscopic quantum theory.”

Finally, we think that the quantum states of the gravi-
tational field constructed starting from the loop observ-
ables are of two kinds, “macroscopic” and “microscopic”
[20], as happens in the quantum Liouville approach to
2D gravity. The macroscopic states correspond to loop
observables such as 7°. The microscopic ones refer in-

stead to operators such as T, where the dreibein explicit-
ly appears. The former give the global, topological prop-
erties (as generalized knot-link invariants [21)) of gravity,
while the latter are associated with the local, metric prop-
erties of the gravitational field.
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