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Large scale inhomogeneity of inertial particles in turbulent flows
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Preferential concentration of inertial particles in turbulent flow is studied by high resolution direct
numerical simulations of two-dimensional turbulence. The formation of network-like regions of
high particle density, characterized by a length scale which depends on the Stokes number of inertial
particles, is observed. At smaller scales, the size of empty regions appears to be distributed
according to a universal scaling law. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1667807#

The transport of inertial particles in fluids displays prop-
erties typical of compressible motion even in incompressible
flows. This is a consequence of the difference of density
between particles and fluid. The most peculiar effect is the
spontaneous generation of inhomogeneity out of an initially
homogeneous distribution. The clustering of inertial particles
has important physical applications, from rain generation,1 to
pollutant distribution and combustion,2 to planets’
formation.3 Starting from the first examples in laminar flow,4

it is now demonstrated both numerically5–7 and
experimentally8,9 that, also in turbulent flows, there is a ten-
dency of inertial particles to form small scale clusters. The
parameter characterizing the effect of inertia is the Stokes
number St, defined as the ratio between the particle viscous
response timets and a characteristic time of the flowtv . In
the limit St→0 inertial particles recover the motion of fluid
particles and no clusterization is expected. In the opposite
limit St→` particles become less and less influenced by the
velocity field. The most interesting situation is observed for
intermediate values of St where strong clusterization is
observed.7,8

In the case of a smooth velocity field the Eulerian char-
acteristic timetv is a well defined quantity as it can be iden-
tified with the inverse Lyapunov exponenttv5l1

21 of fluid
trajectories. In this case some general theoretical predictions
are possible10,11such as the exponential growth of high order
concentration moments. Detailed numerical simulations in a
chaotic random flow have shown maximal clusterization
~measured in terms of the dimension of the Lagrangian at-
tractor! for a value St.0.1.12

In the case of turbulent flow, where the velocity field is
not smooth, a simple scaling argument suggests that maximal
compressibility effects are produced by the smallest, dissipa-
tive scales.11 Nevertheless, for sufficiently large values of St,
the particle response time introduces a characteristic scale in
the inertial range which breaks the scale invariance of the
velocity field and produces, as we will see, large scale inho-
mogeneity in particle distribution.

The motion of a spherical particle in an incompressible

flow, when the radiusa of the particle is so small that the
surrounding flow can be approximated by a Stokes flow, is
governed by the set of equations13

ẋ5v,
~1!

v̇52
1

ts
@v2u~x~ t !,t !#1b

d

dt
u~x~ t !,t !,

wherev represents the Lagrangian velocity of the particle,
b53r0 /(r012r) wherer andr0 are the density of particle
and fluid, respectively, andts5a2/(3nb) is the Stokes time.
The approximation of Stokes flow requiresa!h whereh is
the viscous scale of the flow. Another important assumption
is that particles behave passively, i.e., their perturbation on
the flow is negligible. This require a very small mass load-
ing, defined as the ratio of the particle mass to fluid mass.8

Assuming Np particle in a cube of sideL this requires
Npa3!bL3, which can be satisfied by taking sufficiently
small radius. Another constraint is obtained by requiring neg-
ligible particle interaction. This lead to a more restrictive
condition on particle radius which, again, is satisfied by suf-
ficiently small particles.11

In ~1! u(x,t) represents the incompressible velocity field
whose evolution is given by Navier–Stokes equations

]u

]t
1u•“u52“p1nDu1f. ~2!

In what follows, we will consider the limit of heavy particles
such thatb.0. In this limit it is easy to show that the La-
grangian velocity possesses a compressible part:11 expanding
~1! to first order ints and using“•u50, one obtains, from
~2!

“•v.2ts“•~u•“u!Þ0. ~3!

From ~3! it is possible to give a dimensional estimation of
the relative importance of the compressible part for a turbu-
lent velocity field with scaling exponenth, d,u;U(,/L)h,
L andU being a characteristic large scale and velocity. The
scaling exponent for the compressible component ofv is
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d,v;U(,/L)2h21 and thus the relative compressibility
scales as (,/L)h21, i.e., reaches the maximum value at the
viscous scaleh.11 Nevertheless, we will see that the presence
of an inertial range of scales in the turbulent flow generates
large scale structures in the particle distribution at large St.

In this Letter, we address the problem of transport of
heavy inertial particles in two-dimensional turbulence. There
are several geophysical and astrophysical situations involv-
ing suspensions of heavy particles in two-dimensional flows,
for instance the formation of planetesimals in the Solar
system3 or population dynamics of plankton in the ocean.14

Most previous two-dimensional studies have been focused
either on synthetic carrier flow14 or on very peculiar situa-
tions close to applications.3 Here we consider two-
dimensional turbulence in the inverse energy cascade regime
which displays Kolmogorov scaling on a wide range of
scales. Apart from the interest for two-dimensional applica-
tions, our simulations should be also considered as a first
step toward the study of turbulent transport in fully devel-
oped three-dimensional turbulence.15,16

High resolution direct numerical simulations of two-
dimensional Navier–Stokes equation~2! in the inverse en-
ergy cascade regime have been performed by means of stan-
dard pseudo-spectral code on a periodic box of sizeL51 at
resolutionN2510242. Energy is injected at small scales by a
random forcingf with correlation function̂ f i(x,t) f j (0,0)&
5d i j G(t/t f)F(x/, f). The characteristic injection scale is, f

.0.003 and the characteristic timet f is smaller than the
viscous turbulent time. As customary a friction term2au is
added to~2! in order to extract energy from the system at the
friction scale , fr;«1/2a23/2.0.064.17 The intermediate
scales, f!,!, fr define the inertial range in which Kolmog-
orov scalingd,u;U(,/L)1/3 is clearly observed.17

Lagrangian tracers are placed at random with initial zero
velocity and integrated according to~1! with a given ts.
After a scratch run long severalts, Lagrangian statistics is
accumulated for typically some tens ofts. Stokes time is
made dimensionless by rescaling with the Lagrangian
Lyapunov exponent of fluid particles, St[l1ts. Figure 1
shows typical distributions of inertial tracers in stationary
conditions at different values of St, obtained starting from
the same initial homogeneous random distribution. One ob-
serves in both cases strong inhomogeneity with empty
‘‘holes,’’ in the second case on much larger scales.

As discussed above, maximum compressibility effects
are expected at small scales and can be described by the
Lyapunov spectrum for inertial particles. We recall that for a
generic dynamical system the sum of the Lyapunov expo-
nents gives the exponential rate of expansion~or contraction!
of the hypervolume in phase space. In our case, from~1! we
have( i 51,4l i522/ts, thus volumes are contracted at a con-
stant rate. Let us observe that whents→`, the phase space
contraction rate vanishes, and we thus expect less clusteriza-
tion. As a consequence of the structure of~1! we find that
two Lyapunov exponents are close to21/ts, representing
the rate of adjustment of Lagrangian velocity to the Eulerian
one. The first Lyapunov exponent is found positive, as the
trajectories are chaotic and the second, negative, determines

FIG. 1. Snapshots of particle concentrations taken at the same time in sta-
tionary condition for two realizations with different Stokes numbers St
50.12 ~a! and St51.2 ~b! started from identical initial conditions and ad-
vected by the same two-dimensional turbulent flow. For comparison panel
~c! shows an example of particle concentration advected by a smooth flow
again with St51.2. The smooth turbulent flow is obtained by integrating
two-dimensional Navier–Stokes equations~2! in the direct cascade regime.
The number of particles in all cases is 10242.
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the dimension of the attractor according to the definition of
Lyapunov dimension18

dL5K1
( i 51

K l i

ulK11u
, ~4!

whereK is defined as the largest integer such that( i 51
K l i

>0. In Fig. 2 we show the dependence of Lyapunov dimen-
sion on Stokes number. In the limit St→0, particles become
neutral and thus one recovers the homogeneous distribution
with dL52. At very small Stokes numbers, the Lyapunov
dimension behaves asdL.22CSt2 ~see inset of Fig. 2! in
agreement with theoretical predictions11 and numerical ob-
servation in synthetic smooth flows.12 The presence of a
minimum around St.0.1 was already discussed in the case
of smooth flows12 and indicates a value for which compress-
ibility effects are maximum. For larger values of St particle
distribution in smooth flows recovers homogeneity~see Fig.
1, right panel!. We remark that the curvedL(St) of Fig. 2 is
almost identical to the one obtained in smooth flows. This is
a consequence of the fact that Lyapunov exponents are local
quantities, describing the growth of infinitesimal separations
between particles and thus insensitive to the presence of the
hierarchy of scales typical of a turbulent flow.

The turbulent scenario reveals its peculiarity for larger
values of St. Instead of becoming more homogeneous, the
inertial particle distribution develops structures on larger
scales, as is evident by comparing the central and right pan-
els in Fig. 1. Particles are distributed on a ‘‘sponge’’ charac-
terized by the presence of empty regions~holes! on different
scales. This dynamical distribution of inertial particles
evolves following the turbulent flow but its statistical prop-
erties are stationary. It is thus natural to study the statistics of
holes at varying Stokes number.

We have performed a coarse graining of the system by
dividing it into small boxes forming the sites of a square
lattice and counting the number of particles contained in
each small box. From this coarse grained density we have
computed the probability density function of holes, defined
as connected regions of empty boxes.

Probability density functions~pdf! of hole areas are
shown in Fig. 3 for different Stokes numbers. The hole dis-
tributions follow a power law with an exponent21.860.2
up to an exponential cutoff at a scaleASt which moves to
larger sizes with St, as shown in the inset of Fig. 3. At vari-
ance with the smooth flow case, in which particle density
recovers homogeneity for St.0.1 ~Ref. 12!, in the turbulent
case inhomogeneities are thus pushed to larger scales when
increasing St.

The hole area pdf is independent on the number of par-
ticles used in the simulations. This is a nontrivial property,
reflecting the fact that inertial particles cluster on network-
like structures where a clear-cut distinction between empty
regions and particle-rich regions can be observed. We have
also verified that the choice of the small coarse graining scale
does not modify the hole area pdf at larger scales. The ro-
bustness of hole statistics with respect to particle number
makes it a particularly interesting observable for experimen-
tal investigation with small mass loadings.

The presence of the cutoffASt introduces a characteristic
scale,,St;ASt

1/2, in the hole distribution. When rescaled with
the cutoff area, as in Fig. 4, the pdf at different St show a
remarkable collapse indicating that,St is the only scale
present in the clustering process. Increasing St,,St moves to
larger scales~see inset of Fig. 3! until it exits the inertial
range (,St>, fr) and self-similarity breaks down. At very
large St,,St@, fr and the distribution recovers the homoge-
neity observed in smooth flow for St.1.

The presence of structures in the inertial particle distri-
bution is often attributed5 to the fact that heavy particles are
expelled from vortical regions. Although structures are re-
lated to the presence of many active scales in the turbulent
flow, one should recall that in 2D turbulence, as a conse-
quence of the direct vorticity cascade, vorticity is concen-

FIG. 2. Lyapunov dimension for heavy particles in two-dimensional turbu-
lence as a function of the Stokes number. Inset: 22dL for small St in
log–log plot. Dashed line represents the St2 behavior.

FIG. 3. Probability density functions~pdf! of hole areas, normalized with
the area of the box, for St50.12 (1), St50.6 (3), St51.2 (* ) and St
52.4 (h). Holes are defined as connected regions of coarse grained distri-
bution with zero density. Probability density functions are computed over
100 independent realizations ofNp510242 particles each. In the inset we
show the dependence of the cutoff areaASt ~defined by the condition that
1% of holes has larger area! on St. The robustness of the hole area census
with respect to particle statistics have been checked by increasing the num-
ber of tracers up to 43106.
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trated at the small scales17 and no large scale coherent struc-
tures appear. Holes emerge as a result of the delayed
dynamics~1!, which filters the scales of the underlying tur-
bulent flow characterized by times of the order of the Stokes
time ts.

As discussed before, clustering occurs also in synthetic
flows where a hierarchy of time scales is absent, just as a
consequence of the dissipative character of the motion.12

However, it appears from our simulations that to fully under-
stand the geometry of inertial particle distribution in a turbu-
lent flow the presence of structures characterized by a large
set of time scales cannot be ignored.

We conclude that the geometry of inertial particle clus-
ters in developed turbulence is controlled both by the dissi-
pative effective dynamics of the particle motion at small
scales, and by the tendency of inertial particles to filter the
active scales characterized by times of the order of the char-
acteristic relaxation time of the particles. A full understand-
ing of the geometry of particle clusters in developed turbu-
lence is particularly relevant for several applications, such as
coalescence processes or chemical reactions. The reaction
rate of two chemical species is a function of their concentra-
tion. When particles of different species are transported by
the same turbulent flow, their local concentrations are not

independent and the presence of large scale correlations in
the particle distribution can in principle influence the reac-
tion velocity.
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