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Abstract

The object of this article is to characterize submanifolds M ⊂ Rn of
the Euclidean space whose shape operator Aξ satisfies the equation (Aξ)2 =
k‖ξ‖2Id, where k > 0 is constant.
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1 Introduction.

Characterization of submanifolds of the Euclidean space by imposing conditions
on its extrinsic or intrinsic invariants is a classical subject of the differential geom-
etry ([7], [2]) e.g. minimal submanifolds, isometric immersions of real space forms,
isoparametric submanifolds, etc.

The shape operator Aξ of a submanifold M ⊂ M̃ is called unipotent if it satisfies
the equation

(Aξ)2 = k‖ξ‖2Id,
where ξ belongs to the normal bundle T⊥M of the submanifold M . The following
theorem was proved in [1, Theorem 14].

Theorem Let Mm be a Kähler submanifold of the complex space form Snc =
CPn,Cn,CHn (n > m > 1) with c = 4, 0,−4 and Aξ its shape operator. Then, the
following conditions are equivalent:
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(i) (Aξ)2 = f‖ξ‖2Id, where f is a positive function on M ,

(ii) c = 4 and M is an open subset of the complex quadric Qm := {[z0 : · · · :
zm+1] ∈ CPm+1 | z2

0 + · · ·+z2
m+1 = 0} . In particular f = ( 4

c )2 is a constant.

The object of this article is to give a similar characterization for submanifolds of
the Euclidean space. We get the following result.

Theorem 1.1 Let Mm ⊂ Rn be a submanifold of the Euclidean space and let Aξ

its shape operator. Then, the following facts are equivalent:

(i) (Aξ)2 = k‖ξ‖2Id, where k > 0 is constant;

(ii) Mm is an open subset of a hypersphere or an open subset of the Veronese
embedding of the real, complex, quaternionic or Cayley projective planes in the
sphere S3m+1 where m = 1, 2, 4, 8, i.e. a focal manifold of an isoparametric
hypersurface of a sphere with three distinct principal curvatures.

It is interesting to remark that the proof uses techniques related with the normal
holonomy group of the given submanifold. Normal holonomy groups were classi-
fied by C. Olmos [6] and they are very useful for the study of the geometry of
homogeneous submanifolds [2].

2 Submanifolds with constant principal curvatures.

A submanifold M ⊂ Rn has constant principal curvatures if the shape operator
Aξ(t) has constant eigenvalues for any∇⊥-parallel normal vector field ξ(t) along any
piecewise differentiable curve. If in addition the normal bundle is flat i.e. R⊥ ≡ 0
then M is called isoparametric [7]. We will need the following result.

Theorem 2.1 [5] A submanifold M of Euclidean space has constant principal cur-
vatures if and only if is either isoparametric or a focal manifold to an isoparametric
submanifold.

For a discussion of focal manifolds of an isoparametric submanifold, its related
Coxeter group, etc, see [2, Chapter 5].
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3 Proof of Theorem 1.1.

It is well-known that (ii) implies (i) (see [3] or [4] for details).

Before dwelling into the proof that (i) implies (ii), we briefly explain the main
ideas. In first place we will show that the submanifold M has principal constant
curvatures. Then, from Theorem 2.1 there exists an isoparametric submanifold N
such that M = Nξ i.e. M is a parallel submanifold of N . Then we will show that
N is a hypersurface of a hypersphere. Since N is a hypersurface it follows that M
is obtained from N by focalizing an eigendistribution i.e. M = N ξ

λ
for a constant

principal curvature λ of N , see [2, pag.119, Example 4.2].

Proof of Theorem 1.1. Since Aξ(t) satisfies a polynomial equation then the shape
operator Aξ(t) with respect to any ∇⊥-parallel normal section ξ(t) has constant
eingenvalues. So the submanifold has constant principal curvatures.
Then, as a consequence of Theorem 2.1, either M is isoparametric or is a focal
manifold of an isoparametric submanifold. If M is isoparametric then it is not dif-
ficult to see that M is a piece of an hypersphere.
Assume now that M is a focal submanifold of an isoparametric submanifold N .
Then from the proof of Theorem 2.1 it follows that N is a holonomy tube (M)ξp
through a principal vector ξp ∈ T⊥p M . We claim that N is a isoparametric hyper-
surface of a hypersphere. In fact, from [2, pag.126, Remark 4.4.13] it is enough to
show that the codimension of a principal orbit Holp(∇⊥).ξp is one. Indeed, if it is
greater than one, we will obtain a contradiction. Note first that the Ricci equation
implies [Aξ, Aη] = 0 for any two normal vectors ξ, η to a principal orbit of the action
of the normal holonomy group. So, we can perform a simultaneous diagonalization
of the family {Aξ : ξ ∈ the normal space to a principal orbit }. Let λ(ξ) = 〈r, ξ〉
be a common eigenvalue. Thus, if η ⊥ r is in the normal space of the principal
orbit then (Aη)2 6= kId and we get a contradiction.
Thus, N is a isoparametric hypersurface of a hypersphere and the submanifold
M is a focal submanifold of N i.e. M = N ξ

λ
where ξ is the unit normal of N

and λ a constant principal curvature of N . Since the shape operator Aξ of M has
two eigenspaces for any normal vector ξ then the “Tube formula” (see [2, pag.121,
Lemma 4.4.7]) implies that the shape operator of N must have three principal cur-
vatures.
So from a theorem of Elie Cartan [3] it follows that M must be one of the cited
embeddings (for a beautiful proof of this Cartan’s Theorem see [4]). 2
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